Abstract

Silicon carbide (SiC) ceramics have been widely used for microelectronics, aerospace, and other industrial fields due to their excellent chemical stability and thermal tolerance. However, hard machinability and low machining precision of SiC ceramics are the key limitations for their further applications. To address this issue, a novel method of underwater femtosecond laser machining was introduced in this study to obtain high precision and smooth surface of the microgrooves of SiC ceramics. The removal profiles were characterized in terms of width, depth, and surface morphology, which exhibited high dependence on the femtosecond laser processing parameters. The instability during the underwater processing affected by laser-induced gas bubbles and material deposition, however, limits the high surface accuracy of microgrooves and processing efficiency. The process condition transformation from a bubble-disturbed circumstance to a disturbance-free model was carefully investigated through a high speed camera for the femtosecond laser processing of SiC ceramics in water. The experiment results indicated that degree of disturbed effect was heavily dependent on size, distribution, and motion of laser-induced gas bubble. Furthermore, some typical evolution mechanisms of gas bubble and their influence on the removal profiles of microgrooves were discussed in detail. Bubble evolution has been proven to be mainly responsible for the behavior of laser propagation (focus model, total reflection, etc.), which notably affects microstructural characteristic of the microgrooves.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser ablation of silicon in water with nanosecond and femtosecond pulses

Jun Ren, Michael Kelly, and Lambertus Hesselink
Opt. Lett. 30(13) 1740-1742 (2005)

3D profiling of rough silicon carbide surfaces by coherence scanning interferometry using a femtosecond laser

Yang Lu, Jiyong Park, Liandong Yu, and Seung-Woo Kim
Appl. Opt. 57(10) 2584-2589 (2018)

Comparative analysis of oxidation methods of reaction-sintered silicon carbide for optimization of oxidation-assisted polishing

Xinmin Shen, Yifan Dai, Hui Deng, Chaoliang Guan, and Kazuya Yamamura
Opt. Express 21(22) 26123-26135 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Baunack, S. Oswald, H. K. Tonshoff, F. von Alvensleben, and T. Temme, “Surface characterisation of laser irradiated SiC ceramics by AES and XPS,” Fresenius J. Anal. Chem. 365(1-3), 173–177 (1999).
    [Crossref]
  2. A. N. Samant and N. B. Dahotre, “Laser machining of structural ceramics—A review,” J. Eur. Ceram. Soc. 29(6), 969–993 (2009).
    [Crossref]
  3. B. S. Yilbas and B. Bhushan, “Laser Treatment of Sintered Silicon Carbide Surface for Enhanced Hydrophobicity,” JOM 66(1), 87–94 (2014).
    [Crossref]
  4. H. Suzuki, M. Okada, W. Asai, H. Sumiya, K. Harano, Y. Yamagata, and K. Miura, “Micro milling tool made of nano-polycrystalline diamond for precision cutting of SiC,” CIRP. Ann. Manuf. Technol. 66(1), 93–96 (2017).
    [Crossref]
  5. Y. H. Zhao, M. Kunieda, and K. Abe, “EDM mechanism of single crystal SiC with respect to thermal, mechanical and chemical aspects,” J. Mater. Process. Technol. 236, 138–147 (2016).
    [Crossref]
  6. H. D. Vora and N. B. Dahotre, “Surface topography in three-dimensional laser machining of structural alumina,” J. Manuf. Process. 19, 49–58 (2015).
    [Crossref]
  7. D. T. Pham, S. S. Dimov, and P. V. Petkov, “Laser milling of ceramic components,” Int. J. Mach. Tools Manuf. 47(3-4), 618–626 (2007).
    [Crossref]
  8. B. Xie, G. Yuan, and D. Zhang, “Experimental Study of Laser Etching on Al2O3-SiC Composite Ceramics,” Procedia CIRP. 42, 444–447 (2016).
    [Crossref]
  9. F. Neri, F. Barreca, and S. Trusso, “Excimer laser ablation of silicon carbide ceramic targets,” Diamond Related Materials 11(2), 273–279 (2002).
    [Crossref]
  10. Y. Xing, J. Deng, Y. Lian, K. Zhang, G. Zhang, and J. Zhao, “Multiple nanoscale parallel grooves formed on Si3N4/TiC ceramic by femtosecond pulsed laser,” Appl. Surf. Sci. 289, 62–71 (2014).
    [Crossref]
  11. A. Pan, W. Wang, X. Mei, Q. Lin, J. Cui, K. Wang, and Z. Zhai, “Fractal titanium oxide under inverse 10-ns laser deposition in air and water,” Appl. Phys., A Mater. Sci. Process. 123(4), 253 (2017).
    [Crossref]
  12. Z. Fan, K. Wang, X. Dong, W. Duan, R. Wang, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “Evaluation of microstructural evolution and corrosion types in ultrasonic assisted laser re-melted thermal barrier coatings under exposure to molten salts,” Mater. Lett. 188, 145–148 (2017).
    [Crossref]
  13. Z. Fan, K. Wang, X. Dong, R. Wang, W. Duan, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+V2O5),” Corros. Sci. 115, 56–67 (2017).
    [Crossref]
  14. D. Sciti and A. Bellosi, “Laser-induced surface drilling of silicon carbide,” Appl. Surf. Sci. 180(1-2), 92–101 (2001).
    [Crossref]
  15. Y. Liu, L. Liu, J. Deng, R. Meng, X. Zou, and F. Wu, “Fabrication of micro-scale textured grooves on green ZrO2 ceramics by pulsed laser ablation,” Ceram. Int. 43(8), 6519–6531 (2017).
    [Crossref]
  16. T. Kurita, K. Komatsuzaki, and M. Hattori, “Advanced material processing with nano- and femto-second pulsed laser,” Int. J. Mach. Tools Manuf. 48(2), 220–227 (2008).
    [Crossref]
  17. T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800 nm pulses,” Appl. Phys., A Mater. Sci. Process. 80(8), 1717–1724 (2005).
    [Crossref]
  18. T. Chen, W. Wang, T. Tao, X. Mei, and A. Pan, “Deposition and melting behaviors for formation of micro/nano structures from nanostructures with femtosecond pulses,” Opt. Mater. 78, 380–387 (2018).
    [Crossref]
  19. Y. Yan, L. Li, K. Sezer, W. Wang, D. Whitehead, L. Ji, Y. Bao, and Y. Jiang, “CO2 laser underwater machining of deep cavities in alumina,” J. Eur. Ceram. Soc. 31(15), 2793–2807 (2011).
    [Crossref]
  20. A. Kruusing, “Underwater and water-assisted laser processing: Part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41(2), 307–327 (2004).
    [Crossref]
  21. S. I. Dolgaev, V. V. Voronov, G. A. Shafeev, C. Fauquet-Ben Ammar, J.-M. Themlin, A. Cros, and W. Marine, “Laser-induced fast etching and metallization of SiC ceramics,” Appl. Surf. Sci. 109, 559–562 (1997).
    [Crossref]
  22. Q. Chen, H. J. Wang, D. T. Lin, F. Zuo, Z. X. Zhao, and H. T. Lin, “Characterization of hole taper in laser drilling of silicon nitride ceramic under water,” Ceram. Int. 44(11), 13449–13452 (2018).
    [Crossref]
  23. N. Iwatani, H. D. Doan, and K. Fushinobu, “Optimization of near-infrared laser drilling of silicon carbide under water,” Int. J. Heat Mass Transfer 71, 515–520 (2014).
    [Crossref]
  24. G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
    [Crossref]
  25. N. Muhammad and L. Li, “Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture,” Appl. Phys., A Mater. Sci. Process. 107(4), 849–861 (2012).
    [Crossref]
  26. R. An, M. D. Hoffman, M. A. Donoghue, A. J. Hunt, and S. C. Jacobson, “Water-assisted femtosecond laser machining of electrospray nozzles on glass microfluidic devices,” Opt. Express 16(19), 15206–15211 (2008).
    [Crossref] [PubMed]
  27. S. Mehrafsun and H. Messaoudi, “Dynamic Process Behavior in Laser Chemical Micro Machining of Metals,” J. Manuf. Mater. Process. 2(3), 54 (2018).
    [Crossref]
  28. A. Menéndez-Manjón, P. Wagener, and S. Barcikowski, “Transfer-Matrix Method for Efficient Ablation by Pulsed Laser Ablation and Nanoparticle Generation in Liquids,” J. Phys. Chem. C 115(12), 5108–5114 (2011).
    [Crossref]
  29. J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
    [Crossref]
  30. A. Tamura, T. Sakka, K. Fukami, and Y. H. Ogata, “Dynamics of cavitation bubbles generated by multi-pulse laser irradiation of a solid target in water,” Appl. Phys., A Mater. Sci. Process. 112(1), 209–213 (2013).
    [Crossref]
  31. R. Yao, Y. Zheng, L. Liao, R. Zhou, and Z. Feng, “Surface oxidation behavior in air and O2-H2O-Ar atmospheres of continuous freestanding SiC films derived from polycarbosilane,” Ceram. Int. 44(17), 20974–20983 (2018).
    [Crossref]
  32. Z. Zhai, W. Wang, X. Mei, M. Li, J. Cui, F. Wang, and A. Pan, “Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites,” Opt. Commun. 424, 137–144 (2018).
    [Crossref]
  33. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
    [Crossref]
  34. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
    [Crossref] [PubMed]
  35. A. Mohan, A. Udayakumar, and A. S. Gandhi, “High temperature oxidation behaviour of CVD β-SiC seal coated SiCf/SiC composites in static dry air and combustion environment,” Ceram. Int. 43(12), 9472–9480 (2017).
    [Crossref]
  36. Y. Liu, J. Wan, X. Zuo, L. Cheng, and L. Zhang, “Oxidation behavior of 2D C/SiC composites coated with multi-layer SiC/Si–B–C/SiC coatings under wet oxygen atmosphere,” Appl. Surf. Sci. 353, 214–223 (2015).
    [Crossref]
  37. N. Dabir-Moghaddam, Z. Liu, and B. X. Wu, “Modeling of the shrinking process of a bubble induced by laser metal ablation in water and experimental verification,” J. Appl. Phys. 121(4), 044908 (2017).
    [Crossref]
  38. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
    [Crossref]
  39. V. Tangwarodomnukun, J. Wang, and P. Mathew, “A Comparison of Dry and Underwater Laser Micromachining of Silicon Substrates,” Key Eng. Mater. 443, 693–698 (2010).
    [Crossref]
  40. J. Y. Xu, H. Hu, and Y. L. Lei, “Morphological features of silicon substrate by using different frequency laser ablation in air and water,” Appl. Surf. Sci. 317, 666–671 (2014).
    [Crossref]
  41. J. Koch, S. Taschner, O. Suttmann, and S. Kaierle, “Surface functionalization under water using picosecond and femtosecond laser pulses - first observations and novel effects,” Procedia CIRP 74, 381–385 (2018).
    [Crossref]
  42. K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
    [Crossref]
  43. L. S. Jiao, E. Y. K. Ng, H. Y. Zheng, and Y. L. Zhang, “Theoretical study of pre-formed hole geometries on femtosecond pulse energy distribution in laser drilling,” Opt. Express 23(4), 4927–4934 (2015).
    [Crossref] [PubMed]
  44. C. H. Tsai and C. C. Li, “Investigation of underwater laser drilling for brittle substrates,” J. Mater. Process. Technol. 209(6), 2838–2846 (2009).
    [Crossref]

