Abstract

Imaging in poorly illuminated environments using three-dimensional (3D) imaging with passive imaging sensors that operate in the visible spectrum is a formidable task due to the low number of photons detected. 3D integral imaging, which integrates multiple two-dimensional perspectives, is expected to perform well in the presence of noise, as well as statistical fluctuation in the detected number of photons. In this paper, we present an investigation of 3D integral imaging in low-light-level conditions, where as low as a few photons and as high as several tens of photons are detected on average per pixel. In the experimental verification, we use an electron multiplying charge-coupled device (EM-CCD) and a scientific complementary metal-oxide-semiconductor (sCMOS) camera. For the EM-CCD, a theoretical model for the probability distribution of the pixel values is derived, then fitted with the experimental data to determine the camera parameters. Likewise, pixelwise calibration is performed on the sCMOS to determine the camera parameters for further analysis. Theoretical derivation of the expected signal-to-noise-ratio is provided for each image sensor and corroborated by the experimental findings. Further comparison between the cameras includes analysis of the contrast-to-noise ratio (CNR) as well as the perception-based image quality estimator (PIQE). Improvement of image quality metrics in the 3D reconstructed images is successfully confirmed compared with those of the 2D images. To the best of our knowledge, this is the first experimental report of low-light-level 3D integral imaging with as little as a few photons detected per pixel on average to improve scene visualization including occlusion removal from the scene.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Information content per photon versus image fidelity in three-dimensional photon-counting integral imaging

Majeed M. Hayat, Srikanth Narravula, Matthew Pepin, and Bahram Javidi
J. Opt. Soc. Am. A 29(10) 2048-2057 (2012)

Three-dimensional integral imaging and object detection using long-wave infrared imaging

