Abstract

We successfully fabricated the long-period fiber gratings in few-mode fibers (FMF-LPFGs) with micro-tapered method, which are different from the traditional LPFGs that only couple the fundamental mode to different cladding modes to obtain multiple resonant dips. There are two resonant dips on the transmission spectrum of the FMF-LPFGs, which are induced by the coupling between the fundamental mode and the low-order cladding mode LP03 (dip 1) and the coupling between the fundamental mode and the high-order core mode LP11 (dip 2). Due to the difference of the coupling mechanism involved in two dips, the shift of resonant wavelengths has different characteristics with the variation of the external environment parameter. The corresponding wavelength of dip 1 exhibits a red shift as the temperature increased. But for dip 2, the resonant wavelength has a blue shift. In addition, the two dips have different temperature and strain sensitivities. Therefore, discriminative determination of temperature and strain is realized by establishing the cross coefficient matrix, and the relative measurement error is less than 3%. What’s more, we theoretically analyzed the reason why the two resonant wavelengths shift toward opposite direction with the increase of temperature and toward the same direction with the increase of strain.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous strain and temperature measurement by cascading few-mode fiber and single-mode fiber long-period fiber gratings

Li Wang, Weigang Zhang, Biao Wang, Lei Chen, Zhiyong Bai, Shecheng Gao, Jieliang Li, Yongji Liu, Liyu Zhang, Quan Zhou, and Tieyi Yan
Appl. Opt. 53(30) 7045-7049 (2014)

Comparison of bandwidth and sensitivity of long-period gratings in single-mode and few-mode fibers

Florence Y. M. Chan, Gopinath Mudhana, and P. Shum
Appl. Opt. 54(21) 6558-6565 (2015)

High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers

Boyin Tai, Zhi Wang, Yange Liu, Jianbo Xu, Bo Liu, Huifeng Wei, and Weijun Tong
Opt. Express 18(15) 15361-15370 (2010)