2019 (1)

J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
[Crossref]

2018 (6)

S. Mehrafsun and H. Messaoudi, “Dynamic Process Behavior in Laser Chemical Micro Machining of Metals,” J. Manuf. Mater. Process. 2(3), 54 (2018).
[Crossref]

R. Yao, Y. Zheng, L. Liao, R. Zhou, and Z. Feng, “Surface oxidation behavior in air and O2-H2O-Ar atmospheres of continuous freestanding SiC films derived from polycarbosilane,” Ceram. Int. 44(17), 20974–20983 (2018).
[Crossref]

Z. Zhai, W. Wang, X. Mei, M. Li, J. Cui, F. Wang, and A. Pan, “Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites,” Opt. Commun. 424, 137–144 (2018).
[Crossref]

T. Chen, W. Wang, T. Tao, X. Mei, and A. Pan, “Deposition and melting behaviors for formation of micro/nano structures from nanostructures with femtosecond pulses,” Opt. Mater. 78, 380–387 (2018).
[Crossref]

Q. Chen, H. J. Wang, D. T. Lin, F. Zuo, Z. X. Zhao, and H. T. Lin, “Characterization of hole taper in laser drilling of silicon nitride ceramic under water,” Ceram. Int. 44(11), 13449–13452 (2018).
[Crossref]

J. Koch, S. Taschner, O. Suttmann, and S. Kaierle, “Surface functionalization under water using picosecond and femtosecond laser pulses - first observations and novel effects,” Procedia CIRP 74, 381–385 (2018).
[Crossref]

2017 (7)

N. Dabir-Moghaddam, Z. Liu, and B. X. Wu, “Modeling of the shrinking process of a bubble induced by laser metal ablation in water and experimental verification,” J. Appl. Phys. 121(4), 044908 (2017).
[Crossref]

A. Mohan, A. Udayakumar, and A. S. Gandhi, “High temperature oxidation behaviour of CVD β-SiC seal coated SiCf/SiC composites in static dry air and combustion environment,” Ceram. Int. 43(12), 9472–9480 (2017).
[Crossref]

H. Suzuki, M. Okada, W. Asai, H. Sumiya, K. Harano, Y. Yamagata, and K. Miura, “Micro milling tool made of nano-polycrystalline diamond for precision cutting of SiC,” CIRP. Ann. Manuf. Technol. 66(1), 93–96 (2017).
[Crossref]

A. Pan, W. Wang, X. Mei, Q. Lin, J. Cui, K. Wang, and Z. Zhai, “Fractal titanium oxide under inverse 10-ns laser deposition in air and water,” Appl. Phys., A Mater. Sci. Process. 123(4), 253 (2017).
[Crossref]

Z. Fan, K. Wang, X. Dong, W. Duan, R. Wang, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “Evaluation of microstructural evolution and corrosion types in ultrasonic assisted laser re-melted thermal barrier coatings under exposure to molten salts,” Mater. Lett. 188, 145–148 (2017).
[Crossref]

Z. Fan, K. Wang, X. Dong, R. Wang, W. Duan, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+V2O5),” Corros. Sci. 115, 56–67 (2017).
[Crossref]

Y. Liu, L. Liu, J. Deng, R. Meng, X. Zou, and F. Wu, “Fabrication of micro-scale textured grooves on green ZrO2 ceramics by pulsed laser ablation,” Ceram. Int. 43(8), 6519–6531 (2017).
[Crossref]

2016 (2)

Y. H. Zhao, M. Kunieda, and K. Abe, “EDM mechanism of single crystal SiC with respect to thermal, mechanical and chemical aspects,” J. Mater. Process. Technol. 236, 138–147 (2016).
[Crossref]

B. Xie, G. Yuan, and D. Zhang, “Experimental Study of Laser Etching on Al2O3-SiC Composite Ceramics,” Procedia CIRP. 42, 444–447 (2016).
[Crossref]

2015 (3)

H. D. Vora and N. B. Dahotre, “Surface topography in three-dimensional laser machining of structural alumina,” J. Manuf. Process. 19, 49–58 (2015).
[Crossref]

Y. Liu, J. Wan, X. Zuo, L. Cheng, and L. Zhang, “Oxidation behavior of 2D C/SiC composites coated with multi-layer SiC/Si–B–C/SiC coatings under wet oxygen atmosphere,” Appl. Surf. Sci. 353, 214–223 (2015).
[Crossref]

L. S. Jiao, E. Y. K. Ng, H. Y. Zheng, and Y. L. Zhang, “Theoretical study of pre-formed hole geometries on femtosecond pulse energy distribution in laser drilling,” Opt. Express 23(4), 4927–4934 (2015).
[Crossref] [PubMed]

2014 (4)

J. Y. Xu, H. Hu, and Y. L. Lei, “Morphological features of silicon substrate by using different frequency laser ablation in air and water,” Appl. Surf. Sci. 317, 666–671 (2014).
[Crossref]

N. Iwatani, H. D. Doan, and K. Fushinobu, “Optimization of near-infrared laser drilling of silicon carbide under water,” Int. J. Heat Mass Transfer 71, 515–520 (2014).
[Crossref]

B. S. Yilbas and B. Bhushan, “Laser Treatment of Sintered Silicon Carbide Surface for Enhanced Hydrophobicity,” JOM 66(1), 87–94 (2014).
[Crossref]

Y. Xing, J. Deng, Y. Lian, K. Zhang, G. Zhang, and J. Zhao, “Multiple nanoscale parallel grooves formed on Si3N4/TiC ceramic by femtosecond pulsed laser,” Appl. Surf. Sci. 289, 62–71 (2014).
[Crossref]

2013 (1)

A. Tamura, T. Sakka, K. Fukami, and Y. H. Ogata, “Dynamics of cavitation bubbles generated by multi-pulse laser irradiation of a solid target in water,” Appl. Phys., A Mater. Sci. Process. 112(1), 209–213 (2013).
[Crossref]

2012 (1)

N. Muhammad and L. Li, “Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture,” Appl. Phys., A Mater. Sci. Process. 107(4), 849–861 (2012).
[Crossref]

2011 (2)

Y. Yan, L. Li, K. Sezer, W. Wang, D. Whitehead, L. Ji, Y. Bao, and Y. Jiang, “CO2 laser underwater machining of deep cavities in alumina,” J. Eur. Ceram. Soc. 31(15), 2793–2807 (2011).
[Crossref]

A. Menéndez-Manjón, P. Wagener, and S. Barcikowski, “Transfer-Matrix Method for Efficient Ablation by Pulsed Laser Ablation and Nanoparticle Generation in Liquids,” J. Phys. Chem. C 115(12), 5108–5114 (2011).
[Crossref]

2010 (1)

V. Tangwarodomnukun, J. Wang, and P. Mathew, “A Comparison of Dry and Underwater Laser Micromachining of Silicon Substrates,” Key Eng. Mater. 443, 693–698 (2010).
[Crossref]

2009 (2)

C. H. Tsai and C. C. Li, “Investigation of underwater laser drilling for brittle substrates,” J. Mater. Process. Technol. 209(6), 2838–2846 (2009).
[Crossref]

A. N. Samant and N. B. Dahotre, “Laser machining of structural ceramics—A review,” J. Eur. Ceram. Soc. 29(6), 969–993 (2009).
[Crossref]

2008 (2)

T. Kurita, K. Komatsuzaki, and M. Hattori, “Advanced material processing with nano- and femto-second pulsed laser,” Int. J. Mach. Tools Manuf. 48(2), 220–227 (2008).
[Crossref]

R. An, M. D. Hoffman, M. A. Donoghue, A. J. Hunt, and S. C. Jacobson, “Water-assisted femtosecond laser machining of electrospray nozzles on glass microfluidic devices,” Opt. Express 16(19), 15206–15211 (2008).
[Crossref] [PubMed]

2007 (1)

D. T. Pham, S. S. Dimov, and P. V. Petkov, “Laser milling of ceramic components,” Int. J. Mach. Tools Manuf. 47(3-4), 618–626 (2007).
[Crossref]

2005 (1)

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800 nm pulses,” Appl. Phys., A Mater. Sci. Process. 80(8), 1717–1724 (2005).
[Crossref]

2004 (3)

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[Crossref]

A. Kruusing, “Underwater and water-assisted laser processing: Part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41(2), 307–327 (2004).
[Crossref]

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

2003 (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

2002 (1)

F. Neri, F. Barreca, and S. Trusso, “Excimer laser ablation of silicon carbide ceramic targets,” Diamond Related Materials 11(2), 273–279 (2002).
[Crossref]

2001 (1)

D. Sciti and A. Bellosi, “Laser-induced surface drilling of silicon carbide,” Appl. Surf. Sci. 180(1-2), 92–101 (2001).
[Crossref]

1999 (2)

S. Baunack, S. Oswald, H. K. Tonshoff, F. von Alvensleben, and T. Temme, “Surface characterisation of laser irradiated SiC ceramics by AES and XPS,” Fresenius J. Anal. Chem. 365(1-3), 173–177 (1999).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

1997 (1)

S. I. Dolgaev, V. V. Voronov, G. A. Shafeev, C. Fauquet-Ben Ammar, J.-M. Themlin, A. Cros, and W. Marine, “Laser-induced fast etching and metallization of SiC ceramics,” Appl. Surf. Sci. 109, 559–562 (1997).
[Crossref]

1990 (1)

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Abe, K.

