Abstract

We present the design and fabrication of an isotropic broadband perfect light absorber in the near-infrared range using 3D metamaterials with a single resonator in the unit cell. The metamaterial resonator is comprised of a gold conical helix supported on a silicon pillar with back reflector realized on a silicon substrate. Simulations and experiments have demonstrated that the proposed absorber achieves a broad absorption band of more than 3 µm in the 1.5–4.5 µm wavelength range with an average absorbance of more than 90%. The numerical and experimental analyses show that the proposed device can provide both incident angle and polarization independent operations, which further widens the application prospects of our device.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Perfect selective metamaterial solar absorbers

Hao Wang and Liping Wang
Opt. Express 21(S6) A1078-A1093 (2013)

Broadband terahertz metamaterial absorber based on tantalum nitride

Guangsheng Deng, Jun Yang, and Zhiping Yin
Appl. Opt. 56(9) 2449-2454 (2017)

Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial

Lei Lei, Shun Li, Haixuan Huang, Keyu Tao, and Ping Xu
Opt. Express 26(5) 5686-5693 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, and J. Teng, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
    [Crossref]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  3. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
    [Crossref]
  4. R. Mudachathi and T. Tanaka, “Up Scalable Full Colour Plasmonic Pixels with Controllable Hue, Brightness and Saturation,” Sci. Rep. 7(1), 1199 (2017).
    [Crossref]
  5. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
    [Crossref]
  6. R. Mudachathi and T. Tanaka, “Broadband plasmonic perfect light absorber in the visible spectrum for solar cell applications,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 9(1), 015010 (2018).
    [Crossref]
  7. I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
    [Crossref]
  8. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref]
  9. A. Ishikawa and T. Tanaka, “Metamaterial absorbers for infrared detection of molecular self-assembled monolayers,” Sci. Rep. 5(1), 12570 (2015).
    [Crossref]
  10. R. Y. He, C. Y. Lin, Y. D. Su, K. C. Chiu, N. S. Chang, H. L. Wu, and S. J. Chen, “Imaging live cell membranes via surface plasmon-enhanced fluorescence and phase microscopy,” Opt. Express 18(4), 3649–3659 (2010).
    [Crossref]
  11. L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
    [Crossref]
  12. L. Chen, L. Deng-gao, G. Xu-guang, Z. Jia-yu, Z. Yi-ming, and Z. Song-lin, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Frontiers Inf. Technol. Electronic Eng. 20(5), 591–607 (2019).
    [Crossref]
  13. L. Chen, Y. Wei, X. F. Zang, Y. M. Zhu, and S. L. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
    [Crossref]
  14. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref]
  15. W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21(25), 30724–30730 (2013).
    [Crossref]
  16. K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
    [Crossref]
  17. S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
    [Crossref]
  18. L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26(5), 5686–5693 (2018).
    [Crossref]
  19. S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 114(16), 163702 (2013).
    [Crossref]
  20. J. Wang, W. Zhang, M. Zhu, K. Yi, and J. Shao, “Broadband perfect absorber with titanium nitride nano-disk array,” Plasmonics 10(6), 1473–1478 (2015).
    [Crossref]
  21. F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
    [Crossref]
  22. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Kiran Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
    [Crossref]
  23. R. Mudachathi, Y. Moritake, and T. Tanaka, “Controlling coulomb interactions in infrared stereometamaterials for unity light absorption,” Appl. Phys. Lett. 112(20), 201107 (2018).
    [Crossref]
  24. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref]
  25. S. Agarwal and Y. K. Prajapati, “Broadband and polarization-insensitive helix metamaterial absorber using graphene for terahertz region,” Appl. Phys. A 122(6), 561 (2016).
    [Crossref]
  26. Z. Lu, M. Zhao, Z. Y. Yang, L. Wu, and P. Zhang, “Helical Metamaterial Absorbers: broadband and polarization-independent in optical region,” J. Lightwave Technol. 31(16), 2762–2768 (2013).
    [Crossref]
  27. C. C. Chen, A. Ishikawa, Y. H. Tang, M. H. Shiao, D. P. Tsai, and T. Tanaka, “Uniaxial-isotropic metamaterials by three-dimensional split-ring resonators,” Adv. Opt. Mater. 3(1), 44–48 (2015).
    [Crossref]
  28. Y. Moritake and T. Tanaka, “Controlling bi-anisotropy in infrared metamaterials using three-dimensional split-ring-resonators for purely magnetic resonance,” Sci. Rep. 7(1), 6726 (2017).
    [Crossref]
  29. N. T. Q. Hoa, P. H. Lam, and P. D. Tung, “Wide-angle and polarization independent broadband microwave metamaterial absorber,” Microw. Opt. Technol. Lett. 59(5), 1157–1161 (2017).
    [Crossref]
  30. F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
    [Crossref]