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref] [PubMed]
  2. C. E. Chryssou, “Gain-equalizing filters for wavelength division multiplexing optical communication systems: a comparison of notch and long-period grating filters for integrated optoelectronics,” Opt. Commun. 184, 375–384 (2000).
    [Crossref]
  3. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
    [Crossref]
  4. G. Inoue, P. Wang, and H. Li, “Flat-top band-rejection filter based on two successively-cascaded helical fiber gratings,” Opt. Express 24(5), 5442–5447 (2016).
    [Crossref] [PubMed]
  5. V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4(11), 457–466 (1999).
    [Crossref] [PubMed]
  6. T. Zhu, Y. Wang, Y. Rao, and Z. Ran, “Novel Fiber-Optic Sensors Based on Long-Period Fiber Gratings Written by High-Frequency CO2 Laser Pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
    [Crossref]
  7. A. D. Kersey, F. Bucholtz, and H. J. Patrick, “Analysis of the Response of Long Period Fiber Gratings to External Index of Refraction,” J. Lightwave Technol. 16(9), 1606–1612 (1998).
    [Crossref]
  8. Y. Liu, J. A. R. Williams, and I. Bennion, “Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photonics Technol. Lett. 12(5), 531–533 (2000).
    [Crossref]
  9. L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1373–1378 (1999).
    [Crossref]
  10. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21(5), 336–338 (1996).
    [Crossref] [PubMed]
  11. M. R. Hutsel and T. K. Gaylord, “Residual-stress relaxation and densification in CO2-laser-induced long-period fiber gratings,” Appl. Opt. 51(25), 6179–6187 (2012).
    [Crossref] [PubMed]
  12. Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 1–18 (2010).
    [Crossref]
  13. M. S. Yoon, S. Park, and Y. G. Han, “Simultaneous measurement of strain and temperature by using a micro-tapered fiber grating,” J. Lightwave Technol. 30(8), 1156–1160 (2012).
    [Crossref]
  14. G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
    [Crossref]
  15. L. Ren, K. Ren, X. Kong, J. Liang, H. Ju, and Z. Wu, “Novel long-period fiber gratings: fabrication and sensing applications,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper AW4B.6.
    [Crossref]
  16. M. S. Yoon, H. J. Kim, S. J. Kim, and Y. G. Han, “Influence of the waist diameters on transmission characteristics and strain sensitivity of microtapered long-period fiber gratings,” Opt. Lett. 38(15), 2669–2672 (2013).
    [Crossref] [PubMed]
  17. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19(10), 1574–1579 (2001).
    [Crossref]
  18. M. Yang, D. N. Wang, Y. Wang, and C. Liao, “Long period fiber grating formed by periodically structured microholes in all-solid photonic bandgap fiber,” Opt. Express 18(3), 2183–2189 (2010).
    [Crossref] [PubMed]
  19. R. Wang, M. Tang, S. Fu, Z. Feng, W. Tong, and D. Liu, “Spatially Arrayed Long Period Gratings in Multicore Fiber by Programmable Electrical Arc Discharge,” IEEE Photonics J. 9(1), 1–10 (2017).
    [Crossref]
  20. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [Crossref] [PubMed]
  21. B. Y. Kim, J. N. Blake, S. Y. Huang, and H. J. Shaw, “Use of highly elliptical core fibers for two-mode fiber devices,” Opt. Lett. 12(9), 729–731 (1987).
    [Crossref] [PubMed]
  22. Y. Zhao, Y. Liu, C. Zhang, L. Zhang, G. Zheng, C. Mou, J. Wen, and T. Wang, “All-fiber mode converter based on long-period fiber gratings written in few-mode fiber,” Opt. Lett. 42(22), 4708–4711 (2017).
    [Crossref] [PubMed]
  23. X. Cao, Y. Liu, L. Zhang, Y. Zhao, and T. Wang, “Characteristics of chiral long-period fiber gratings written in the twisted two-mode fiber by CO2 laser,” Appl. Opt. 56(18), 5167–5171 (2017).
    [Crossref] [PubMed]
  24. B. Wang, W. Zhang, Z. Bai, L. Wang, L. Zhang, Q. Zhou, L. Chen, and T. Yan, “CO2-Laser-Induced Long Period Fiber Gratings in Few Mode Fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
    [Crossref]
  25. S. A. Vasil’ev, E. M. Dianov, O. I. Medvedkov, V. N. Protopopov, D. M. Costantini, A. Iocco, H. G. Limberger, and R. P. Salathe, “Properties of the cladding modes of an optical fiber excited by refractive-index gratings,” Quantum Electron. 29(1), 65–68 (1999).
    [Crossref]
  26. X. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]

2017 (3)

2016 (1)

2015 (1)

B. Wang, W. Zhang, Z. Bai, L. Wang, L. Zhang, Q. Zhou, L. Chen, and T. Yan, “CO2-Laser-Induced Long Period Fiber Gratings in Few Mode Fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

2014 (1)

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

2013 (1)

2012 (2)

2011 (1)

2010 (2)

2003 (1)

2002 (1)

2001 (1)

2000 (2)

C. E. Chryssou, “Gain-equalizing filters for wavelength division multiplexing optical communication systems: a comparison of notch and long-period grating filters for integrated optoelectronics,” Opt. Commun. 184, 375–384 (2000).
[Crossref]

Y. Liu, J. A. R. Williams, and I. Bennion, “Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photonics Technol. Lett. 12(5), 531–533 (2000).
[Crossref]

1999 (3)

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1373–1378 (1999).
[Crossref]

S. A. Vasil’ev, E. M. Dianov, O. I. Medvedkov, V. N. Protopopov, D. M. Costantini, A. Iocco, H. G. Limberger, and R. P. Salathe, “Properties of the cladding modes of an optical fiber excited by refractive-index gratings,” Quantum Electron. 29(1), 65–68 (1999).
[Crossref]

V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4(11), 457–466 (1999).
[Crossref] [PubMed]

1998 (1)

1996 (3)

1987 (1)

Bai, Z.