Y. H. Zhao, M. Kunieda, and K. Abe, “EDM mechanism of single crystal SiC with respect to thermal, mechanical and chemical aspects,” J. Mater. Process. Technol. 236, 138–147 (2016).
[Crossref]

An, R.

Asai, W.

H. Suzuki, M. Okada, W. Asai, H. Sumiya, K. Harano, Y. Yamagata, and K. Miura, “Micro milling tool made of nano-polycrystalline diamond for precision cutting of SiC,” CIRP. Ann. Manuf. Technol. 66(1), 93–96 (2017).
[Crossref]

Ballard, P.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Bao, Y.

Y. Yan, L. Li, K. Sezer, W. Wang, D. Whitehead, L. Ji, Y. Bao, and Y. Jiang, “CO2 laser underwater machining of deep cavities in alumina,” J. Eur. Ceram. Soc. 31(15), 2793–2807 (2011).
[Crossref]

Barcikowski, S.

A. Menéndez-Manjón, P. Wagener, and S. Barcikowski, “Transfer-Matrix Method for Efficient Ablation by Pulsed Laser Ablation and Nanoparticle Generation in Liquids,” J. Phys. Chem. C 115(12), 5108–5114 (2011).
[Crossref]

Barreca, F.

F. Neri, F. Barreca, and S. Trusso, “Excimer laser ablation of silicon carbide ceramic targets,” Diamond Related Materials 11(2), 273–279 (2002).
[Crossref]

Baunack, S.

S. Baunack, S. Oswald, H. K. Tonshoff, F. von Alvensleben, and T. Temme, “Surface characterisation of laser irradiated SiC ceramics by AES and XPS,” Fresenius J. Anal. Chem. 365(1-3), 173–177 (1999).
[Crossref]

Bellosi, A.

D. Sciti and A. Bellosi, “Laser-induced surface drilling of silicon carbide,” Appl. Surf. Sci. 180(1-2), 92–101 (2001).
[Crossref]

Bhushan, B.

B. S. Yilbas and B. Bhushan, “Laser Treatment of Sintered Silicon Carbide Surface for Enhanced Hydrophobicity,” JOM 66(1), 87–94 (2014).
[Crossref]

Borowiec, A.

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800 nm pulses,” Appl. Phys., A Mater. Sci. Process. 80(8), 1717–1724 (2005).
[Crossref]

Chen, Q.

Q. Chen, H. J. Wang, D. T. Lin, F. Zuo, Z. X. Zhao, and H. T. Lin, “Characterization of hole taper in laser drilling of silicon nitride ceramic under water,” Ceram. Int. 44(11), 13449–13452 (2018).
[Crossref]

Chen, T.

T. Chen, W. Wang, T. Tao, X. Mei, and A. Pan, “Deposition and melting behaviors for formation of micro/nano structures from nanostructures with femtosecond pulses,” Opt. Mater. 78, 380–387 (2018).
[Crossref]

Cheng, L.

Y. Liu, J. Wan, X. Zuo, L. Cheng, and L. Zhang, “Oxidation behavior of 2D C/SiC composites coated with multi-layer SiC/Si–B–C/SiC coatings under wet oxygen atmosphere,” Appl. Surf. Sci. 353, 214–223 (2015).
[Crossref]

Choo, K. L.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

Crawford, T. H. R.

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800 nm pulses,” Appl. Phys., A Mater. Sci. Process. 80(8), 1717–1724 (2005).
[Crossref]

Cros, A.

S. I. Dolgaev, V. V. Voronov, G. A. Shafeev, C. Fauquet-Ben Ammar, J.-M. Themlin, A. Cros, and W. Marine, “Laser-induced fast etching and metallization of SiC ceramics,” Appl. Surf. Sci. 109, 559–562 (1997).
[Crossref]

Cui, J.

Z. Zhai, W. Wang, X. Mei, M. Li, J. Cui, F. Wang, and A. Pan, “Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites,” Opt. Commun. 424, 137–144 (2018).
[Crossref]

Z. Fan, K. Wang, X. Dong, R. Wang, W. Duan, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+V2O5),” Corros. Sci. 115, 56–67 (2017).
[Crossref]

A. Pan, W. Wang, X. Mei, Q. Lin, J. Cui, K. Wang, and Z. Zhai, “Fractal titanium oxide under inverse 10-ns laser deposition in air and water,” Appl. Phys., A Mater. Sci. Process. 123(4), 253 (2017).
[Crossref]

Z. Fan, K. Wang, X. Dong, W. Duan, R. Wang, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “Evaluation of microstructural evolution and corrosion types in ultrasonic assisted laser re-melted thermal barrier coatings under exposure to molten salts,” Mater. Lett. 188, 145–148 (2017).
[Crossref]

Dabir-Moghaddam, N.

N. Dabir-Moghaddam, Z. Liu, and B. X. Wu, “Modeling of the shrinking process of a bubble induced by laser metal ablation in water and experimental verification,” J. Appl. Phys. 121(4), 044908 (2017).
[Crossref]

Dahotre, N. B.

H. D. Vora and N. B. Dahotre, “Surface topography in three-dimensional laser machining of structural alumina,” J. Manuf. Process. 19, 49–58 (2015).
[Crossref]

A. N. Samant and N. B. Dahotre, “Laser machining of structural ceramics—A review,” J. Eur. Ceram. Soc. 29(6), 969–993 (2009).
[Crossref]

Daminelli, G.

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[Crossref]

Deng, J.

Y. Liu, L. Liu, J. Deng, R. Meng, X. Zou, and F. Wu, “Fabrication of micro-scale textured grooves on green ZrO2 ceramics by pulsed laser ablation,” Ceram. Int. 43(8), 6519–6531 (2017).
[Crossref]

Y. Xing, J. Deng, Y. Lian, K. Zhang, G. Zhang, and J. Zhao, “Multiple nanoscale parallel grooves formed on Si3N4/TiC ceramic by femtosecond pulsed laser,” Appl. Surf. Sci. 289, 62–71 (2014).
[Crossref]

Devaux, D.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Dimov, S. S.

D. T. Pham, S. S. Dimov, and P. V. Petkov, “Laser milling of ceramic components,” Int. J. Mach. Tools Manuf. 47(3-4), 618–626 (2007).
[Crossref]

Doan, H. D.

N. Iwatani, H. D. Doan, and K. Fushinobu, “Optimization of near-infrared laser drilling of silicon carbide under water,” Int. J. Heat Mass Transfer 71, 515–520 (2014).
[Crossref]

Dolgaev, S. I.

S. I. Dolgaev, V. V. Voronov, G. A. Shafeev, C. Fauquet-Ben Ammar, J.-M. Themlin, A. Cros, and W. Marine, “Laser-induced fast etching and metallization of SiC ceramics,” Appl. Surf. Sci. 109, 559–562 (1997).
[Crossref]

Dong, X.

Z. Fan, K. Wang, X. Dong, R. Wang, W. Duan, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+V2O5),” Corros. Sci. 115, 56–67 (2017).
[Crossref]

Z. Fan, K. Wang, X. Dong, W. Duan, R. Wang, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “Evaluation of microstructural evolution and corrosion types in ultrasonic assisted laser re-melted thermal barrier coatings under exposure to molten salts,” Mater. Lett. 188, 145–148 (2017).
[Crossref]

Donoghue, M. A.

Duan, W.

Z. Fan, K. Wang, X. Dong, W. Duan, R. Wang, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “Evaluation of microstructural evolution and corrosion types in ultrasonic assisted laser re-melted thermal barrier coatings under exposure to molten salts,” Mater. Lett. 188, 145–148 (2017).
[Crossref]

Z. Fan, K. Wang, X. Dong, R. Wang, W. Duan, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+V2O5),” Corros. Sci. 115, 56–67 (2017).
[Crossref]

Fabbro, R.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Fan, Z.

Z. Fan, K. Wang, X. Dong, R. Wang, W. Duan, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+V2O5),” Corros. Sci. 115, 56–67 (2017).
[Crossref]

Z. Fan, K. Wang, X. Dong, W. Duan, R. Wang, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “Evaluation of microstructural evolution and corrosion types in ultrasonic assisted laser re-melted thermal barrier coatings under exposure to molten salts,” Mater. Lett. 188, 145–148 (2017).
[Crossref]

Fauquet-Ben Ammar, C.