Satoru Komatsu, Adam Markman, Abhijit Mahalanobis, Kenny Chen, and Bahram Javidi
Appl. Opt. 56(9) D120-D126 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
    [Crossref]
  2. F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
    [Crossref]
  3. A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94(3), 591–607 (2006).
    [Crossref]
  4. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [invited],” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref]
  5. M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6(10), 544–547 (2010).
    [Crossref]
  6. Y. Zhao, X. Xiao, M. Cho, and B. Javidi, “Tracking of multiple objects in unknown background using Bayesian estimation in 3D space,” J. Opt. Soc. Am. A 28(9), 1935–1940 (2011).
    [Crossref]
  7. V. J. Traver, P. Latorre-Carmona, E. Salvador-Balaguer, F. Pla, and B. Javidi, “Human gesture recognition using three-dimensional integral imaging,” J. Opt. Soc. Am. A 31(10), 2312–2320 (2014).
    [Crossref]
  8. A. Stern, D. Aloni, and B. Javidi, “Experiments with three-dimensional integral imaging under low light levels,” IEEE Photonics J. 4(4), 1188–1195 (2012).
    [Crossref]
  9. B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express 16(7), 4426–4436 (2008).
    [Crossref]
  10. A. Markman, X. Shen, and B. Javidi, “Three-dimensional object visualization and detection in low light illumination using integral imaging,” Opt. Lett. 42(16), 3068–3071 (2017).
    [Crossref]
  11. J. A. Tyson, “Progress in low-light-level charge-coupled device imaging in astronomy,” J. Opt. Soc. Am. A 7(7), 1231–1236 (1990).
    [Crossref]
  12. B. T. Phillips, D. F. Gruber, G. Vasan, C. N. Roman, V. A. Pieribone, and J. S. Sparks, “Observations of in situ deep- sea marine bioluminescence with a high-speed, high-resolution sCMOS camera,” Deep Sea Res., Part I 111, 102–109 (2016).
    [Crossref]
  13. B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607 (2010).
    [Crossref]
  14. P. Jerram, P. J. Pool, R. Bell, D. J. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. S. Heyes, “The LLCCD: low-light imaging without the need for an intensifier,” Proc. SPIE 4306, 178–186 (2001).
    [Crossref]
  15. E. Ciarrocchi and N. Belcari, “Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences,” EJNMMI Phys. 4(1), 14 (2017).
    [Crossref]
  16. M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
    [Crossref]
  17. S. Saurabh, S. Maji, and M. P. Bruchez, “Evaluation of sCMOS cameras for detection and localization of single Cy5 molecules,” Opt. Express 20(7), 7338–7349 (2012).
    [Crossref]
  18. F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
    [Crossref]
  19. C. D. Mackay, R. N. Tubbs, R. Bell, D. J. Burt, P. Jerram, and I. Moody, “Subelectron read noise at MHz pixel rates,” Proc. SPIE 4306, 289–298 (2001).
    [Crossref]
  20. J. Hynecek and T. Nishiwaki, “Excess noise and other important characteristics of low light level imaging using charge multiplying CCDs,” IEEE Trans. Electron Devices 50(1), 239–245 (2003).
    [Crossref]
  21. M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50(5), 1227–1232 (2003).
    [Crossref]
  22. A. G. Basden, C. A. Haniff, and C. D. Mackay, “Photon counting strategies with low-light-level CCDs,” Mon. Not. R. Astron. Soc. 345(3), 985–991 (2003).
    [Crossref]
  23. T. Plakhotnik, A. Chennu, and A. V. Zvyagin, “Statistics of single-electron signals in electron-multiplying charge- coupled devices,” IEEE Trans. Electron Devices 53(4), 618–622 (2006).
    [Crossref]
  24. K. B. W. Harpsøe, M. I. Andersen, and P. Kjægaard, “Bayesian photon counting with electron-multiplying charge coupled devices (EMCCDs),” Astron. Astrophys. 537, A50 (2012).
    [Crossref]
  25. S. Watanabe, T. Takahashi, and K. Bennett, “Quantitative evaluation of the accuracy and variance of individual pixels in a scientific CMOS (sCMOS) camera for computational imaging,” Proc. SPIE 10071, 100710Z (2017).
    [Crossref]
  26. F. A. Rosell, “Limiting resolution of low-light-level imaging sensors,” J. Opt. Soc. Am. 59(5), 539–547 (1969).
    [Crossref]
  27. N. Venkatanath, D. Praneeth, M. C. Bh, S. S. Channappayya, and S. S. Medasani, “Blind image quality evaluation using perception based features,” in Proceedings of IEEE Conference on Communications (IEEE, 2015), pp. 1–6.
  28. A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Trans. on Image Process. 21(12), 4695–4708 (2012).
    [Crossref]
  29. R. Schulein, M. DaneshPanah, and B. Javidi, “3D imaging with axially distributed sensing,” Opt. Lett. 34(13), 2012–2014 (2009).
    [Crossref]
  30. X. Li, M. Zhao, Y. Xing, L. Li, S.-T. Kim, X. Zhou, and Q.-H. Wang, “Optical encryption via monospectral integral imaging,” Opt. Express 25(25), 31516–31527 (2017).
    [Crossref]

2017 (4)

A. Markman, X. Shen, and B. Javidi, “Three-dimensional object visualization and detection in low light illumination using integral imaging,” Opt. Lett. 42(16), 3068–3071 (2017).
[Crossref]

E. Ciarrocchi and N. Belcari, “Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences,” EJNMMI Phys. 4(1), 14 (2017).
[Crossref]

S. Watanabe, T. Takahashi, and K. Bennett, “Quantitative evaluation of the accuracy and variance of individual pixels in a scientific CMOS (sCMOS) camera for computational imaging,” Proc. SPIE 10071, 100710Z (2017).
[Crossref]

X. Li, M. Zhao, Y. Xing, L. Li, S.-T. Kim, X. Zhou, and Q.-H. Wang, “Optical encryption via monospectral integral imaging,” Opt. Express 25(25), 31516–31527 (2017).
[Crossref]

2016 (1)

B. T. Phillips, D. F. Gruber, G. Vasan, C. N. Roman, V. A. Pieribone, and J. S. Sparks, “Observations of in situ deep- sea marine bioluminescence with a high-speed, high-resolution sCMOS camera,” Deep Sea Res., Part I 111, 102–109 (2016).
[Crossref]

2014 (1)

2013 (2)

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref]

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

2012 (5)

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref]

S. Saurabh, S. Maji, and M. P. Bruchez, “Evaluation of sCMOS cameras for detection and localization of single Cy5 molecules,” Opt. Express 20(7), 7338–7349 (2012).
[Crossref]

A. Stern, D. Aloni, and B. Javidi, “Experiments with three-dimensional integral imaging under low light levels,” IEEE Photonics J. 4(4), 1188–1195 (2012).
[Crossref]