2019 (1)

L. Chen, L. Deng-gao, G. Xu-guang, Z. Jia-yu, Z. Yi-ming, and Z. Song-lin, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Frontiers Inf. Technol. Electronic Eng. 20(5), 591–607 (2019).
[Crossref]

2018 (4)

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26(5), 5686–5693 (2018).
[Crossref]

R. Mudachathi and T. Tanaka, “Broadband plasmonic perfect light absorber in the visible spectrum for solar cell applications,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 9(1), 015010 (2018).
[Crossref]

R. Mudachathi, Y. Moritake, and T. Tanaka, “Controlling coulomb interactions in infrared stereometamaterials for unity light absorption,” Appl. Phys. Lett. 112(20), 201107 (2018).
[Crossref]

2017 (4)

Y. Moritake and T. Tanaka, “Controlling bi-anisotropy in infrared metamaterials using three-dimensional split-ring-resonators for purely magnetic resonance,” Sci. Rep. 7(1), 6726 (2017).
[Crossref]

N. T. Q. Hoa, P. H. Lam, and P. D. Tung, “Wide-angle and polarization independent broadband microwave metamaterial absorber,” Microw. Opt. Technol. Lett. 59(5), 1157–1161 (2017).
[Crossref]

R. Mudachathi and T. Tanaka, “Up Scalable Full Colour Plasmonic Pixels with Controllable Hue, Brightness and Saturation,” Sci. Rep. 7(1), 1199 (2017).
[Crossref]

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

2016 (5)

L. Chen, Y. Wei, X. F. Zang, Y. M. Zhu, and S. L. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref]

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

S. Agarwal and Y. K. Prajapati, “Broadband and polarization-insensitive helix metamaterial absorber using graphene for terahertz region,” Appl. Phys. A 122(6), 561 (2016).
[Crossref]

2015 (3)

J. Wang, W. Zhang, M. Zhu, K. Yi, and J. Shao, “Broadband perfect absorber with titanium nitride nano-disk array,” Plasmonics 10(6), 1473–1478 (2015).
[Crossref]

C. C. Chen, A. Ishikawa, Y. H. Tang, M. H. Shiao, D. P. Tsai, and T. Tanaka, “Uniaxial-isotropic metamaterials by three-dimensional split-ring resonators,” Adv. Opt. Mater. 3(1), 44–48 (2015).
[Crossref]

A. Ishikawa and T. Tanaka, “Metamaterial absorbers for infrared detection of molecular self-assembled monolayers,” Sci. Rep. 5(1), 12570 (2015).
[Crossref]

2014 (1)

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

2013 (4)

Z. Lu, M. Zhao, Z. Y. Yang, L. Wu, and P. Zhang, “Helical Metamaterial Absorbers: broadband and polarization-independent in optical region,” J. Lightwave Technol. 31(16), 2762–2768 (2013).
[Crossref]

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, and J. Teng, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref]

W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21(25), 30724–30730 (2013).
[Crossref]

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 114(16), 163702 (2013).
[Crossref]

2012 (2)

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

2011 (2)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Kiran Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

2010 (1)

2009 (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Kiran Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Agarwal, S.

S. Agarwal and Y. K. Prajapati, “Broadband and polarization-insensitive helix metamaterial absorber using graphene for terahertz region,” Appl. Phys. A 122(6), 561 (2016).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Bozhevolnyi, S. I.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

Chang, N. S.

