Abstract

An interferometer with a minimum of optical hardware is employed to measure invasiveness the size of biological samples. Nowadays, there are several techniques in microscopy that render high quality resolved images. For instance, consider optical microscopy that has been around for over a century and has since developed in different configurations such as: bright and dark field, phase contrast, confocal, polarized, and so on. However, only a few of these use interferometry to retrieve not only the sample’s amplitude but also its phase. An interesting example of the latter is digital holography which normally uses a Mach Zehnder interferometer setup. In the research work reported here a transmission digital holographic interferometer designed with a simple and minimal optical hardware, that avoids the drawback of the small field of view present in classical optical microscopic systems, is used to measure the microscopic dimensions of pollen grains. This optical configuration can be manipulated to magnify and project the image of a semitransparent sample over a neutral phase screen. The use of a collimated beam through the sample prevents geometrical distortions for high magnification values. The measurements using this novel configuration have been validated using a standard precision pattern displacement specimen with certified dimensions. As proof of principle, microscopically characterized pollen grains are placed in the transmission set up in order to estimate their dimensions from the interferometrically retrieved optical phase. Results match and thus show a relation between the sample’s size and the optical phase magnitude.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cell refractive index tomography by digital holographic microscopy

Florian Charrière, Anca Marian, Frédéric Montfort, Jonas Kuehn, Tristan Colomb, Etienne Cuche, Pierre Marquet, and Christian Depeursinge
Opt. Lett. 31(2) 178-180 (2006)

Adaptive optics via self-interference digital holography for non-scanning three-dimensional imaging in biological samples

Tianlong Man, Yuhong Wan, Wujuan Yan, Xiu-Hong Wang, Erwin J. G. Peterman, and Dayong Wang
Biomed. Opt. Express 9(6) 2614-2626 (2018)

Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy

Pierre Marquet, Benjamin Rappaz, Pierre J. Magistretti, Etienne Cuche, Yves Emery, Tristan Colomb, and Christian Depeursinge
Opt. Lett. 30(5) 468-470 (2005)

References

  • View by:
  • |
  • |
  • |

  1. Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16(1), 3–12 (2005).
    [Crossref] [PubMed]
  2. A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
    [Crossref] [PubMed]
  3. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
    [Crossref] [PubMed]
  4. W. Osten, A. Faridian, P. Gao, K. Körner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, and M. Wilke, “Recent advances in digital holography [invited],” Appl. Opt. 53(27), G44–G63 (2014).
    [Crossref] [PubMed]
  5. P. Picart, New Techniques in Digital Holography, Wiley, (2015).
  6. L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Express 17(14), 12031–12038 (2009).
    [Crossref] [PubMed]
  7. J. M. Flores-Moreno, F. Mendoza Santoyo, and J. C. Estrada Rico, “Holographic otoscope using dual-shot-acquisition for the study of eardrum biomechanical displacements,” Appl. Opt. 52(8), 1731–1742 (2013).
    [Crossref] [PubMed]
  8. M. S. Hernández-Montes, S. Muñoz, M. De la Torre, J. M. Flores, C. Perez, and F. Mendoza-Santoyo, “Quantification of the vocal fold’s dynamic displacement,” J. Phys. D Appl. Phys. 49(17), 175401 (2016).
    [Crossref]
  9. C. G. Tavera R, M. H. De la Torre-I, J. M. Flores-M, M. D. S. Hernandez M, F. Mendoza-Santoyo, M. J. Briones-R, and J. Sanchez-P, “Surface structural damage study in cortical bone due to medical drilling,” Appl. Opt. 56(13), F179–F188 (2017).
    [Crossref] [PubMed]
  10. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods, Wiley, (2004).
  11. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
    [Crossref] [PubMed]
  12. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 1–50 (2010).
  13. X. Yu, J. Hong, C. Liu and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306–1:112306–21 (2014).
    [Crossref]
  14. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [Crossref] [PubMed]
  15. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
    [Crossref] [PubMed]
  16. I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet. 28(8), 725–729 (2011).
    [Crossref] [PubMed]
  17. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
    [Crossref] [PubMed]
  18. C. J. Mann, L. Yu, and M. K. Kim, “Movies of cellular and subcellular motion by digital holographic microscopy,” BioMedical Eng. Online (Bergh.) 5,211–10 (2006).
  19. C. Schockaert, “Digital Holography Microscopy Applications: Three Dimensional Object Analysis and Tracking,” VDM Verlag Dr. Müller, USA, (2009).
  20. S. Rawat, S. Komatsu, A. Markman, A. Anand, and B. Javidi, “Compact and field-portable 3D printed shearing digital holographic microscope for automated cell identification,” Appl. Opt. 56(9), D127–D133 (2017).
    [Crossref] [PubMed]
  21. M. H. De la Torre I, F. M. Santoyo, and M. Del Socorro Hernandez-M, “Transmission out-of-plane interferometer to study thermal distributions in liquids,” Opt. Lett. 43(4), 871–874 (2018).
    [Crossref] [PubMed]
  22. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156 (1982).
    [Crossref]
  23. H. D’Antoni, Arqueoecología: Sistémica y Caótica, CSIC Press, Madrid, España, (2007).
  24. M. Mar Trigo, “Contribución al studio polínico de especies ornamentals: Acanthaceae y Verbenaceae,” Acta Bot. Malacit. 18, 135–146 (1993).
  25. E. L. Ghisalberti, “Lantana camara L. (Verbenaceae),” Fitoterapia 71(5), 467–486 (2000).
    [Crossref] [PubMed]
  26. J. F. Morton, “Lantana, or red sage (Lantana camara L., [Verbenaceae]), notorious weed and popular garden flower; some cases of poisoning in Florida,” Econ. Bot. 48(3), 259–270 (1994).
    [Crossref]