A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Trans. on Image Process. 21(12), 4695–4708 (2012).
[Crossref]

K. B. W. Harpsøe, M. I. Andersen, and P. Kjægaard, “Bayesian photon counting with electron-multiplying charge coupled devices (EMCCDs),” Astron. Astrophys. 537, A50 (2012).
[Crossref]

2011 (1)

2010 (2)

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6(10), 544–547 (2010).
[Crossref]

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607 (2010).
[Crossref]

2009 (1)

2008 (1)

2006 (2)

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94(3), 591–607 (2006).
[Crossref]

T. Plakhotnik, A. Chennu, and A. V. Zvyagin, “Statistics of single-electron signals in electron-multiplying charge- coupled devices,” IEEE Trans. Electron Devices 53(4), 618–622 (2006).
[Crossref]

2003 (3)

J. Hynecek and T. Nishiwaki, “Excess noise and other important characteristics of low light level imaging using charge multiplying CCDs,” IEEE Trans. Electron Devices 50(1), 239–245 (2003).
[Crossref]

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50(5), 1227–1232 (2003).
[Crossref]

A. G. Basden, C. A. Haniff, and C. D. Mackay, “Photon counting strategies with low-light-level CCDs,” Mon. Not. R. Astron. Soc. 345(3), 985–991 (2003).
[Crossref]

2001 (2)

P. Jerram, P. J. Pool, R. Bell, D. J. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. S. Heyes, “The LLCCD: low-light imaging without the need for an intensifier,” Proc. SPIE 4306, 178–186 (2001).
[Crossref]

C. D. Mackay, R. N. Tubbs, R. Bell, D. J. Burt, P. Jerram, and I. Moody, “Subelectron read noise at MHz pixel rates,” Proc. SPIE 4306, 289–298 (2001).
[Crossref]

1999 (1)

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[Crossref]

1990 (1)

1969 (1)

1908 (1)

G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Agnew, M.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref]

Aloni, D.

A. Stern, D. Aloni, and B. Javidi, “Experiments with three-dimensional integral imaging under low light levels,” IEEE Photonics J. 4(4), 1188–1195 (2012).
[Crossref]

Andersen, M. I.

K. B. W. Harpsøe, M. I. Andersen, and P. Kjægaard, “Bayesian photon counting with electron-multiplying charge coupled devices (EMCCDs),” Astron. Astrophys. 537, A50 (2012).
[Crossref]

Appelbaum, J.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607 (2010).
[Crossref]

Arai, J.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[Crossref]

Baird, M. A.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Balicki, J.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607 (2010).
[Crossref]

Basden, A. G.

A. G. Basden, C. A. Haniff, and C. D. Mackay, “Photon counting strategies with low-light-level CCDs,” Mon. Not. R. Astron. Soc. 345(3), 985–991 (2003).
[Crossref]

Belcari, N.

E. Ciarrocchi and N. Belcari, “Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences,” EJNMMI Phys. 4(1), 14 (2017).
[Crossref]

Bell, R.

P. Jerram, P. J. Pool, R. Bell, D. J. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. S. Heyes, “The LLCCD: low-light imaging without the need for an intensifier,” Proc. SPIE 4306, 178–186 (2001).
[Crossref]

C. D. Mackay, R. N. Tubbs, R. Bell, D. J. Burt, P. Jerram, and I. Moody, “Subelectron read noise at MHz pixel rates,” Proc. SPIE 4306, 289–298 (2001).
[Crossref]

Bennett, K.

S. Watanabe, T. Takahashi, and K. Bennett, “Quantitative evaluation of the accuracy and variance of individual pixels in a scientific CMOS (sCMOS) camera for computational imaging,” Proc. SPIE 10071, 100710Z (2017).
[Crossref]

Bewersdorf, J.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Bh, M. C.

N. Venkatanath, D. Praneeth, M. C. Bh, S. S. Channappayya, and S. S. Medasani, “Blind image quality evaluation using perception based features,” in Proceedings of IEEE Conference on Communications (IEEE, 2015), pp. 1–6.

Bovik, A. C.

A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Trans. on Image Process. 21(12), 4695–4708 (2012).
[Crossref]

Bowring, S.