B. Wang, W. Zhang, Z. Bai, L. Wang, L. Zhang, Q. Zhou, L. Chen, and T. Yan, “CO2-Laser-Induced Long Period Fiber Gratings in Few Mode Fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

Bennion, I.

X. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[Crossref]

Y. Liu, J. A. R. Williams, and I. Bennion, “Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photonics Technol. Lett. 12(5), 531–533 (2000).
[Crossref]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1373–1378 (1999).
[Crossref]

Bergano, N. S.

Bhatia, V.

Blake, J. N.

Bolle, C. A.

Bucholtz, F.

Cao, X.

Chen, L.

B. Wang, W. Zhang, Z. Bai, L. Wang, L. Zhang, Q. Zhou, L. Chen, and T. Yan, “CO2-Laser-Induced Long Period Fiber Gratings in Few Mode Fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

Chryssou, C. E.

C. E. Chryssou, “Gain-equalizing filters for wavelength division multiplexing optical communication systems: a comparison of notch and long-period grating filters for integrated optoelectronics,” Opt. Commun. 184, 375–384 (2000).
[Crossref]

Costantini, D. M.

S. A. Vasil’ev, E. M. Dianov, O. I. Medvedkov, V. N. Protopopov, D. M. Costantini, A. Iocco, H. G. Limberger, and R. P. Salathe, “Properties of the cladding modes of an optical fiber excited by refractive-index gratings,” Quantum Electron. 29(1), 65–68 (1999).
[Crossref]

Davidson, C. R.

Dianov, E.

Dianov, E. M.

S. A. Vasil’ev, E. M. Dianov, O. I. Medvedkov, V. N. Protopopov, D. M. Costantini, A. Iocco, H. G. Limberger, and R. P. Salathe, “Properties of the cladding modes of an optical fiber excited by refractive-index gratings,” Quantum Electron. 29(1), 65–68 (1999).
[Crossref]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Essiambre, R. J.

Everall, L.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1373–1378 (1999).
[Crossref]

Feng, Z.

R. Wang, M. Tang, S. Fu, Z. Feng, W. Tong, and D. Liu, “Spatially Arrayed Long Period Gratings in Multicore Fiber by Programmable Electrical Arc Discharge,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

Fu, S.

R. Wang, M. Tang, S. Fu, Z. Feng, W. Tong, and D. Liu, “Spatially Arrayed Long Period Gratings in Multicore Fiber by Programmable Electrical Arc Discharge,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

Gaylord, T. K.

Gnauck, A. H.

Han, Y. G.

He, J.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Huang, S. Y.

Hutsel, M. R.

Inoue, G.

Iocco, A.

S. A. Vasil’ev, E. M. Dianov, O. I. Medvedkov, V. N. Protopopov, D. M. Costantini, A. Iocco, H. G. Limberger, and R. P. Salathe, “Properties of the cladding modes of an optical fiber excited by refractive-index gratings,” Quantum Electron. 29(1), 65–68 (1999).
[Crossref]

Ju, H.

L. Ren, K. Ren, X. Kong, J. Liang, H. Ju, and Z. Wu, “Novel long-period fiber gratings: fabrication and sensing applications,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper AW4B.6.
[Crossref]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21(5), 336–338 (1996).
[Crossref] [PubMed]

Kersey, A. D.

Kim, B. Y.

Kim, H. J.

Kim, S. J.

Kong, X.

L. Ren, K. Ren, X. Kong, J. Liang, H. Ju, and Z. Wu, “Novel long-period fiber gratings: fabrication and sensing applications,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper AW4B.6.
[Crossref]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21(5), 336–338 (1996).
[Crossref] [PubMed]

Li, H.

Liang, J.

L. Ren, K. Ren, X. Kong, J. Liang, H. Ju, and Z. Wu, “Novel long-period fiber gratings: fabrication and sensing applications,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper AW4B.6.
[Crossref]

Liao, C.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

M. Yang, D. N. Wang, Y. Wang, and C. Liao, “Long period fiber grating formed by periodically structured microholes in all-solid photonic bandgap fiber,” Opt. Express 18(3), 2183–2189 (2010).
[Crossref] [PubMed]

Limberger, H. G.