S. I. Dolgaev, V. V. Voronov, G. A. Shafeev, C. Fauquet-Ben Ammar, J.-M. Themlin, A. Cros, and W. Marine, “Laser-induced fast etching and metallization of SiC ceramics,” Appl. Surf. Sci. 109, 559–562 (1997).
[Crossref]

Feng, Z.

R. Yao, Y. Zheng, L. Liao, R. Zhou, and Z. Feng, “Surface oxidation behavior in air and O2-H2O-Ar atmospheres of continuous freestanding SiC films derived from polycarbosilane,” Ceram. Int. 44(17), 20974–20983 (2018).
[Crossref]

Fournier, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Fukami, K.

A. Tamura, T. Sakka, K. Fukami, and Y. H. Ogata, “Dynamics of cavitation bubbles generated by multi-pulse laser irradiation of a solid target in water,” Appl. Phys., A Mater. Sci. Process. 112(1), 209–213 (2013).
[Crossref]

Fushinobu, K.

N. Iwatani, H. D. Doan, and K. Fushinobu, “Optimization of near-infrared laser drilling of silicon carbide under water,” Int. J. Heat Mass Transfer 71, 515–520 (2014).
[Crossref]

Gandhi, A. S.

A. Mohan, A. Udayakumar, and A. S. Gandhi, “High temperature oxidation behaviour of CVD β-SiC seal coated SiCf/SiC composites in static dry air and combustion environment,” Ceram. Int. 43(12), 9472–9480 (2017).
[Crossref]

Gregorcic, P.

J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
[Crossref]

Gurevich, E. L.

J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
[Crossref]

Harano, K.

H. Suzuki, M. Okada, W. Asai, H. Sumiya, K. Harano, Y. Yamagata, and K. Miura, “Micro milling tool made of nano-polycrystalline diamond for precision cutting of SiC,” CIRP. Ann. Manuf. Technol. 66(1), 93–96 (2017).
[Crossref]

Hattori, M.

T. Kurita, K. Komatsuzaki, and M. Hattori, “Advanced material processing with nano- and femto-second pulsed laser,” Int. J. Mach. Tools Manuf. 48(2), 220–227 (2008).
[Crossref]

Haugen, H. K.

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800 nm pulses,” Appl. Phys., A Mater. Sci. Process. 80(8), 1717–1724 (2005).
[Crossref]

Hoffman, M. D.

Hoppius, J. S.

J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
[Crossref]

Hu, H.

J. Y. Xu, H. Hu, and Y. L. Lei, “Morphological features of silicon substrate by using different frequency laser ablation in air and water,” Appl. Surf. Sci. 317, 666–671 (2014).
[Crossref]

Hunt, A. J.

Iwatani, N.

N. Iwatani, H. D. Doan, and K. Fushinobu, “Optimization of near-infrared laser drilling of silicon carbide under water,” Int. J. Heat Mass Transfer 71, 515–520 (2014).
[Crossref]

Jacobson, S. C.

Ji, L.

Y. Yan, L. Li, K. Sezer, W. Wang, D. Whitehead, L. Ji, Y. Bao, and Y. Jiang, “CO2 laser underwater machining of deep cavities in alumina,” J. Eur. Ceram. Soc. 31(15), 2793–2807 (2011).
[Crossref]

Jiang, Y.

Y. Yan, L. Li, K. Sezer, W. Wang, D. Whitehead, L. Ji, Y. Bao, and Y. Jiang, “CO2 laser underwater machining of deep cavities in alumina,” J. Eur. Ceram. Soc. 31(15), 2793–2807 (2011).
[Crossref]

Jiao, L. S.

Kaierle, S.

J. Koch, S. Taschner, O. Suttmann, and S. Kaierle, “Surface functionalization under water using picosecond and femtosecond laser pulses - first observations and novel effects,” Procedia CIRP 74, 381–385 (2018).
[Crossref]

Kanbargi, G.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

Kanitz, A.

J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
[Crossref]

Kautek, W.

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[Crossref]

Koch, J.

J. Koch, S. Taschner, O. Suttmann, and S. Kaierle, “Surface functionalization under water using picosecond and femtosecond laser pulses - first observations and novel effects,” Procedia CIRP 74, 381–385 (2018).
[Crossref]

Komanduri, R.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

Komatsuzaki, K.

T. Kurita, K. Komatsuzaki, and M. Hattori, “Advanced material processing with nano- and femto-second pulsed laser,” Int. J. Mach. Tools Manuf. 48(2), 220–227 (2008).
[Crossref]

Krüger, J.

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[Crossref]

Kruusing, A.

A. Kruusing, “Underwater and water-assisted laser processing: Part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41(2), 307–327 (2004).
[Crossref]

Kunieda, M.

Y. H. Zhao, M. Kunieda, and K. Abe, “EDM mechanism of single crystal SiC with respect to thermal, mechanical and chemical aspects,” J. Mater. Process. Technol. 236, 138–147 (2016).
[Crossref]

Kurita, T.

T. Kurita, K. Komatsuzaki, and M. Hattori, “Advanced material processing with nano- and femto-second pulsed laser,” Int. J. Mach. Tools Manuf. 48(2), 220–227 (2008).
[Crossref]

Lei, Y. L.

J. Y. Xu, H. Hu, and Y. L. Lei, “Morphological features of silicon substrate by using different frequency laser ablation in air and water,” Appl. Surf. Sci. 317, 666–671 (2014).
[Crossref]

Li, C. C.

C. H. Tsai and C. C. Li, “Investigation of underwater laser drilling for brittle substrates,” J. Mater. Process. Technol. 209(6), 2838–2846 (2009).
[Crossref]

Li, L.

N. Muhammad and L. Li, “Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture,” Appl. Phys., A Mater. Sci. Process. 107(4), 849–861 (2012).
[Crossref]

Y. Yan, L. Li, K. Sezer, W. Wang, D. Whitehead, L. Ji, Y. Bao, and Y. Jiang, “CO2 laser underwater machining of deep cavities in alumina,” J. Eur. Ceram. Soc. 31(15), 2793–2807 (2011).
[Crossref]

Li, M.

Z. Zhai, W. Wang, X. Mei, M. Li, J. Cui, F. Wang, and A. Pan, “Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites,” Opt. Commun. 424, 137–144 (2018).
[Crossref]

Lian, Y.

Y. Xing, J. Deng, Y. Lian, K. Zhang, G. Zhang, and J. Zhao, “Multiple nanoscale parallel grooves formed on Si3N4/TiC ceramic by femtosecond pulsed laser,” Appl. Surf. Sci. 289, 62–71 (2014).
[Crossref]

Liao, L.

R. Yao, Y. Zheng, L. Liao, R. Zhou, and Z. Feng, “Surface oxidation behavior in air and O2-H2O-Ar atmospheres of continuous freestanding SiC films derived from polycarbosilane,” Ceram. Int. 44(17), 20974–20983 (2018).
[Crossref]

Lin, D. T.

Q. Chen, H. J. Wang, D. T. Lin, F. Zuo, Z. X. Zhao, and H. T. Lin, “Characterization of hole taper in laser drilling of silicon nitride ceramic under water,” Ceram. Int. 44(11), 13449–13452 (2018).
[Crossref]

Lin, H. T.

Q. Chen, H. J. Wang, D. T. Lin, F. Zuo, Z. X. Zhao, and H. T. Lin, “Characterization of hole taper in laser drilling of silicon nitride ceramic under water,” Ceram. Int. 44(11), 13449–13452 (2018).
[Crossref]

Lin, Q.

A. Pan, W. Wang, X. Mei, Q. Lin, J. Cui, K. Wang, and Z. Zhai, “Fractal titanium oxide under inverse 10-ns laser deposition in air and water,” Appl. Phys., A Mater. Sci. Process. 123(4), 253 (2017).
[Crossref]

Liu, L.

Y. Liu, L. Liu, J. Deng, R. Meng, X. Zou, and F. Wu, “Fabrication of micro-scale textured grooves on green ZrO2 ceramics by pulsed laser ablation,” Ceram. Int. 43(8), 6519–6531 (2017).
[Crossref]

Liu, Y.

Y. Liu, L. Liu, J. Deng, R. Meng, X. Zou, and F. Wu, “Fabrication of micro-scale textured grooves on green ZrO2 ceramics by pulsed laser ablation,” Ceram. Int. 43(8), 6519–6531 (2017).
[Crossref]

Y. Liu, J. Wan, X. Zuo, L. Cheng, and L. Zhang, “Oxidation behavior of 2D C/SiC composites coated with multi-layer SiC/Si–B–C/SiC coatings under wet oxygen atmosphere,” Appl. Surf. Sci. 353, 214–223 (2015).
[Crossref]

Liu, Z.

N. Dabir-Moghaddam, Z. Liu, and B. X. Wu, “Modeling of the shrinking process of a bubble induced by laser metal ablation in water and experimental verification,” J. Appl. Phys. 121(4), 044908 (2017).
[Crossref]

Maragkaki, S.

J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
[Crossref]

Marine, W.

S. I. Dolgaev, V. V. Voronov, G. A. Shafeev, C. Fauquet-Ben Ammar, J.-M. Themlin, A. Cros, and W. Marine, “Laser-induced fast etching and metallization of SiC ceramics,” Appl. Surf. Sci. 109, 559–562 (1997).
[Crossref]

Mathew, P.

V. Tangwarodomnukun, J. Wang, and P. Mathew, “A Comparison of Dry and Underwater Laser Micromachining of Silicon Substrates,” Key Eng. Mater. 443, 693–698 (2010).
[Crossref]

Mehrafsun, S.