P. Jerram, P. J. Pool, R. Bell, D. J. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. S. Heyes, “The LLCCD: low-light imaging without the need for an intensifier,” Proc. SPIE 4306, 178–186 (2001).
[Crossref]

Boyd, R. W.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref]

Bruchez, M. P.

Buller, G. S.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref]

Burt, D. J.

P. Jerram, P. J. Pool, R. Bell, D. J. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. S. Heyes, “The LLCCD: low-light imaging without the need for an intensifier,” Proc. SPIE 4306, 178–186 (2001).
[Crossref]

C. D. Mackay, R. N. Tubbs, R. Bell, D. J. Burt, P. Jerram, and I. Moody, “Subelectron read noise at MHz pixel rates,” Proc. SPIE 4306, 289–298 (2001).
[Crossref]

Catlett, N.

P. Jerram, P. J. Pool, R. Bell, D. J. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. S. Heyes, “The LLCCD: low-light imaging without the need for an intensifier,” Proc. SPIE 4306, 178–186 (2001).
[Crossref]

Channappayya, S. S.

N. Venkatanath, D. Praneeth, M. C. Bh, S. S. Channappayya, and S. S. Medasani, “Blind image quality evaluation using perception based features,” in Proceedings of IEEE Conference on Communications (IEEE, 2015), pp. 1–6.

Chennu, A.

T. Plakhotnik, A. Chennu, and A. V. Zvyagin, “Statistics of single-electron signals in electron-multiplying charge- coupled devices,” IEEE Trans. Electron Devices 53(4), 618–622 (2006).
[Crossref]

Cho, M.

Y. Zhao, X. Xiao, M. Cho, and B. Javidi, “Tracking of multiple objects in unknown background using Bayesian estimation in 3D space,” J. Opt. Soc. Am. A 28(9), 1935–1940 (2011).
[Crossref]

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6(10), 544–547 (2010).
[Crossref]

Ciarrocchi, E.

E. Ciarrocchi and N. Belcari, “Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences,” EJNMMI Phys. 4(1), 14 (2017).
[Crossref]

DaneshPanah, M.

Davidson, M. W.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Do, H.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607 (2010).
[Crossref]

Duim, W. C.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Edgar, M. P.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref]

Fowler, B.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607 (2010).
[Crossref]

Gruber, D. F.

B. T. Phillips, D. F. Gruber, G. Vasan, C. N. Roman, V. A. Pieribone, and J. S. Sparks, “Observations of in situ deep- sea marine bioluminescence with a high-speed, high-resolution sCMOS camera,” Deep Sea Res., Part I 111, 102–109 (2016).
[Crossref]

Hadwen, B. J.

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50(5), 1227–1232 (2003).
[Crossref]

Haniff, C. A.

A. G. Basden, C. A. Haniff, and C. D. Mackay, “Photon counting strategies with low-light-level CCDs,” Mon. Not. R. Astron. Soc. 345(3), 985–991 (2003).
[Crossref]

Harpsøe, K. B. W.

K. B. W. Harpsøe, M. I. Andersen, and P. Kjægaard, “Bayesian photon counting with electron-multiplying charge coupled devices (EMCCDs),” Astron. Astrophys. 537, A50 (2012).
[Crossref]

Hartwich, T. M. P.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Hazelwood, M.

P. Jerram, P. J. Pool, R. Bell, D. J. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. S. Heyes, “The LLCCD: low-light imaging without the need for an intensifier,” Proc. SPIE 4306, 178–186 (2001).
[Crossref]

Heyes, P. S.

P. Jerram, P. J. Pool, R. Bell, D. J. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. S. Heyes, “The LLCCD: low-light imaging without the need for an intensifier,” Proc. SPIE 4306, 178–186 (2001).
[Crossref]

Hoshino, H.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[Crossref]

Huang, F.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Hynecek, J.

J. Hynecek and T. Nishiwaki, “Excess noise and other important characteristics of low light level imaging using charge multiplying CCDs,” IEEE Trans. Electron Devices 50(1), 239–245 (2003).
[Crossref]

Izdebski, F.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref]

Javidi, B.