2018 (1)

2017 (2)

2016 (1)

M. S. Hernández-Montes, S. Muñoz, M. De la Torre, J. M. Flores, C. Perez, and F. Mendoza-Santoyo, “Quantification of the vocal fold’s dynamic displacement,” J. Phys. D Appl. Phys. 49(17), 175401 (2016).
[Crossref]

2014 (1)

2013 (1)

2011 (2)

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet. 28(8), 725–729 (2011).
[Crossref] [PubMed]

2010 (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 1–50 (2010).

2009 (1)

2008 (1)

2006 (2)

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
[Crossref] [PubMed]

C. J. Mann, L. Yu, and M. K. Kim, “Movies of cellular and subcellular motion by digital holographic microscopy,” BioMedical Eng. Online (Bergh.) 5,211–10 (2006).

2005 (3)

2003 (1)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

2000 (1)

E. L. Ghisalberti, “Lantana camara L. (Verbenaceae),” Fitoterapia 71(5), 467–486 (2000).
[Crossref] [PubMed]

1994 (1)

J. F. Morton, “Lantana, or red sage (Lantana camara L., [Verbenaceae]), notorious weed and popular garden flower; some cases of poisoning in Florida,” Econ. Bot. 48(3), 259–270 (1994).
[Crossref]

1993 (1)

M. Mar Trigo, “Contribución al studio polínico de especies ornamentals: Acanthaceae y Verbenaceae,” Acta Bot. Malacit. 18, 135–146 (1993).

1982 (1)

Ammann, E.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Anand, A.

Berns, M. W.

Briones-R, M. J.

Charrière, F.

Chen, Z.

Colomb, T.

Crha, I.

I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet. 28(8), 725–729 (2011).
[Crossref] [PubMed]

Cuche, E.

De la Torre, M.

M. S. Hernández-Montes, S. Muñoz, M. De la Torre, J. M. Flores, C. Perez, and F. Mendoza-Santoyo, “Quantification of the vocal fold’s dynamic displacement,” J. Phys. D Appl. Phys. 49(17), 175401 (2016).
[Crossref]

De la Torre I, M. H.

De la Torre-I, M. H.

Dekhter, R.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Del Socorro Hernandez-M, M.

Depeursinge, C.

Ding, H.

Emery, Y.

Estrada Rico, J. C.

Faridian, A.

Flores, J. M.

M. S. Hernández-Montes, S. Muñoz, M. De la Torre, J. M. Flores, C. Perez, and F. Mendoza-Santoyo, “Quantification of the vocal fold’s dynamic displacement,” J. Phys. D Appl. Phys. 49(17), 175401 (2016).
[Crossref]

Flores-M, J. M.

Flores-Moreno, J. M.

Gao, P.

Garini, Y.

Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16(1), 3–12 (2005).
[Crossref] [PubMed]

Genc, S.

Ghisalberti, E. L.

E. L. Ghisalberti, “Lantana camara L. (Verbenaceae),” Fitoterapia 71(5), 467–486 (2000).
[Crossref] [PubMed]

Gillette, M. U.

Hernandez M, M. D. S.