S. A. Vasil’ev, E. M. Dianov, O. I. Medvedkov, V. N. Protopopov, D. M. Costantini, A. Iocco, H. G. Limberger, and R. P. Salathe, “Properties of the cladding modes of an optical fiber excited by refractive-index gratings,” Quantum Electron. 29(1), 65–68 (1999).
[Crossref]

Lingle, R.

Liu, D.

R. Wang, M. Tang, S. Fu, Z. Feng, W. Tong, and D. Liu, “Spatially Arrayed Long Period Gratings in Multicore Fiber by Programmable Electrical Arc Discharge,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

Liu, Y.

X. Cao, Y. Liu, L. Zhang, Y. Zhao, and T. Wang, “Characteristics of chiral long-period fiber gratings written in the twisted two-mode fiber by CO2 laser,” Appl. Opt. 56(18), 5167–5171 (2017).
[Crossref] [PubMed]

Y. Zhao, Y. Liu, C. Zhang, L. Zhang, G. Zheng, C. Mou, J. Wen, and T. Wang, “All-fiber mode converter based on long-period fiber gratings written in few-mode fiber,” Opt. Lett. 42(22), 4708–4711 (2017).
[Crossref] [PubMed]

Y. Liu, J. A. R. Williams, and I. Bennion, “Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photonics Technol. Lett. 12(5), 531–533 (2000).
[Crossref]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1373–1378 (1999).
[Crossref]

McCurdy, A.

Medvedkov, O. I.

S. A. Vasil’ev, E. M. Dianov, O. I. Medvedkov, V. N. Protopopov, D. M. Costantini, A. Iocco, H. G. Limberger, and R. P. Salathe, “Properties of the cladding modes of an optical fiber excited by refractive-index gratings,” Quantum Electron. 29(1), 65–68 (1999).
[Crossref]

Mou, C.

Okhotnikov, O.

Park, S.

Patrick, H. J.

Peckham, D. W.

Pedrazzani, J. R.

Protopopov, V. N.

S. A. Vasil’ev, E. M. Dianov, O. I. Medvedkov, V. N. Protopopov, D. M. Costantini, A. Iocco, H. G. Limberger, and R. P. Salathe, “Properties of the cladding modes of an optical fiber excited by refractive-index gratings,” Quantum Electron. 29(1), 65–68 (1999).
[Crossref]

Ran, Z.

Randel, S.

Rao, Y.

Rego, G.

Ren, K.

L. Ren, K. Ren, X. Kong, J. Liang, H. Ju, and Z. Wu, “Novel long-period fiber gratings: fabrication and sensing applications,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper AW4B.6.
[Crossref]

Ren, L.

L. Ren, K. Ren, X. Kong, J. Liang, H. Ju, and Z. Wu, “Novel long-period fiber gratings: fabrication and sensing applications,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper AW4B.6.
[Crossref]

Ryf, R.

Salathe, R. P.

S. A. Vasil’ev, E. M. Dianov, O. I. Medvedkov, V. N. Protopopov, D. M. Costantini, A. Iocco, H. G. Limberger, and R. P. Salathe, “Properties of the cladding modes of an optical fiber excited by refractive-index gratings,” Quantum Electron. 29(1), 65–68 (1999).
[Crossref]

Shaw, H. J.

Shu, X.

Sierra, A.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Sulimov, V.

Sun, B.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Tang, M.

R. Wang, M. Tang, S. Fu, Z. Feng, W. Tong, and D. Liu, “Spatially Arrayed Long Period Gratings in Multicore Fiber by Programmable Electrical Arc Discharge,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

Tong, W.

R. Wang, M. Tang, S. Fu, Z. Feng, W. Tong, and D. Liu, “Spatially Arrayed Long Period Gratings in Multicore Fiber by Programmable Electrical Arc Discharge,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

Vasil’ev, S. A.