A. Markman, X. Shen, and B. Javidi, “Three-dimensional object visualization and detection in low light illumination using integral imaging,” Opt. Lett. 42(16), 3068–3071 (2017).
[Crossref]

V. J. Traver, P. Latorre-Carmona, E. Salvador-Balaguer, F. Pla, and B. Javidi, “Human gesture recognition using three-dimensional integral imaging,” J. Opt. Soc. Am. A 31(10), 2312–2320 (2014).
[Crossref]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref]

A. Stern, D. Aloni, and B. Javidi, “Experiments with three-dimensional integral imaging under low light levels,” IEEE Photonics J. 4(4), 1188–1195 (2012).
[Crossref]

Y. Zhao, X. Xiao, M. Cho, and B. Javidi, “Tracking of multiple objects in unknown background using Bayesian estimation in 3D space,” J. Opt. Soc. Am. A 28(9), 1935–1940 (2011).
[Crossref]

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6(10), 544–547 (2010).
[Crossref]

R. Schulein, M. DaneshPanah, and B. Javidi, “3D imaging with axially distributed sensing,” Opt. Lett. 34(13), 2012–2014 (2009).
[Crossref]

B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express 16(7), 4426–4436 (2008).
[Crossref]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94(3), 591–607 (2006).
[Crossref]

Jerram, P.

P. Jerram, P. J. Pool, R. Bell, D. J. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. S. Heyes, “The LLCCD: low-light imaging without the need for an intensifier,” Proc. SPIE 4306, 178–186 (2001).
[Crossref]

C. D. Mackay, R. N. Tubbs, R. Bell, D. J. Burt, P. Jerram, and I. Moody, “Subelectron read noise at MHz pixel rates,” Proc. SPIE 4306, 289–298 (2001).
[Crossref]

Kim, S.-T.

Kjægaard, P.

K. B. W. Harpsøe, M. I. Andersen, and P. Kjægaard, “Bayesian photon counting with electron-multiplying charge coupled devices (EMCCDs),” Astron. Astrophys. 537, A50 (2012).
[Crossref]

Latorre-Carmona, P.

Leach, J.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref]

Li, L.

Li, W.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607 (2010).
[Crossref]

Li, X.

Lin, Y.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Lippmann, G.

G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Liu, C.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607 (2010).
[Crossref]

Long, J. J.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Mackay, C. D.

A. G. Basden, C. A. Haniff, and C. D. Mackay, “Photon counting strategies with low-light-level CCDs,” Mon. Not. R. Astron. Soc. 345(3), 985–991 (2003).
[Crossref]

C. D. Mackay, R. N. Tubbs, R. Bell, D. J. Burt, P. Jerram, and I. Moody, “Subelectron read noise at MHz pixel rates,” Proc. SPIE 4306, 289–298 (2001).
[Crossref]

Maji, S.

Markman, A.

Martinez-Corral, M.

Medasani, S. S.

N. Venkatanath, D. Praneeth, M. C. Bh, S. S. Channappayya, and S. S. Medasani, “Blind image quality evaluation using perception based features,” in Proceedings of IEEE Conference on Communications (IEEE, 2015), pp. 1–6.

Mims, S.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607 (2010).
[Crossref]

Mittal, A.

A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Trans. on Image Process. 21(12), 4695–4708 (2012).
[Crossref]

Moody, I.

P. Jerram, P. J. Pool, R. Bell, D. J. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. S. Heyes, “The LLCCD: low-light imaging without the need for an intensifier,” Proc. SPIE 4306, 178–186 (2001).
[Crossref]

C. D. Mackay, R. N. Tubbs, R. Bell, D. J. Burt, P. Jerram, and I. Moody, “Subelectron read noise at MHz pixel rates,” Proc. SPIE 4306, 289–298 (2001).
[Crossref]

Moorthy, A. K.

A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Trans. on Image Process. 21(12), 4695–4708 (2012).
[Crossref]

Mothes, W.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Myers, J. R.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Nishiwaki, T.

J. Hynecek and T. Nishiwaki, “Excess noise and other important characteristics of low light level imaging using charge multiplying CCDs,” IEEE Trans. Electron Devices 50(1), 239–245 (2003).
[Crossref]

Okano, F.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[Crossref]

Padgett, M. J.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref]

Phillips, B. T.

B. T. Phillips, D. F. Gruber, G. Vasan, C. N. Roman, V. A. Pieribone, and J. S. Sparks, “Observations of in situ deep- sea marine bioluminescence with a high-speed, high-resolution sCMOS camera,” Deep Sea Res., Part I 111, 102–109 (2016).
[Crossref]

Pieribone, V. A.