S. Mehrafsun and H. Messaoudi, “Dynamic Process Behavior in Laser Chemical Micro Machining of Metals,” J. Manuf. Mater. Process. 2(3), 54 (2018).
[Crossref]

Mei, X.

Z. Zhai, W. Wang, X. Mei, M. Li, J. Cui, F. Wang, and A. Pan, “Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites,” Opt. Commun. 424, 137–144 (2018).
[Crossref]

T. Chen, W. Wang, T. Tao, X. Mei, and A. Pan, “Deposition and melting behaviors for formation of micro/nano structures from nanostructures with femtosecond pulses,” Opt. Mater. 78, 380–387 (2018).
[Crossref]

Z. Fan, K. Wang, X. Dong, R. Wang, W. Duan, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+V2O5),” Corros. Sci. 115, 56–67 (2017).
[Crossref]

Z. Fan, K. Wang, X. Dong, W. Duan, R. Wang, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “Evaluation of microstructural evolution and corrosion types in ultrasonic assisted laser re-melted thermal barrier coatings under exposure to molten salts,” Mater. Lett. 188, 145–148 (2017).
[Crossref]

A. Pan, W. Wang, X. Mei, Q. Lin, J. Cui, K. Wang, and Z. Zhai, “Fractal titanium oxide under inverse 10-ns laser deposition in air and water,” Appl. Phys., A Mater. Sci. Process. 123(4), 253 (2017).
[Crossref]

Menéndez-Manjón, A.

A. Menéndez-Manjón, P. Wagener, and S. Barcikowski, “Transfer-Matrix Method for Efficient Ablation by Pulsed Laser Ablation and Nanoparticle Generation in Liquids,” J. Phys. Chem. C 115(12), 5108–5114 (2011).
[Crossref]

Meng, R.

Y. Liu, L. Liu, J. Deng, R. Meng, X. Zou, and F. Wu, “Fabrication of micro-scale textured grooves on green ZrO2 ceramics by pulsed laser ablation,” Ceram. Int. 43(8), 6519–6531 (2017).
[Crossref]

Messaoudi, H.

S. Mehrafsun and H. Messaoudi, “Dynamic Process Behavior in Laser Chemical Micro Machining of Metals,” J. Manuf. Mater. Process. 2(3), 54 (2018).
[Crossref]

Miura, K.

H. Suzuki, M. Okada, W. Asai, H. Sumiya, K. Harano, Y. Yamagata, and K. Miura, “Micro milling tool made of nano-polycrystalline diamond for precision cutting of SiC,” CIRP. Ann. Manuf. Technol. 66(1), 93–96 (2017).
[Crossref]

Mohan, A.

A. Mohan, A. Udayakumar, and A. S. Gandhi, “High temperature oxidation behaviour of CVD β-SiC seal coated SiCf/SiC composites in static dry air and combustion environment,” Ceram. Int. 43(12), 9472–9480 (2017).
[Crossref]

Muhammad, N.

N. Muhammad and L. Li, “Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture,” Appl. Phys., A Mater. Sci. Process. 107(4), 849–861 (2012).
[Crossref]

Neri, F.

F. Neri, F. Barreca, and S. Trusso, “Excimer laser ablation of silicon carbide ceramic targets,” Diamond Related Materials 11(2), 273–279 (2002).
[Crossref]

Ng, E. Y. K.

Noack, J.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

Ogata, Y. H.

A. Tamura, T. Sakka, K. Fukami, and Y. H. Ogata, “Dynamics of cavitation bubbles generated by multi-pulse laser irradiation of a solid target in water,” Appl. Phys., A Mater. Sci. Process. 112(1), 209–213 (2013).
[Crossref]

Ogawa, Y.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

Okada, M.

H. Suzuki, M. Okada, W. Asai, H. Sumiya, K. Harano, Y. Yamagata, and K. Miura, “Micro milling tool made of nano-polycrystalline diamond for precision cutting of SiC,” CIRP. Ann. Manuf. Technol. 66(1), 93–96 (2017).
[Crossref]

Oswald, S.

S. Baunack, S. Oswald, H. K. Tonshoff, F. von Alvensleben, and T. Temme, “Surface characterisation of laser irradiated SiC ceramics by AES and XPS,” Fresenius J. Anal. Chem. 365(1-3), 173–177 (1999).
[Crossref]

Otra, V.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

Pan, A.

Z. Zhai, W. Wang, X. Mei, M. Li, J. Cui, F. Wang, and A. Pan, “Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites,” Opt. Commun. 424, 137–144 (2018).
[Crossref]

T. Chen, W. Wang, T. Tao, X. Mei, and A. Pan, “Deposition and melting behaviors for formation of micro/nano structures from nanostructures with femtosecond pulses,” Opt. Mater. 78, 380–387 (2018).
[Crossref]

A. Pan, W. Wang, X. Mei, Q. Lin, J. Cui, K. Wang, and Z. Zhai, “Fractal titanium oxide under inverse 10-ns laser deposition in air and water,” Appl. Phys., A Mater. Sci. Process. 123(4), 253 (2017).
[Crossref]

Petkov, P. V.

D. T. Pham, S. S. Dimov, and P. V. Petkov, “Laser milling of ceramic components,” Int. J. Mach. Tools Manuf. 47(3-4), 618–626 (2007).
[Crossref]

Pham, D. T.

D. T. Pham, S. S. Dimov, and P. V. Petkov, “Laser milling of ceramic components,” Int. J. Mach. Tools Manuf. 47(3-4), 618–626 (2007).
[Crossref]

Raff, L. M.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

Sakka, T.

A. Tamura, T. Sakka, K. Fukami, and Y. H. Ogata, “Dynamics of cavitation bubbles generated by multi-pulse laser irradiation of a solid target in water,” Appl. Phys., A Mater. Sci. Process. 112(1), 209–213 (2013).
[Crossref]

Samant, A. N.

A. N. Samant and N. B. Dahotre, “Laser machining of structural ceramics—A review,” J. Eur. Ceram. Soc. 29(6), 969–993 (2009).
[Crossref]

Sciti, D.

D. Sciti and A. Bellosi, “Laser-induced surface drilling of silicon carbide,” Appl. Surf. Sci. 180(1-2), 92–101 (2001).
[Crossref]

Sezer, K.

Y. Yan, L. Li, K. Sezer, W. Wang, D. Whitehead, L. Ji, Y. Bao, and Y. Jiang, “CO2 laser underwater machining of deep cavities in alumina,” J. Eur. Ceram. Soc. 31(15), 2793–2807 (2011).
[Crossref]

Shafeev, G. A.

S. I. Dolgaev, V. V. Voronov, G. A. Shafeev, C. Fauquet-Ben Ammar, J.-M. Themlin, A. Cros, and W. Marine, “Laser-induced fast etching and metallization of SiC ceramics,” Appl. Surf. Sci. 109, 559–562 (1997).
[Crossref]

Sumiya, H.

H. Suzuki, M. Okada, W. Asai, H. Sumiya, K. Harano, Y. Yamagata, and K. Miura, “Micro milling tool made of nano-polycrystalline diamond for precision cutting of SiC,” CIRP. Ann. Manuf. Technol. 66(1), 93–96 (2017).
[Crossref]

Suttmann, O.

J. Koch, S. Taschner, O. Suttmann, and S. Kaierle, “Surface functionalization under water using picosecond and femtosecond laser pulses - first observations and novel effects,” Procedia CIRP 74, 381–385 (2018).
[Crossref]

Suzuki, H.

H. Suzuki, M. Okada, W. Asai, H. Sumiya, K. Harano, Y. Yamagata, and K. Miura, “Micro milling tool made of nano-polycrystalline diamond for precision cutting of SiC,” CIRP. Ann. Manuf. Technol. 66(1), 93–96 (2017).
[Crossref]

Tamura, A.

A. Tamura, T. Sakka, K. Fukami, and Y. H. Ogata, “Dynamics of cavitation bubbles generated by multi-pulse laser irradiation of a solid target in water,” Appl. Phys., A Mater. Sci. Process. 112(1), 209–213 (2013).
[Crossref]

Tangwarodomnukun, V.

V. Tangwarodomnukun, J. Wang, and P. Mathew, “A Comparison of Dry and Underwater Laser Micromachining of Silicon Substrates,” Key Eng. Mater. 443, 693–698 (2010).
[Crossref]

Tao, T.

T. Chen, W. Wang, T. Tao, X. Mei, and A. Pan, “Deposition and melting behaviors for formation of micro/nano structures from nanostructures with femtosecond pulses,” Opt. Mater. 78, 380–387 (2018).
[Crossref]

Taschner, S.

J. Koch, S. Taschner, O. Suttmann, and S. Kaierle, “Surface functionalization under water using picosecond and femtosecond laser pulses - first observations and novel effects,” Procedia CIRP 74, 381–385 (2018).
[Crossref]

Temme, T.

S. Baunack, S. Oswald, H. K. Tonshoff, F. von Alvensleben, and T. Temme, “Surface characterisation of laser irradiated SiC ceramics by AES and XPS,” Fresenius J. Anal. Chem. 365(1-3), 173–177 (1999).
[Crossref]

Themlin, J.-M.

S. I. Dolgaev, V. V. Voronov, G. A. Shafeev, C. Fauquet-Ben Ammar, J.-M. Themlin, A. Cros, and W. Marine, “Laser-induced fast etching and metallization of SiC ceramics,” Appl. Surf. Sci. 109, 559–562 (1997).
[Crossref]

Tonshoff, H. K.

S. Baunack, S. Oswald, H. K. Tonshoff, F. von Alvensleben, and T. Temme, “Surface characterisation of laser irradiated SiC ceramics by AES and XPS,” Fresenius J. Anal. Chem. 365(1-3), 173–177 (1999).
[Crossref]

Trusso, S.