Chen, C. C.

C. C. Chen, A. Ishikawa, Y. H. Tang, M. H. Shiao, D. P. Tsai, and T. Tanaka, “Uniaxial-isotropic metamaterials by three-dimensional split-ring resonators,” Adv. Opt. Mater. 3(1), 44–48 (2015).
[Crossref]

Chen, L.

L. Chen, L. Deng-gao, G. Xu-guang, Z. Jia-yu, Z. Yi-ming, and Z. Song-lin, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Frontiers Inf. Technol. Electronic Eng. 20(5), 591–607 (2019).
[Crossref]

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

L. Chen, Y. Wei, X. F. Zang, Y. M. Zhu, and S. L. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref]

Chen, S. J.

Chen, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

Cheng, H.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Chiu, K. C.

Cui, T.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Dai, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

Danner, A. J.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, and J. Teng, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Deng-gao, L.

L. Chen, L. Deng-gao, G. Xu-guang, Z. Jia-yu, Z. Yi-ming, and Z. Song-lin, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Frontiers Inf. Technol. Electronic Eng. 20(5), 591–607 (2019).
[Crossref]

Ding, F.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Duan, H.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Kiran Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Faist, J.

I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
[Crossref]

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Kiran Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Freymann, G. V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Gu, S.

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 114(16), 163702 (2013).
[Crossref]

Guo, L. J.

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

He, R. Y.

He, S.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Kiran Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Hegde, R. S.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Hoa, N. T. Q.

N. T. Q. Hoa, P. H. Lam, and P. D. Tung, “Wide-angle and polarization independent broadband microwave metamaterial absorber,” Microw. Opt. Technol. Lett. 59(5), 1157–1161 (2017).
[Crossref]

Huang, H.

Huang, T. J.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, and J. Teng, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref]

Ishikawa, A.

A. Ishikawa and T. Tanaka, “Metamaterial absorbers for infrared detection of molecular self-assembled monolayers,” Sci. Rep. 5(1), 12570 (2015).
[Crossref]

C. C. Chen, A. Ishikawa, Y. H. Tang, M. H. Shiao, D. P. Tsai, and T. Tanaka, “Uniaxial-isotropic metamaterials by three-dimensional split-ring resonators,” Adv. Opt. Mater. 3(1), 44–48 (2015).
[Crossref]

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Kiran Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Ji, C.

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

Jia-yu, Z.

L. Chen, L. Deng-gao, G. Xu-guang, Z. Jia-yu, Z. Yi-ming, and Z. Song-lin, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Frontiers Inf. Technol. Electronic Eng. 20(5), 591–607 (2019).
[Crossref]

Jin, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Kiran Chakravadhanula, V. S.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Kiran Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Koh, S. C. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Kumar, K.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Lam, P. H.

N. T. Q. Hoa, P. H. Lam, and P. D. Tung, “Wide-angle and polarization independent broadband microwave metamaterial absorber,” Microw. Opt. Technol. Lett. 59(5), 1157–1161 (2017).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Lee, K. T.

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

Lei, L.

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, B.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Li, P.

I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
[Crossref]

Li, S.

Lin, C. Y.

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Liu, H.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, and J. Teng, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref]

Liu, P. Q.

I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
[Crossref]

Lu, M.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, and J. Teng, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref]

Lu, Z.

Luxmoore, I. J.

I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
[Crossref]

Lv, J.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, and J. Teng, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref]

Ma, W.

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

Mo, L.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Moritake, Y.

R. Mudachathi, Y. Moritake, and T. Tanaka, “Controlling coulomb interactions in infrared stereometamaterials for unity light absorption,” Appl. Phys. Lett. 112(20), 201107 (2018).
[Crossref]

Y. Moritake and T. Tanaka, “Controlling bi-anisotropy in infrared metamaterials using three-dimensional split-ring-resonators for purely magnetic resonance,” Sci. Rep. 7(1), 6726 (2017).
[Crossref]

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Kiran Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Mudachathi, R.