B. T. Phillips, D. F. Gruber, G. Vasan, C. N. Roman, V. A. Pieribone, and J. S. Sparks, “Observations of in situ deep- sea marine bioluminescence with a high-speed, high-resolution sCMOS camera,” Deep Sea Res., Part I 111, 102–109 (2016).
[Crossref]

Pla, F.

Plakhotnik, T.

T. Plakhotnik, A. Chennu, and A. V. Zvyagin, “Statistics of single-electron signals in electron-multiplying charge- coupled devices,” IEEE Trans. Electron Devices 53(4), 618–622 (2006).
[Crossref]

Pool, P. J.

P. Jerram, P. J. Pool, R. Bell, D. J. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. S. Heyes, “The LLCCD: low-light imaging without the need for an intensifier,” Proc. SPIE 4306, 178–186 (2001).
[Crossref]

Praneeth, D.

N. Venkatanath, D. Praneeth, M. C. Bh, S. S. Channappayya, and S. S. Medasani, “Blind image quality evaluation using perception based features,” in Proceedings of IEEE Conference on Communications (IEEE, 2015), pp. 1–6.

Rivera-Molina, F. E.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Robbins, M. S.

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50(5), 1227–1232 (2003).
[Crossref]

Roman, C. N.

B. T. Phillips, D. F. Gruber, G. Vasan, C. N. Roman, V. A. Pieribone, and J. S. Sparks, “Observations of in situ deep- sea marine bioluminescence with a high-speed, high-resolution sCMOS camera,” Deep Sea Res., Part I 111, 102–109 (2016).
[Crossref]

Rosell, F. A.

Salvador-Balaguer, E.

Saurabh, S.

Schulein, R.

Shen, X.

Sparks, J. S.

B. T. Phillips, D. F. Gruber, G. Vasan, C. N. Roman, V. A. Pieribone, and J. S. Sparks, “Observations of in situ deep- sea marine bioluminescence with a high-speed, high-resolution sCMOS camera,” Deep Sea Res., Part I 111, 102–109 (2016).
[Crossref]

Spencer, S.

P. Jerram, P. J. Pool, R. Bell, D. J. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. S. Heyes, “The LLCCD: low-light imaging without the need for an intensifier,” Proc. SPIE 4306, 178–186 (2001).
[Crossref]

Stern, A.

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref]

A. Stern, D. Aloni, and B. Javidi, “Experiments with three-dimensional integral imaging under low light levels,” IEEE Photonics J. 4(4), 1188–1195 (2012).
[Crossref]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94(3), 591–607 (2006).
[Crossref]

Takahashi, T.

S. Watanabe, T. Takahashi, and K. Bennett, “Quantitative evaluation of the accuracy and variance of individual pixels in a scientific CMOS (sCMOS) camera for computational imaging,” Proc. SPIE 10071, 100710Z (2017).
[Crossref]

Tasca, D. S.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref]

Tavakoli, B.

Toomre, D.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Traver, V. J.

Tubbs, R. N.

C. D. Mackay, R. N. Tubbs, R. Bell, D. J. Burt, P. Jerram, and I. Moody, “Subelectron read noise at MHz pixel rates,” Proc. SPIE 4306, 289–298 (2001).
[Crossref]

Tyson, J. A.

Uchil, P. D.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Vasan, G.

B. T. Phillips, D. F. Gruber, G. Vasan, C. N. Roman, V. A. Pieribone, and J. S. Sparks, “Observations of in situ deep- sea marine bioluminescence with a high-speed, high-resolution sCMOS camera,” Deep Sea Res., Part I 111, 102–109 (2016).
[Crossref]

Venkatanath, N.

N. Venkatanath, D. Praneeth, M. C. Bh, S. S. Channappayya, and S. S. Medasani, “Blind image quality evaluation using perception based features,” in Proceedings of IEEE Conference on Communications (IEEE, 2015), pp. 1–6.

Vu, P.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607 (2010).
[Crossref]

Wang, Q.-H.

Warburton, R. E.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref]

Watanabe, S.

S. Watanabe, T. Takahashi, and K. Bennett, “Quantitative evaluation of the accuracy and variance of individual pixels in a scientific CMOS (sCMOS) camera for computational imaging,” Proc. SPIE 10071, 100710Z (2017).
[Crossref]

Watson, E.