F. Neri, F. Barreca, and S. Trusso, “Excimer laser ablation of silicon carbide ceramic targets,” Diamond Related Materials 11(2), 273–279 (2002).
[Crossref]

Tsai, C. H.

C. H. Tsai and C. C. Li, “Investigation of underwater laser drilling for brittle substrates,” J. Mater. Process. Technol. 209(6), 2838–2846 (2009).
[Crossref]

Udayakumar, A.

A. Mohan, A. Udayakumar, and A. S. Gandhi, “High temperature oxidation behaviour of CVD β-SiC seal coated SiCf/SiC composites in static dry air and combustion environment,” Ceram. Int. 43(12), 9472–9480 (2017).
[Crossref]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Virmont, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

von Alvensleben, F.

S. Baunack, S. Oswald, H. K. Tonshoff, F. von Alvensleben, and T. Temme, “Surface characterisation of laser irradiated SiC ceramics by AES and XPS,” Fresenius J. Anal. Chem. 365(1-3), 173–177 (1999).
[Crossref]

Vora, H. D.

H. D. Vora and N. B. Dahotre, “Surface topography in three-dimensional laser machining of structural alumina,” J. Manuf. Process. 19, 49–58 (2015).
[Crossref]

Voronov, V. V.

S. I. Dolgaev, V. V. Voronov, G. A. Shafeev, C. Fauquet-Ben Ammar, J.-M. Themlin, A. Cros, and W. Marine, “Laser-induced fast etching and metallization of SiC ceramics,” Appl. Surf. Sci. 109, 559–562 (1997).
[Crossref]

Wagener, P.

A. Menéndez-Manjón, P. Wagener, and S. Barcikowski, “Transfer-Matrix Method for Efficient Ablation by Pulsed Laser Ablation and Nanoparticle Generation in Liquids,” J. Phys. Chem. C 115(12), 5108–5114 (2011).
[Crossref]

Wan, J.

Y. Liu, J. Wan, X. Zuo, L. Cheng, and L. Zhang, “Oxidation behavior of 2D C/SiC composites coated with multi-layer SiC/Si–B–C/SiC coatings under wet oxygen atmosphere,” Appl. Surf. Sci. 353, 214–223 (2015).
[Crossref]

Wang, F.

Z. Zhai, W. Wang, X. Mei, M. Li, J. Cui, F. Wang, and A. Pan, “Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites,” Opt. Commun. 424, 137–144 (2018).
[Crossref]

Wang, H. J.

Q. Chen, H. J. Wang, D. T. Lin, F. Zuo, Z. X. Zhao, and H. T. Lin, “Characterization of hole taper in laser drilling of silicon nitride ceramic under water,” Ceram. Int. 44(11), 13449–13452 (2018).
[Crossref]

Wang, J.

V. Tangwarodomnukun, J. Wang, and P. Mathew, “A Comparison of Dry and Underwater Laser Micromachining of Silicon Substrates,” Key Eng. Mater. 443, 693–698 (2010).
[Crossref]

Wang, K.

Z. Fan, K. Wang, X. Dong, R. Wang, W. Duan, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+V2O5),” Corros. Sci. 115, 56–67 (2017).
[Crossref]

Z. Fan, K. Wang, X. Dong, W. Duan, R. Wang, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “Evaluation of microstructural evolution and corrosion types in ultrasonic assisted laser re-melted thermal barrier coatings under exposure to molten salts,” Mater. Lett. 188, 145–148 (2017).
[Crossref]

A. Pan, W. Wang, X. Mei, Q. Lin, J. Cui, K. Wang, and Z. Zhai, “Fractal titanium oxide under inverse 10-ns laser deposition in air and water,” Appl. Phys., A Mater. Sci. Process. 123(4), 253 (2017).
[Crossref]

Wang, R.

Z. Fan, K. Wang, X. Dong, W. Duan, R. Wang, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “Evaluation of microstructural evolution and corrosion types in ultrasonic assisted laser re-melted thermal barrier coatings under exposure to molten salts,” Mater. Lett. 188, 145–148 (2017).
[Crossref]

Z. Fan, K. Wang, X. Dong, R. Wang, W. Duan, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+V2O5),” Corros. Sci. 115, 56–67 (2017).
[Crossref]

Wang, W.

T. Chen, W. Wang, T. Tao, X. Mei, and A. Pan, “Deposition and melting behaviors for formation of micro/nano structures from nanostructures with femtosecond pulses,” Opt. Mater. 78, 380–387 (2018).
[Crossref]

Z. Zhai, W. Wang, X. Mei, M. Li, J. Cui, F. Wang, and A. Pan, “Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites,” Opt. Commun. 424, 137–144 (2018).
[Crossref]

Z. Fan, K. Wang, X. Dong, R. Wang, W. Duan, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+V2O5),” Corros. Sci. 115, 56–67 (2017).
[Crossref]

Z. Fan, K. Wang, X. Dong, W. Duan, R. Wang, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “Evaluation of microstructural evolution and corrosion types in ultrasonic assisted laser re-melted thermal barrier coatings under exposure to molten salts,” Mater. Lett. 188, 145–148 (2017).
[Crossref]

A. Pan, W. Wang, X. Mei, Q. Lin, J. Cui, K. Wang, and Z. Zhai, “Fractal titanium oxide under inverse 10-ns laser deposition in air and water,” Appl. Phys., A Mater. Sci. Process. 123(4), 253 (2017).
[Crossref]

Y. Yan, L. Li, K. Sezer, W. Wang, D. Whitehead, L. Ji, Y. Bao, and Y. Jiang, “CO2 laser underwater machining of deep cavities in alumina,” J. Eur. Ceram. Soc. 31(15), 2793–2807 (2011).
[Crossref]

Whitehead, D.

Y. Yan, L. Li, K. Sezer, W. Wang, D. Whitehead, L. Ji, Y. Bao, and Y. Jiang, “CO2 laser underwater machining of deep cavities in alumina,” J. Eur. Ceram. Soc. 31(15), 2793–2807 (2011).
[Crossref]

Wu, B. X.

N. Dabir-Moghaddam, Z. Liu, and B. X. Wu, “Modeling of the shrinking process of a bubble induced by laser metal ablation in water and experimental verification,” J. Appl. Phys. 121(4), 044908 (2017).
[Crossref]

Wu, F.

Y. Liu, L. Liu, J. Deng, R. Meng, X. Zou, and F. Wu, “Fabrication of micro-scale textured grooves on green ZrO2 ceramics by pulsed laser ablation,” Ceram. Int. 43(8), 6519–6531 (2017).
[Crossref]

Xie, B.

B. Xie, G. Yuan, and D. Zhang, “Experimental Study of Laser Etching on Al2O3-SiC Composite Ceramics,” Procedia CIRP. 42, 444–447 (2016).
[Crossref]

Xing, Y.

Y. Xing, J. Deng, Y. Lian, K. Zhang, G. Zhang, and J. Zhao, “Multiple nanoscale parallel grooves formed on Si3N4/TiC ceramic by femtosecond pulsed laser,” Appl. Surf. Sci. 289, 62–71 (2014).
[Crossref]

Xu, C.

Z. Fan, K. Wang, X. Dong, R. Wang, W. Duan, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+V2O5),” Corros. Sci. 115, 56–67 (2017).
[Crossref]

Z. Fan, K. Wang, X. Dong, W. Duan, R. Wang, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “Evaluation of microstructural evolution and corrosion types in ultrasonic assisted laser re-melted thermal barrier coatings under exposure to molten salts,” Mater. Lett. 188, 145–148 (2017).
[Crossref]

Xu, J. Y.

J. Y. Xu, H. Hu, and Y. L. Lei, “Morphological features of silicon substrate by using different frequency laser ablation in air and water,” Appl. Surf. Sci. 317, 666–671 (2014).
[Crossref]

Yamagata, Y.

H. Suzuki, M. Okada, W. Asai, H. Sumiya, K. Harano, Y. Yamagata, and K. Miura, “Micro milling tool made of nano-polycrystalline diamond for precision cutting of SiC,” CIRP. Ann. Manuf. Technol. 66(1), 93–96 (2017).
[Crossref]

Yan, Y.

Y. Yan, L. Li, K. Sezer, W. Wang, D. Whitehead, L. Ji, Y. Bao, and Y. Jiang, “CO2 laser underwater machining of deep cavities in alumina,” J. Eur. Ceram. Soc. 31(15), 2793–2807 (2011).
[Crossref]

Yao, R.

R. Yao, Y. Zheng, L. Liao, R. Zhou, and Z. Feng, “Surface oxidation behavior in air and O2-H2O-Ar atmospheres of continuous freestanding SiC films derived from polycarbosilane,” Ceram. Int. 44(17), 20974–20983 (2018).
[Crossref]

Yilbas, B. S.

B. S. Yilbas and B. Bhushan, “Laser Treatment of Sintered Silicon Carbide Surface for Enhanced Hydrophobicity,” JOM 66(1), 87–94 (2014).
[Crossref]

Yuan, G.

B. Xie, G. Yuan, and D. Zhang, “Experimental Study of Laser Etching on Al2O3-SiC Composite Ceramics,” Procedia CIRP. 42, 444–447 (2016).
[Crossref]

Zhai, Z.

Z. Zhai, W. Wang, X. Mei, M. Li, J. Cui, F. Wang, and A. Pan, “Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites,” Opt. Commun. 424, 137–144 (2018).
[Crossref]

A. Pan, W. Wang, X. Mei, Q. Lin, J. Cui, K. Wang, and Z. Zhai, “Fractal titanium oxide under inverse 10-ns laser deposition in air and water,” Appl. Phys., A Mater. Sci. Process. 123(4), 253 (2017).
[Crossref]

Zhang, D.