Hernández-Montes, M. S.

M. S. Hernández-Montes, S. Muñoz, M. De la Torre, J. M. Flores, C. Perez, and F. Mendoza-Santoyo, “Quantification of the vocal fold’s dynamic displacement,” J. Phys. D Appl. Phys. 49(17), 175401 (2016).
[Crossref]

Huser, M.

I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet. 28(8), 725–729 (2011).
[Crossref] [PubMed]

Ina, H.

Javidi, B.

Kemper, B.

Khatchatouriants, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 1–50 (2010).

L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Express 17(14), 12031–12038 (2009).
[Crossref] [PubMed]

C. J. Mann, L. Yu, and M. K. Kim, “Movies of cellular and subcellular motion by digital holographic microscopy,” BioMedical Eng. Online (Bergh.) 5,211–10 (2006).

Kobayashi, S.

Komatsu, S.

Körner, K.

Kuehn, J.

Lewis, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Lousova, E.

I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet. 28(8), 725–729 (2011).
[Crossref] [PubMed]

Magistretti, P.

Magistretti, P. J.

Manevitch, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Mann, C. J.

C. J. Mann, L. Yu, and M. K. Kim, “Movies of cellular and subcellular motion by digital holographic microscopy,” BioMedical Eng. Online (Bergh.) 5,211–10 (2006).

Mar Trigo, M.

M. Mar Trigo, “Contribución al studio polínico de especies ornamentals: Acanthaceae y Verbenaceae,” Acta Bot. Malacit. 18, 135–146 (1993).

Marian, A.

Markman, A.

Marquet, P.

Mendoza Santoyo, F.

Mendoza-Santoyo, F.

C. G. Tavera R, M. H. De la Torre-I, J. M. Flores-M, M. D. S. Hernandez M, F. Mendoza-Santoyo, M. J. Briones-R, and J. Sanchez-P, “Surface structural damage study in cortical bone due to medical drilling,” Appl. Opt. 56(13), F179–F188 (2017).
[Crossref] [PubMed]

M. S. Hernández-Montes, S. Muñoz, M. De la Torre, J. M. Flores, C. Perez, and F. Mendoza-Santoyo, “Quantification of the vocal fold’s dynamic displacement,” J. Phys. D Appl. Phys. 49(17), 175401 (2016).
[Crossref]

Millet, L.

Mir, M.

Mohanty, S.

Montfort, F.

Morton, J. F.

J. F. Morton, “Lantana, or red sage (Lantana camara L., [Verbenaceae]), notorious weed and popular garden flower; some cases of poisoning in Florida,” Econ. Bot. 48(3), 259–270 (1994).
[Crossref]

Muñoz, S.

M. S. Hernández-Montes, S. Muñoz, M. De la Torre, J. M. Flores, C. Perez, and F. Mendoza-Santoyo, “Quantification of the vocal fold’s dynamic displacement,” J. Phys. D Appl. Phys. 49(17), 175401 (2016).
[Crossref]

Naik, D.

Osten, W.

Pedrini, G.

Perez, C.

M. S. Hernández-Montes, S. Muñoz, M. De la Torre, J. M. Flores, C. Perez, and F. Mendoza-Santoyo, “Quantification of the vocal fold’s dynamic displacement,” J. Phys. D Appl. Phys. 49(17), 175401 (2016).
[Crossref]

Pohanka, M.

I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet. 28(8), 725–729 (2011).
[Crossref] [PubMed]

Popescu, G.

Rappaz, B.

Rawat, S.

Rogers, J.

Sanchez-P, J.

Santoyo, F. M.

Singh, A. K.

Strinkovski, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Taha, H.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Takeda, M.

Tavera R, C. G.

Unarunotai, S.

Ventruba, P.

I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet. 28(8), 725–729 (2011).
[Crossref] [PubMed]

Vermolen, B. J.

Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16(1), 3–12 (2005).
[Crossref] [PubMed]

von Bally, G.

Wang, Z.

Wilke, M.

Young, I. T.

Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16(1), 3–12 (2005).
[Crossref] [PubMed]

Yu, L.

L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Express 17(14), 12031–12038 (2009).
[Crossref] [PubMed]

C. J. Mann, L. Yu, and M. K. Kim, “Movies of cellular and subcellular motion by digital holographic microscopy,” BioMedical Eng. Online (Bergh.) 5,211–10 (2006).

Zakova, J.

I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet. 28(8), 725–729 (2011).
[Crossref] [PubMed]

Zhang, J.