Xiao, X.

Xing, Y.

Yuyama, I.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[Crossref]

Zhao, M.

Zhao, Y.

Zhou, X.

Zvyagin, A. V.

T. Plakhotnik, A. Chennu, and A. V. Zvyagin, “Statistics of single-electron signals in electron-multiplying charge- coupled devices,” IEEE Trans. Electron Devices 53(4), 618–622 (2006).
[Crossref]

Appl. Opt. (1)

Astron. Astrophys. (1)

K. B. W. Harpsøe, M. I. Andersen, and P. Kjægaard, “Bayesian photon counting with electron-multiplying charge coupled devices (EMCCDs),” Astron. Astrophys. 537, A50 (2012).
[Crossref]

Deep Sea Res., Part I (1)

B. T. Phillips, D. F. Gruber, G. Vasan, C. N. Roman, V. A. Pieribone, and J. S. Sparks, “Observations of in situ deep- sea marine bioluminescence with a high-speed, high-resolution sCMOS camera,” Deep Sea Res., Part I 111, 102–109 (2016).
[Crossref]

EJNMMI Phys. (1)

E. Ciarrocchi and N. Belcari, “Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences,” EJNMMI Phys. 4(1), 14 (2017).
[Crossref]

IEEE Photonics J. (1)

A. Stern, D. Aloni, and B. Javidi, “Experiments with three-dimensional integral imaging under low light levels,” IEEE Photonics J. 4(4), 1188–1195 (2012).
[Crossref]

IEEE Trans. Electron Devices (3)

J. Hynecek and T. Nishiwaki, “Excess noise and other important characteristics of low light level imaging using charge multiplying CCDs,” IEEE Trans. Electron Devices 50(1), 239–245 (2003).
[Crossref]

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50(5), 1227–1232 (2003).
[Crossref]

T. Plakhotnik, A. Chennu, and A. V. Zvyagin, “Statistics of single-electron signals in electron-multiplying charge- coupled devices,” IEEE Trans. Electron Devices 53(4), 618–622 (2006).
[Crossref]

IEEE Trans. on Image Process. (1)

A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Trans. on Image Process. 21(12), 4695–4708 (2012).
[Crossref]

J. Disp. Technol. (1)

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6(10), 544–547 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Phys. Theor. Appl. (1)

G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Mon. Not. R. Astron. Soc. (1)

A. G. Basden, C. A. Haniff, and C. D. Mackay, “Photon counting strategies with low-light-level CCDs,” Mon. Not. R. Astron. Soc. 345(3), 985–991 (2003).
[Crossref]

Nat. Commun. (1)

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref]

Nat. Methods (1)

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Opt. Eng. (1)

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Proc. IEEE (1)

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94(3), 591–607 (2006).
[Crossref]

Proc. SPIE (4)

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607 (2010).
[Crossref]

P. Jerram, P. J. Pool, R. Bell, D. J. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. S. Heyes, “The LLCCD: low-light imaging without the need for an intensifier,” Proc. SPIE 4306, 178–186 (2001).
[Crossref]

C. D. Mackay, R. N. Tubbs, R. Bell, D. J. Burt, P. Jerram, and I. Moody, “Subelectron read noise at MHz pixel rates,” Proc. SPIE 4306, 289–298 (2001).
[Crossref]

S. Watanabe, T. Takahashi, and K. Bennett, “Quantitative evaluation of the accuracy and variance of individual pixels in a scientific CMOS (sCMOS) camera for computational imaging,” Proc. SPIE 10071, 100710Z (2017).
[Crossref]

Other (1)