B. Xie, G. Yuan, and D. Zhang, “Experimental Study of Laser Etching on Al2O3-SiC Composite Ceramics,” Procedia CIRP. 42, 444–447 (2016).
[Crossref]

Zhang, G.

Y. Xing, J. Deng, Y. Lian, K. Zhang, G. Zhang, and J. Zhao, “Multiple nanoscale parallel grooves formed on Si3N4/TiC ceramic by femtosecond pulsed laser,” Appl. Surf. Sci. 289, 62–71 (2014).
[Crossref]

Zhang, K.

Y. Xing, J. Deng, Y. Lian, K. Zhang, G. Zhang, and J. Zhao, “Multiple nanoscale parallel grooves formed on Si3N4/TiC ceramic by femtosecond pulsed laser,” Appl. Surf. Sci. 289, 62–71 (2014).
[Crossref]

Zhang, L.

Y. Liu, J. Wan, X. Zuo, L. Cheng, and L. Zhang, “Oxidation behavior of 2D C/SiC composites coated with multi-layer SiC/Si–B–C/SiC coatings under wet oxygen atmosphere,” Appl. Surf. Sci. 353, 214–223 (2015).
[Crossref]

Zhang, S.

Z. Fan, K. Wang, X. Dong, W. Duan, R. Wang, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “Evaluation of microstructural evolution and corrosion types in ultrasonic assisted laser re-melted thermal barrier coatings under exposure to molten salts,” Mater. Lett. 188, 145–148 (2017).
[Crossref]

Z. Fan, K. Wang, X. Dong, R. Wang, W. Duan, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+V2O5),” Corros. Sci. 115, 56–67 (2017).
[Crossref]

Zhang, Y. L.

Zhao, J.

Y. Xing, J. Deng, Y. Lian, K. Zhang, G. Zhang, and J. Zhao, “Multiple nanoscale parallel grooves formed on Si3N4/TiC ceramic by femtosecond pulsed laser,” Appl. Surf. Sci. 289, 62–71 (2014).
[Crossref]

Zhao, Y. H.

Y. H. Zhao, M. Kunieda, and K. Abe, “EDM mechanism of single crystal SiC with respect to thermal, mechanical and chemical aspects,” J. Mater. Process. Technol. 236, 138–147 (2016).
[Crossref]

Zhao, Z. X.

Q. Chen, H. J. Wang, D. T. Lin, F. Zuo, Z. X. Zhao, and H. T. Lin, “Characterization of hole taper in laser drilling of silicon nitride ceramic under water,” Ceram. Int. 44(11), 13449–13452 (2018).
[Crossref]

Zheng, H. Y.

Zheng, Y.

R. Yao, Y. Zheng, L. Liao, R. Zhou, and Z. Feng, “Surface oxidation behavior in air and O2-H2O-Ar atmospheres of continuous freestanding SiC films derived from polycarbosilane,” Ceram. Int. 44(17), 20974–20983 (2018).
[Crossref]

Zhou, R.

R. Yao, Y. Zheng, L. Liao, R. Zhou, and Z. Feng, “Surface oxidation behavior in air and O2-H2O-Ar atmospheres of continuous freestanding SiC films derived from polycarbosilane,” Ceram. Int. 44(17), 20974–20983 (2018).
[Crossref]

Zou, X.

Y. Liu, L. Liu, J. Deng, R. Meng, X. Zou, and F. Wu, “Fabrication of micro-scale textured grooves on green ZrO2 ceramics by pulsed laser ablation,” Ceram. Int. 43(8), 6519–6531 (2017).
[Crossref]

Zuo, F.

Q. Chen, H. J. Wang, D. T. Lin, F. Zuo, Z. X. Zhao, and H. T. Lin, “Characterization of hole taper in laser drilling of silicon nitride ceramic under water,” Ceram. Int. 44(11), 13449–13452 (2018).
[Crossref]

Zuo, X.

Y. Liu, J. Wan, X. Zuo, L. Cheng, and L. Zhang, “Oxidation behavior of 2D C/SiC composites coated with multi-layer SiC/Si–B–C/SiC coatings under wet oxygen atmosphere,” Appl. Surf. Sci. 353, 214–223 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (4)

A. Pan, W. Wang, X. Mei, Q. Lin, J. Cui, K. Wang, and Z. Zhai, “Fractal titanium oxide under inverse 10-ns laser deposition in air and water,” Appl. Phys., A Mater. Sci. Process. 123(4), 253 (2017).
[Crossref]

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800 nm pulses,” Appl. Phys., A Mater. Sci. Process. 80(8), 1717–1724 (2005).
[Crossref]

N. Muhammad and L. Li, “Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture,” Appl. Phys., A Mater. Sci. Process. 107(4), 849–861 (2012).
[Crossref]

A. Tamura, T. Sakka, K. Fukami, and Y. H. Ogata, “Dynamics of cavitation bubbles generated by multi-pulse laser irradiation of a solid target in water,” Appl. Phys., A Mater. Sci. Process. 112(1), 209–213 (2013).
[Crossref]

Appl. Surf. Sci. (6)

J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
[Crossref]

S. I. Dolgaev, V. V. Voronov, G. A. Shafeev, C. Fauquet-Ben Ammar, J.-M. Themlin, A. Cros, and W. Marine, “Laser-induced fast etching and metallization of SiC ceramics,” Appl. Surf. Sci. 109, 559–562 (1997).
[Crossref]

D. Sciti and A. Bellosi, “Laser-induced surface drilling of silicon carbide,” Appl. Surf. Sci. 180(1-2), 92–101 (2001).
[Crossref]

Y. Xing, J. Deng, Y. Lian, K. Zhang, G. Zhang, and J. Zhao, “Multiple nanoscale parallel grooves formed on Si3N4/TiC ceramic by femtosecond pulsed laser,” Appl. Surf. Sci. 289, 62–71 (2014).
[Crossref]

Y. Liu, J. Wan, X. Zuo, L. Cheng, and L. Zhang, “Oxidation behavior of 2D C/SiC composites coated with multi-layer SiC/Si–B–C/SiC coatings under wet oxygen atmosphere,” Appl. Surf. Sci. 353, 214–223 (2015).
[Crossref]

J. Y. Xu, H. Hu, and Y. L. Lei, “Morphological features of silicon substrate by using different frequency laser ablation in air and water,” Appl. Surf. Sci. 317, 666–671 (2014).
[Crossref]

Ceram. Int. (4)

Y. Liu, L. Liu, J. Deng, R. Meng, X. Zou, and F. Wu, “Fabrication of micro-scale textured grooves on green ZrO2 ceramics by pulsed laser ablation,” Ceram. Int. 43(8), 6519–6531 (2017).
[Crossref]

Q. Chen, H. J. Wang, D. T. Lin, F. Zuo, Z. X. Zhao, and H. T. Lin, “Characterization of hole taper in laser drilling of silicon nitride ceramic under water,” Ceram. Int. 44(11), 13449–13452 (2018).
[Crossref]

A. Mohan, A. Udayakumar, and A. S. Gandhi, “High temperature oxidation behaviour of CVD β-SiC seal coated SiCf/SiC composites in static dry air and combustion environment,” Ceram. Int. 43(12), 9472–9480 (2017).
[Crossref]

R. Yao, Y. Zheng, L. Liao, R. Zhou, and Z. Feng, “Surface oxidation behavior in air and O2-H2O-Ar atmospheres of continuous freestanding SiC films derived from polycarbosilane,” Ceram. Int. 44(17), 20974–20983 (2018).
[Crossref]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

CIRP. Ann. Manuf. Technol. (1)

H. Suzuki, M. Okada, W. Asai, H. Sumiya, K. Harano, Y. Yamagata, and K. Miura, “Micro milling tool made of nano-polycrystalline diamond for precision cutting of SiC,” CIRP. Ann. Manuf. Technol. 66(1), 93–96 (2017).
[Crossref]

Corros. Sci. (1)

Z. Fan, K. Wang, X. Dong, R. Wang, W. Duan, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+V2O5),” Corros. Sci. 115, 56–67 (2017).
[Crossref]

Diamond Related Materials (1)

F. Neri, F. Barreca, and S. Trusso, “Excimer laser ablation of silicon carbide ceramic targets,” Diamond Related Materials 11(2), 273–279 (2002).
[Crossref]

Fresenius J. Anal. Chem. (1)

S. Baunack, S. Oswald, H. K. Tonshoff, F. von Alvensleben, and T. Temme, “Surface characterisation of laser irradiated SiC ceramics by AES and XPS,” Fresenius J. Anal. Chem. 365(1-3), 173–177 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

Int. J. Heat Mass Transfer (1)

N. Iwatani, H. D. Doan, and K. Fushinobu, “Optimization of near-infrared laser drilling of silicon carbide under water,” Int. J. Heat Mass Transfer 71, 515–520 (2014).
[Crossref]

Int. J. Mach. Tools Manuf. (2)

D. T. Pham, S. S. Dimov, and P. V. Petkov, “Laser milling of ceramic components,” Int. J. Mach. Tools Manuf. 47(3-4), 618–626 (2007).
[Crossref]

T. Kurita, K. Komatsuzaki, and M. Hattori, “Advanced material processing with nano- and femto-second pulsed laser,” Int. J. Mach. Tools Manuf. 48(2), 220–227 (2008).
[Crossref]

J. Appl. Phys. (2)

N. Dabir-Moghaddam, Z. Liu, and B. X. Wu, “Modeling of the shrinking process of a bubble induced by laser metal ablation in water and experimental verification,” J. Appl. Phys. 121(4), 044908 (2017).
[Crossref]