R. Mudachathi, Y. Moritake, and T. Tanaka, “Controlling coulomb interactions in infrared stereometamaterials for unity light absorption,” Appl. Phys. Lett. 112(20), 201107 (2018).
[Crossref]

R. Mudachathi and T. Tanaka, “Broadband plasmonic perfect light absorber in the visible spectrum for solar cell applications,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 9(1), 015010 (2018).
[Crossref]

R. Mudachathi and T. Tanaka, “Up Scalable Full Colour Plasmonic Pixels with Controllable Hue, Brightness and Saturation,” Sci. Rep. 7(1), 1199 (2017).
[Crossref]

Nash, G. R.

I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Prajapati, Y. K.

S. Agarwal and Y. K. Prajapati, “Broadband and polarization-insensitive helix metamaterial absorber using graphene for terahertz region,” Appl. Phys. A 122(6), 561 (2016).
[Crossref]

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Shao, J.

J. Wang, W. Zhang, M. Zhu, K. Yi, and J. Shao, “Broadband perfect absorber with titanium nitride nano-disk array,” Plasmonics 10(6), 1473–1478 (2015).
[Crossref]

Shiao, M. H.

C. C. Chen, A. Ishikawa, Y. H. Tang, M. H. Shiao, D. P. Tsai, and T. Tanaka, “Uniaxial-isotropic metamaterials by three-dimensional split-ring resonators,” Adv. Opt. Mater. 3(1), 44–48 (2015).
[Crossref]

Si, G.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, and J. Teng, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref]

Singh, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Singh, R.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Song-lin, Z.

L. Chen, L. Deng-gao, G. Xu-guang, Z. Jia-yu, Z. Yi-ming, and Z. Song-lin, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Frontiers Inf. Technol. Electronic Eng. 20(5), 591–607 (2019).
[Crossref]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Kiran Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Su, B.

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 114(16), 163702 (2013).
[Crossref]

Su, Y. D.

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Tan, S.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

Tanaka, T.

R. Mudachathi and T. Tanaka, “Broadband plasmonic perfect light absorber in the visible spectrum for solar cell applications,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 9(1), 015010 (2018).
[Crossref]

R. Mudachathi, Y. Moritake, and T. Tanaka, “Controlling coulomb interactions in infrared stereometamaterials for unity light absorption,” Appl. Phys. Lett. 112(20), 201107 (2018).
[Crossref]

R. Mudachathi and T. Tanaka, “Up Scalable Full Colour Plasmonic Pixels with Controllable Hue, Brightness and Saturation,” Sci. Rep. 7(1), 1199 (2017).
[Crossref]

Y. Moritake and T. Tanaka, “Controlling bi-anisotropy in infrared metamaterials using three-dimensional split-ring-resonators for purely magnetic resonance,” Sci. Rep. 7(1), 6726 (2017).
[Crossref]

C. C. Chen, A. Ishikawa, Y. H. Tang, M. H. Shiao, D. P. Tsai, and T. Tanaka, “Uniaxial-isotropic metamaterials by three-dimensional split-ring resonators,” Adv. Opt. Mater. 3(1), 44–48 (2015).
[Crossref]

A. Ishikawa and T. Tanaka, “Metamaterial absorbers for infrared detection of molecular self-assembled monolayers,” Sci. Rep. 5(1), 12570 (2015).
[Crossref]

Tang, Y. H.

C. C. Chen, A. Ishikawa, Y. H. Tang, M. H. Shiao, D. P. Tsai, and T. Tanaka, “Uniaxial-isotropic metamaterials by three-dimensional split-ring resonators,” Adv. Opt. Mater. 3(1), 44–48 (2015).
[Crossref]

Tao, K.

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Kiran Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Teng, J.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, and J. Teng, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tsai, D. P.

C. C. Chen, A. Ishikawa, Y. H. Tang, M. H. Shiao, D. P. Tsai, and T. Tanaka, “Uniaxial-isotropic metamaterials by three-dimensional split-ring resonators,” Adv. Opt. Mater. 3(1), 44–48 (2015).
[Crossref]

Tung, P. D.

N. T. Q. Hoa, P. H. Lam, and P. D. Tung, “Wide-angle and polarization independent broadband microwave metamaterial absorber,” Microw. Opt. Technol. Lett. 59(5), 1157–1161 (2017).
[Crossref]

Wang, F.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, and J. Teng, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref]

Wang, J.