N. Venkatanath, D. Praneeth, M. C. Bh, S. S. Channappayya, and S. S. Medasani, “Blind image quality evaluation using perception based features,” in Proceedings of IEEE Conference on Communications (IEEE, 2015), pp. 1–6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Partial image of 128 × 128 pixels extracted from the dark image frame acquired with the lens cap on. Color bar depicts grayscale values in ADU. (b) Distribution plot of pixel values of the whole dark image frame. Solid line is a model distribution given by Eq. (5). Circles correspond to experimental values.
Fig. 2.
Fig. 2. Histograms of (a) the offset value, (b) the conversion coefficient, and (c) the variance of the readout noise of whole 2048 × 2048 pixels of the sCMOS camera.
Fig. 3.
Fig. 3. Integral imaging system for the (a) pick-up stage and (b) 3D reconstruction stage. (c) Corresponding images of the reconstruction stage for the reference scene imaged with a conventional camera (Allied Vision Mako G-192 GigE) in regular illumination conditions. Insets of (c) depict an example elemental image, reconstructed image at a depth of z = 3 m showing clear reconstruction of the occlusion, and reconstructed image at z = 4.1 m showing clear reconstruction of the object. px and py are the pitch between image sensors in the x and y directions, respectively.
Fig. 4.
Fig. 4. (a) Elemental image of the reference scene taken in regular illumination without occlusion. (b) Reconstructed Image of the reference scene at Z = 4.1 m. (c) Image of the reference scene taken by iPhone 8. Green box indicates the ROI on the mannequin’s face used to calculate the detected number of photons (nph).
Fig. 5.
Fig. 5. Scene 1 using EM-CCD camera and sCMOS camera. (a) Example of 2D elemental image using a conventional CMOS (Allied Vision Mako G-192 GigE) camera under the low illumination conditions used in the experiment. (b) Part of an elemental image without occlusion acquired by the EM-CCD camera with the object ROI (green rectangle) and the background ROI (red rectangle) used for the metric calculations. (c) Part of the 3D reconstructed image for the EM-CCD camera. (d) 2D elemental image acquired by the EM-CCD camera in which the object ROI is occluded by the artificial plant and (e) not occluded. (f) 3D reconstructed image at z= 4.1 m for the EM-CCD camera. CNR for (d), (e) and (f) are 2.68, 3.58 and 22.4, respectively. (g) 2D elemental image acquired by the sCMOS camera in which the object ROI is occluded by the artificial plant and (h) not occluded. (i) 3D reconstructed image at z = 4.1 m for the sCMOS camera. CNR for (g), (h) and (i) are 2.88, 4.76 and 19.0, respectively. Color bars depict the grayscale values in ADU.
Fig. 6.
Fig. 6. Plot of SNRROI versus mean number of detected photons inside the object and the background ROIs of the elemental images acquired in Scene 1 and Scene 2 without occlusion by the EM-CCD camera (red circle) and the sCMOS camera (blue circle). The solid line and the dashed line are theoretical predictions based on Eq. (2) and Eq. (7) with r2 = 1.46, respectively. Circles illustrate experimental results.
Fig. 7.
Fig. 7. Scene 2 using EM-CCD camera and sCMOS camera. (a) 2D elemental image acquired by the EM-CCD camera in which the object ROI is occluded by the artificial plant and (b) not occluded. (c) 3D reconstructed image at z = 4.1 m for the EM-CCD camera. CNR for (a), (b) and (c) are 0.48, 2.16 and 12.5, respectively. (d) 2D elemental image acquired by the sCMOS camera in which the object ROI is occluded by the artificial plant and (e) not occluded. (f) 3D reconstructed image at z = 4.1 m for the sCMOS camera. CNR for (d), (e) and (f) are 0.62, 0.79 and 4.49, respectively.

Tables (2)

Tables Icon

Table 1. Summary of experimental results

Tables Icon

Table 2. Summary of PIQE scores

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S N R E M C C D = S + D F 2 ( S + D ) + σ 2 / μ 2 ,
S N R E M C C D = S / 2 .
p ( v ) = 1 μ exp ( v μ ) .
p ( v ) = ( 1 q ) δ ( v ) + q μ exp ( v μ ) .
p ( v ) = 1 q σ 2 π exp { ( v b ) 2 2 σ 2 } + q 2 μ exp ( σ 2 2 μ 2 v b μ ) erfc ( σ 2 μ v b 2 σ ) ,
S N R s C M O S = κ S κ 2 S + σ 2 = S S + σ 2 / κ 2 ,
S N R s C M O S = S b i n n e d S b i n n e d + 4 r 2 ,
n p h = { v / μ , for EM - CCD v / κ , for sCMOS
S N R R O I = v Δ v 2 ,
C N R = v o v b Δ v o 2 + Δ v b 2 ,
I ( x , y ; z ) = 1 O ( x , y ) a = 0 A 1 b = 0 B 1 E a , b ( x a L x × p x c x × M , y b L y × p y c y × M ) ,

Metrics