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

J. Eur. Ceram. Soc. (2)

A. N. Samant and N. B. Dahotre, “Laser machining of structural ceramics—A review,” J. Eur. Ceram. Soc. 29(6), 969–993 (2009).
[Crossref]

Y. Yan, L. Li, K. Sezer, W. Wang, D. Whitehead, L. Ji, Y. Bao, and Y. Jiang, “CO2 laser underwater machining of deep cavities in alumina,” J. Eur. Ceram. Soc. 31(15), 2793–2807 (2011).
[Crossref]

J. Manuf. Mater. Process. (1)

S. Mehrafsun and H. Messaoudi, “Dynamic Process Behavior in Laser Chemical Micro Machining of Metals,” J. Manuf. Mater. Process. 2(3), 54 (2018).
[Crossref]

J. Manuf. Process. (1)

H. D. Vora and N. B. Dahotre, “Surface topography in three-dimensional laser machining of structural alumina,” J. Manuf. Process. 19, 49–58 (2015).
[Crossref]

J. Mater. Process. Technol. (2)

Y. H. Zhao, M. Kunieda, and K. Abe, “EDM mechanism of single crystal SiC with respect to thermal, mechanical and chemical aspects,” J. Mater. Process. Technol. 236, 138–147 (2016).
[Crossref]

C. H. Tsai and C. C. Li, “Investigation of underwater laser drilling for brittle substrates,” J. Mater. Process. Technol. 209(6), 2838–2846 (2009).
[Crossref]

J. Phys. Chem. C (1)

A. Menéndez-Manjón, P. Wagener, and S. Barcikowski, “Transfer-Matrix Method for Efficient Ablation by Pulsed Laser Ablation and Nanoparticle Generation in Liquids,” J. Phys. Chem. C 115(12), 5108–5114 (2011).
[Crossref]

JOM (1)

B. S. Yilbas and B. Bhushan, “Laser Treatment of Sintered Silicon Carbide Surface for Enhanced Hydrophobicity,” JOM 66(1), 87–94 (2014).
[Crossref]

Key Eng. Mater. (1)

V. Tangwarodomnukun, J. Wang, and P. Mathew, “A Comparison of Dry and Underwater Laser Micromachining of Silicon Substrates,” Key Eng. Mater. 443, 693–698 (2010).
[Crossref]

Mater. Lett. (1)

Z. Fan, K. Wang, X. Dong, W. Duan, R. Wang, X. Mei, W. Wang, J. Cui, S. Zhang, and C. Xu, “Evaluation of microstructural evolution and corrosion types in ultrasonic assisted laser re-melted thermal barrier coatings under exposure to molten salts,” Mater. Lett. 188, 145–148 (2017).
[Crossref]

Mater. Sci. Eng. A (1)

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

Opt. Commun. (1)

Z. Zhai, W. Wang, X. Mei, M. Li, J. Cui, F. Wang, and A. Pan, “Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites,” Opt. Commun. 424, 137–144 (2018).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

A. Kruusing, “Underwater and water-assisted laser processing: Part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41(2), 307–327 (2004).
[Crossref]

Opt. Mater. (1)

T. Chen, W. Wang, T. Tao, X. Mei, and A. Pan, “Deposition and melting behaviors for formation of micro/nano structures from nanostructures with femtosecond pulses,” Opt. Mater. 78, 380–387 (2018).
[Crossref]

Procedia CIRP (1)

J. Koch, S. Taschner, O. Suttmann, and S. Kaierle, “Surface functionalization under water using picosecond and femtosecond laser pulses - first observations and novel effects,” Procedia CIRP 74, 381–385 (2018).
[Crossref]

Procedia CIRP. (1)

B. Xie, G. Yuan, and D. Zhang, “Experimental Study of Laser Etching on Al2O3-SiC Composite Ceramics,” Procedia CIRP. 42, 444–447 (2016).
[Crossref]

Thin Solid Films (1)

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[Crossref]

Supplementary Material (6)

NameDescription
» Visualization 1       The dynamic behavior of gas bubbles with the frequency of 10 kHz, pulse energy of 55 µJ and scanning speed of 1 mm/s
» Visualization 2       The dynamic behavior of gas bubbles with the frequency of 50 kHz, pulse energy of 55 µJ and scanning speed of 1 mm/s
» Visualization 3       The dynamic behavior of gas bubbles with the frequency of 25 kHz, pulse energy of 35 µJ and scanning speed of 1 mm/s
» Visualization 4       The dynamic behavior of gas bubbles with the frequency of 25 kHz, pulse energy of 45 µJ and scanning speed of 1 mm/s
» Visualization 5       The dynamic behavior of gas bubbles with the frequency of 25 kHz, pulse energy of 75 µJ and scanning speed of 1 mm/s
» Visualization 6       The dynamic behavior of gas bubbles with the frequency of 25 kHz, pulse energy of 35 µJ and scanning speed of 7 mm/s

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic illustration of the experimental setup. (b) Schematic illustration for measuring the removal cavity characteristics: Line 1 and Line 2 represent the height data of the upper surface and the bottom of the measured microgroove, respectively. (c) Relationship between microgroove depth and focal position of UFLG samples with laser frequency of 10 kHz, pulse energy of 25 μJ, scanning speed of 0.5 mm / s, and scanning number of 5, where negative sign represents the focus position below the sample surface relative to the air environment.
Fig. 2
Fig. 2 Comparison of the machined SiC ceramic microgrooves with laser frequency of 100 kHz, pulse energy of 25 μJ, scanning speed of 2 mm / s, and scanning number of 1 corresponding to the cases of (a) air environment and (c) water environment. 3D profile of (b) and (d) corresponding to the cases of (a) air environment and (c) water environment, respectively.
Fig. 3
Fig. 3 (a) Depth and (b) width of UFLG samples with different frequencies. (c) Relationship between the removal volume per pulse and laser frequencies at pulse energy of 55 μJ. Surface morphologies and 3D profiles of UFLG samples with different frequencies at pulse energy of 55 μJ. (d) 10 kHz. (e) 25 kHz. (f) 50 kHz. (g) 100 kHz. The input scanning speed and scanning number are set as 1 mm / s and 5, respectively.
Fig. 4
Fig. 4 The dynamic behavior of the laser-water-workpiece interaction zone from a disturbance-free to a disturbed removal under different frequencies: (a) 10 kHz (see Visualization 1). (b) 50 kHz (see Visualization 2). Fs-laser and the white arrow indicate the moving direction of femtosecond laser. The input pulse energy and scanning speed are set as 55 μJ and 1 mm / s, respectively.
Fig. 5
Fig. 5 (a) Depth and (b) width of UFLG samples with different pulse energy. (c) Relationship between the removal volume per pulse and pulse energy. Surface morphologies and 3D profiles of UFLG samples with different pulse energy: (d) 15 μJ. (e) 35 μJ. (f) 45 μJ. (g) 75 μJ. The input frequency, scanning speed, and scanning number are set as 25 kHz, 1 mm / s, and 5, respectively.
Fig. 6
Fig. 6 The dynamic behavior of the laser-water-workpiece interaction zone from a disturbance-free to a disturbed removal under different pulse energy: (a) 15 μJ. (b) 35 μJ (see Visualization 3). (c) 45 μJ (see Visualization 4). (d) 75 μJ (see Visualization 5). Fs-laser and the white arrow indicate the moving direction of femtosecond laser. The input frequency and scanning speed are set as 25 kHz and 1 mm / s, respectively.
Fig. 7
Fig. 7 (a) Snapshots of the machined microgroove by scanning confocal microscope at different scanning speed and scanning number (Nscan). The dynamic behavior of the laser-water-workpiece interaction zone under different scanning speed: (b) 0.5 mm / s. (c) 2 mm / s. (d) 5 mm / s. (e) 7 mm / s (see Visualization 6). Fs-laser and the white arrow of Figs. (b-e) indicate the moving direction of femtosecond laser. The input frequency and pulse energy are set as 25 kHz and 35 μJ, respectively.
Fig. 8
Fig. 8 (a) Depth and (b) width of UFLG samples with different scanning speed and scanning number. (c) Relationship between the removal volume per pulse and scanning number. The input frequency and pulse energy are set as 25 kHz and 35 μJ, respectively.
Fig. 9
Fig. 9 Surface morphologies and 3D profiles of UFLG samples with different scanning speed: (a) 0.5 mm / s. (b) 2 mm / s. (c) 5 mm / s. (d) 7 mm / s. The input frequency, pulse energy, and scanning number were set as 25 kHz, 35 μJ and 15, respectively.
Fig. 10
Fig. 10 Surface morphologies and 3D profiles of UFLG samples with different scanning number: (a) Nscan = 1. (b) Nscan = 5. (c) Nscan = 10. (d) Nscan = 20. The input frequency, pulse energy and scanning speed are set as 25 kHz, 35 μJ and 0.5 mm / s, respectively.
Fig. 11
Fig. 11 Characteristic removal profiles of the possible resulting underwater femtosecond laser machining SiC ceramics as well as schematic illustrations of the supposed dominating mechanisms showing (a) a disturbance-free removal and (b-d) a disturbed removal

Tables (1)

Tables Icon

Table 1 Femtosecond laser parameters for micro-grooving processing

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

SiC(s)+ O 2 (g)Si O 2 (s)+C(s)
SiC(s)+2 O 2 (g)Si O 2 (s)+C O 2 (g)
2SiC(s)+3 O 2 (g)2Si O 2 (s)+2CO(g)
SiC(s)+3 H 2 O(g)Si O 2 (s)+CO(g)+3 H 2 (g)
SiC(s)+4 H 2 O(g)Si O 2 (s)+C O 2 (g)+4 H 2 (g)
Si O 2 (s)+2 H 2 O(g) 1000°C Si (OH) 4 (g)

Metrics