S. A. Vasil’ev, E. M. Dianov, O. I. Medvedkov, V. N. Protopopov, D. M. Costantini, A. Iocco, H. G. Limberger, and R. P. Salathe, “Properties of the cladding modes of an optical fiber excited by refractive-index gratings,” Quantum Electron. 29(1), 65–68 (1999).
[Crossref]

Vengsarkar, A. M.

Wang, B.

B. Wang, W. Zhang, Z. Bai, L. Wang, L. Zhang, Q. Zhou, L. Chen, and T. Yan, “CO2-Laser-Induced Long Period Fiber Gratings in Few Mode Fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

Wang, D. N.

Wang, G.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Wang, L.

B. Wang, W. Zhang, Z. Bai, L. Wang, L. Zhang, Q. Zhou, L. Chen, and T. Yan, “CO2-Laser-Induced Long Period Fiber Gratings in Few Mode Fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

Wang, P.

Wang, R.

R. Wang, M. Tang, S. Fu, Z. Feng, W. Tong, and D. Liu, “Spatially Arrayed Long Period Gratings in Multicore Fiber by Programmable Electrical Arc Discharge,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

Wang, T.

Wang, Y.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 1–18 (2010).
[Crossref]

M. Yang, D. N. Wang, Y. Wang, and C. Liao, “Long period fiber grating formed by periodically structured microholes in all-solid photonic bandgap fiber,” Opt. Express 18(3), 2183–2189 (2010).
[Crossref] [PubMed]

T. Zhu, Y. Wang, Y. Rao, and Z. Ran, “Novel Fiber-Optic Sensors Based on Long-Period Fiber Gratings Written by High-Frequency CO2 Laser Pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[Crossref]

Wen, J.

Williams, J. A. R.

Y. Liu, J. A. R. Williams, and I. Bennion, “Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photonics Technol. Lett. 12(5), 531–533 (2000).
[Crossref]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1373–1378 (1999).
[Crossref]

Winzer, P. J.

Wu, Z.

L. Ren, K. Ren, X. Kong, J. Liang, H. Ju, and Z. Wu, “Novel long-period fiber gratings: fabrication and sensing applications,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper AW4B.6.
[Crossref]

Yan, T.

B. Wang, W. Zhang, Z. Bai, L. Wang, L. Zhang, Q. Zhou, L. Chen, and T. Yan, “CO2-Laser-Induced Long Period Fiber Gratings in Few Mode Fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

Yang, M.

Yin, G.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Yoon, M. S.

Zhang, C.

Zhang, L.

Y. Zhao, Y. Liu, C. Zhang, L. Zhang, G. Zheng, C. Mou, J. Wen, and T. Wang, “All-fiber mode converter based on long-period fiber gratings written in few-mode fiber,” Opt. Lett. 42(22), 4708–4711 (2017).
[Crossref] [PubMed]

X. Cao, Y. Liu, L. Zhang, Y. Zhao, and T. Wang, “Characteristics of chiral long-period fiber gratings written in the twisted two-mode fiber by CO2 laser,” Appl. Opt. 56(18), 5167–5171 (2017).
[Crossref] [PubMed]

B. Wang, W. Zhang, Z. Bai, L. Wang, L. Zhang, Q. Zhou, L. Chen, and T. Yan, “CO2-Laser-Induced Long Period Fiber Gratings in Few Mode Fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

X. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[Crossref]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1373–1378 (1999).
[Crossref]

Zhang, W.

B. Wang, W. Zhang, Z. Bai, L. Wang, L. Zhang, Q. Zhou, L. Chen, and T. Yan, “CO2-Laser-Induced Long Period Fiber Gratings in Few Mode Fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

Zhao, Y.

Zheng, G.

Zhong, X.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Zhou, J.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Zhou, Q.