Acta Bot. Malacit. (1)

M. Mar Trigo, “Contribución al studio polínico de especies ornamentals: Acanthaceae y Verbenaceae,” Acta Bot. Malacit. 18, 135–146 (1993).

Appl. Opt. (5)

BioMedical Eng. Online (Bergh.) (1)

C. J. Mann, L. Yu, and M. K. Kim, “Movies of cellular and subcellular motion by digital holographic microscopy,” BioMedical Eng. Online (Bergh.) 5,211–10 (2006).

Curr. Opin. Biotechnol. (1)

Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16(1), 3–12 (2005).
[Crossref] [PubMed]

Econ. Bot. (1)

J. F. Morton, “Lantana, or red sage (Lantana camara L., [Verbenaceae]), notorious weed and popular garden flower; some cases of poisoning in Florida,” Econ. Bot. 48(3), 259–270 (1994).
[Crossref]

Fitoterapia (1)

E. L. Ghisalberti, “Lantana camara L. (Verbenaceae),” Fitoterapia 71(5), 467–486 (2000).
[Crossref] [PubMed]

J. Assist. Reprod. Genet. (1)

I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet. 28(8), 725–729 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. D Appl. Phys. (1)

M. S. Hernández-Montes, S. Muñoz, M. De la Torre, J. M. Flores, C. Perez, and F. Mendoza-Santoyo, “Quantification of the vocal fold’s dynamic displacement,” J. Phys. D Appl. Phys. 49(17), 175401 (2016).
[Crossref]

Nat. Biotechnol. (1)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 1–50 (2010).

Other (5)

X. Yu, J. Hong, C. Liu and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306–1:112306–21 (2014).
[Crossref]

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods, Wiley, (2004).

P. Picart, New Techniques in Digital Holography, Wiley, (2015).

C. Schockaert, “Digital Holography Microscopy Applications: Three Dimensional Object Analysis and Tracking,” VDM Verlag Dr. Müller, USA, (2009).

H. D’Antoni, Arqueoecología: Sistémica y Caótica, CSIC Press, Madrid, España, (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic view of the t-DHI system.
Fig. 2
Fig. 2 (a) Example of three different FOV using the variable magnification and keeping the same camera’s resolution, retrieved wrapped phase map for a standard calibration pattern, using either the (b) geometrical [21]; or the (c) controlled magnification (Fig. 1), set ups.
Fig. 3
Fig. 3 Standard calibration pattern, (a) schematic, (b) unwrap phase map and (c) profile of the step.
Fig. 4
Fig. 4 Local Lantana flower used to extract the pollen grain samples.
Fig. 5
Fig. 5 Pollen fixation arrangement.
Fig. 6
Fig. 6 Images for a PFA_a sample: (a) confocal and (b) t-DHI. Please notice that t-DHI has a larger field of view.
Fig. 7
Fig. 7 Optical phase intensity and area for every pollen grain of Fig. 6.
Fig. 8
Fig. 8 Sample from PFA_b showing an overlapping case (indicated by *): (a) Fluorescence image and (b) unwrapped optical phase map.
Fig. 9
Fig. 9 PFA_b sample: (a) confocal transmission image and (b) t-DHI labeled image.
Fig. 10
Fig. 10 3D mesh plot obtained from the unwrapped phase map of PFA_b sample.
Fig. 11
Fig. 11 Optical phase intensity and area measurements from PFA_b.
Fig. 12
Fig. 12 PFA_c sample: (a) fluorescence and (b) unwrapped phase map image.
Fig. 13
Fig. 13 3D unwrapped phase map of PFA_c sample.
Fig. 14
Fig. 14 PFA_d (a) confocal and (b) phase magnitude.

Tables (3)

Tables Icon

Table 1 Conditions observed in PFA_b

Tables Icon

Table 2 Measurements of the PFA_c sample

Tables Icon

Table 3 Measurements of PFA_d

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)=a(x,y)+b(x,y)cos[Δφ(x,y)],
c(x,y)= 1 2 b(x,y) e iΔφ(x,y) ,
I(x,y)=a(x,y)+c(x,y)+ c * (x,y).
FT{ I(x,y) }=A(u,v)+C(u,v)+ C * (u,v),
Δφ=atan[ Re(CR)Im(CO)Im(CR)Re(CO) Im(CR)Im(CO)+Re(CR)Re(CO) ],
Δφ'= 2π λ S t w t ,

Metrics