J. Wang, W. Zhang, M. Zhu, K. Yi, and J. Shao, “Broadband perfect absorber with titanium nitride nano-disk array,” Plasmonics 10(6), 1473–1478 (2015).
[Crossref]

Wang, W.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

Wang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Wei, J. N.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Wei, Y.

L. Chen, Y. Wei, X. F. Zang, Y. M. Zhu, and S. L. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref]

Wen, Y.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wu, H. L.

Wu, L.

Xiang, N.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, and J. Teng, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref]

Xu, N.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Xu, P.

Xu-guang, G.

L. Chen, L. Deng-gao, G. Xu-guang, Z. Jia-yu, Z. Yi-ming, and Z. Song-lin, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Frontiers Inf. Technol. Electronic Eng. 20(5), 591–607 (2019).
[Crossref]

Yan, F.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

Yang, J. K. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Yang, Z. Y.

Yi, K.

J. Wang, W. Zhang, M. Zhu, K. Yi, and J. Shao, “Broadband perfect absorber with titanium nitride nano-disk array,” Plasmonics 10(6), 1473–1478 (2015).
[Crossref]

Yi-ming, Z.

L. Chen, L. Deng-gao, G. Xu-guang, Z. Jia-yu, Z. Yi-ming, and Z. Song-lin, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Frontiers Inf. Technol. Electronic Eng. 20(5), 591–607 (2019).
[Crossref]

Yu, X.

Zang, X. F.

L. Chen, Y. Wei, X. F. Zang, Y. M. Zhu, and S. L. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref]

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Kiran Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Zhang, P.

Zhang, W.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

J. Wang, W. Zhang, M. Zhu, K. Yi, and J. Shao, “Broadband perfect absorber with titanium nitride nano-disk array,” Plasmonics 10(6), 1473–1478 (2015).
[Crossref]

Zhang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Zhao, M.

Zhao, X.

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 114(16), 163702 (2013).
[Crossref]

Zhao, Y.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, and J. Teng, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref]

Zheng, J.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

Zhu, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

Zhu, M.

J. Wang, W. Zhang, M. Zhu, K. Yi, and J. Shao, “Broadband perfect absorber with titanium nitride nano-disk array,” Plasmonics 10(6), 1473–1478 (2015).
[Crossref]

Zhu, Y.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Zhu, Y. M.

L. Chen, Y. Wei, X. F. Zang, Y. M. Zhu, and S. L. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref]

Zhuang, S. L.

L. Chen, Y. Wei, X. F. Zang, Y. M. Zhu, and S. L. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref]

ACS Photonics (1)

I. J. Luxmoore, P. Q. Liu, P. Li, J. Faist, and G. R. Nash, “Graphene–metamaterial photodetectors for integrated infrared sensing,” ACS Photonics 3(6), 936–941 (2016).
[Crossref]

Adv. Mater. (1)

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Kiran Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Adv. Nat. Sci.: Nanosci. Nanotechnol. (1)

R. Mudachathi and T. Tanaka, “Broadband plasmonic perfect light absorber in the visible spectrum for solar cell applications,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 9(1), 015010 (2018).
[Crossref]

Adv. Opt. Mater. (2)

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

C. C. Chen, A. Ishikawa, Y. H. Tang, M. H. Shiao, D. P. Tsai, and T. Tanaka, “Uniaxial-isotropic metamaterials by three-dimensional split-ring resonators,” Adv. Opt. Mater. 3(1), 44–48 (2015).
[Crossref]

AIP Adv. (1)

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

Appl. Phys. A (1)

S. Agarwal and Y. K. Prajapati, “Broadband and polarization-insensitive helix metamaterial absorber using graphene for terahertz region,” Appl. Phys. A 122(6), 561 (2016).
[Crossref]

Appl. Phys. Lett. (2)

R. Mudachathi, Y. Moritake, and T. Tanaka, “Controlling coulomb interactions in infrared stereometamaterials for unity light absorption,” Appl. Phys. Lett. 112(20), 201107 (2018).
[Crossref]