B. Wang, W. Zhang, Z. Bai, L. Wang, L. Zhang, Q. Zhou, L. Chen, and T. Yan, “CO2-Laser-Induced Long Period Fiber Gratings in Few Mode Fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

Zhu, T.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1373–1378 (1999).
[Crossref]

IEEE Photonics J. (1)

R. Wang, M. Tang, S. Fu, Z. Feng, W. Tong, and D. Liu, “Spatially Arrayed Long Period Gratings in Multicore Fiber by Programmable Electrical Arc Discharge,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (3)

B. Wang, W. Zhang, Z. Bai, L. Wang, L. Zhang, Q. Zhou, L. Chen, and T. Yan, “CO2-Laser-Induced Long Period Fiber Gratings in Few Mode Fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Y. Liu, J. A. R. Williams, and I. Bennion, “Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photonics Technol. Lett. 12(5), 531–533 (2000).
[Crossref]

J. Appl. Phys. (1)

Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 1–18 (2010).
[Crossref]

J. Lightwave Technol. (6)

Opt. Commun. (1)

C. E. Chryssou, “Gain-equalizing filters for wavelength division multiplexing optical communication systems: a comparison of notch and long-period grating filters for integrated optoelectronics,” Opt. Commun. 184, 375–384 (2000).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Quantum Electron. (1)

S. A. Vasil’ev, E. M. Dianov, O. I. Medvedkov, V. N. Protopopov, D. M. Costantini, A. Iocco, H. G. Limberger, and R. P. Salathe, “Properties of the cladding modes of an optical fiber excited by refractive-index gratings,” Quantum Electron. 29(1), 65–68 (1999).
[Crossref]

Other (1)

L. Ren, K. Ren, X. Kong, J. Liang, H. Ju, and Z. Wu, “Novel long-period fiber gratings: fabrication and sensing applications,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper AW4B.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Refractive index difference profile of the FMF. (b) The end view of the FMF.
Fig. 2
Fig. 2 The effective refractive index against wavelength of the four modes.
Fig. 3
Fig. 3 The fabrication platform setup of FMF-LPFGs.
Fig. 4
Fig. 4 (a) Transmission spectrum evolves with N when the grating period is 340 μm. (b) Microscopic photograph of the FMF-LPFGs.
Fig. 5
Fig. 5 (a) Transmission spectra of dip 1 with different grating periods from 344 μm to 350 μm. (b) Transmission spectra of dip 2 with different grating periods from 340 μm to 346 μm. (c) Relationship between the wavelength of dip 1 and grating period. (d) Relationship between the wavelength of dip 2 and grating period.
Fig. 6
Fig. 6 (a) - (c) Measured mode profiles of the FMF-LPFGs of dip 1 with different wavelengths. (d) - (f) Measured mode profiles of the FMF-LPFGs of dip 2 with different wavelengths.
Fig. 7
Fig. 7 Experimental setup for temperature and strain measurement with the FMF-LPFGs.
Fig. 8
Fig. 8 (a) Transmission spectra of dip 1 with different temperature. (b)Transmission spectra of dip 2 with different temperature. (c) The corresponding wavelength of dip 1 shifts as a function of temperature. (d) The corresponding wavelength of dip 2 shifts as a function of temperature.
Fig. 9
Fig. 9 (a)Transmission spectra of dip 1 with different strain. (b)Transmission spectra of dip 2 with different strain. (c) The corresponding wavelength of dip 1 shifts as a function of strain. (d) The corresponding wavelength of dip 2 shifts as a function of strain.

Tables (1)

Tables Icon

Table 1 Actual temperature and strain, measured value λ1(nm), λ2(nm), determined temperature, and strain and the relative errors

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d λ res dT = λ res γ(α+ Γ T )
d λ res dε = λ res γ(1+ Γ S )
γ= d λ res dΛ n F eff n H eff
Γ T = ξ F n F eff ξ H n H eff n F eff n H eff
Γ S = η F n F eff η H n H eff n F eff n H eff
( ε T )= ( C ε 1 C T 1 C ε 2 C T 2 ) 1 ( λ 1 λ 2 )
( ε T )= ( 0.9 38.7 2.0 12.6 ) 1 ( λ 1 λ 2 )

Metrics