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

Frontiers Inf. Technol. Electronic Eng. (1)

L. Chen, L. Deng-gao, G. Xu-guang, Z. Jia-yu, Z. Yi-ming, and Z. Song-lin, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Frontiers Inf. Technol. Electronic Eng. 20(5), 591–607 (2019).
[Crossref]

J. Appl. Phys. (1)

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 114(16), 163702 (2013).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Microw. Opt. Technol. Lett. (1)

N. T. Q. Hoa, P. H. Lam, and P. D. Tung, “Wide-angle and polarization independent broadband microwave metamaterial absorber,” Microw. Opt. Technol. Lett. 59(5), 1157–1161 (2017).
[Crossref]

Nano Lett. (1)

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Nanoscale (1)

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, and J. Teng, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref]

Nat. Nanotechnol. (1)

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Express (3)

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Plasmonics (1)

J. Wang, W. Zhang, M. Zhu, K. Yi, and J. Shao, “Broadband perfect absorber with titanium nitride nano-disk array,” Plasmonics 10(6), 1473–1478 (2015).
[Crossref]

Sci. Rep. (5)

Y. Moritake and T. Tanaka, “Controlling bi-anisotropy in infrared metamaterials using three-dimensional split-ring-resonators for purely magnetic resonance,” Sci. Rep. 7(1), 6726 (2017).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

L. Chen, Y. Wei, X. F. Zang, Y. M. Zhu, and S. L. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref]

R. Mudachathi and T. Tanaka, “Up Scalable Full Colour Plasmonic Pixels with Controllable Hue, Brightness and Saturation,” Sci. Rep. 7(1), 1199 (2017).
[Crossref]

A. Ishikawa and T. Tanaka, “Metamaterial absorbers for infrared detection of molecular self-assembled monolayers,” Sci. Rep. 5(1), 12570 (2015).
[Crossref]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Geometry of the conical helix metamaterials and its SEM images. (a) Schematics of the conical helix with anchor diameter d, strip width w, inter strip gap g, strip thickness t and pillar height h. (b) Schematic showing the polarization independent broadband response of the CHMM to the incident light. (c) SEM images of the fabricated structures arranged in the 2D lattice with equal periodicities in both directions (tilted image is shown in the inset).
Fig. 2.
Fig. 2. Fabrication process steps of CHMM comprising of (i) electron beam lithography, (ii) pattern transfer on to resist layer, (iii) thermal evaporation of 45 nm thick Au layer, (iv) liftoff process, (v) anisotropic RIE, (vi) isotropic RIE and (vii) thermal evaporation of 45 nm thick Au layer. The 2D spiral structure transforms in to 3D conical helix by bending the suspended spiral due to the compressive residual stress in the second layer of Au.
Fig. 3.
Fig. 3. Absorbance of the CHMM based perfect light absorber for varying lattice parameters. (a) Simulated and (b) measured absorbance with respect to varying periodicity in x and y directions. The periodicity in x and y directions varied equally.
Fig. 4.
Fig. 4. Absorption spectrum of the CHMM for 200 nm separation. (a) Comparison between measured (solid blue line) and calculated (dotted red line) percentage absorption in the 1.5–4.5 µm wavelength range. (b) Comparison of the percentage absorption by different geometries (i) conical helix, (ii) released spiral and (iii) unreleased spiral for the same wavelength range.
Fig. 5.
Fig. 5. The absorption spectrum of the CHMM with 6 half rings (left) and the calculated current densities for peak wavelengths 1750nm, 2250 nm, 2800 nm and 3600 nm represented as I, II, III and IV respectively (right)
Fig. 6.
Fig. 6. (a) The dependence of absorption and spectral shape on the degree of conical shape, which is determined by θ, the inset shows the schematic of the angle of bent between successive half rings (b) and the absorption spectra for CHMMs with varying number of half rings
Fig. 7.
Fig. 7. Isotropic operation of the CHMM. (a) Calculated absorption spectrum for different angles of incidence. (b) Measured absorption spectrum for different polarization angles.

Metrics