Abstract

Optical image encryption technique has become extremely important in these years. However, most of the proposed multiple-image encryption systems are illuminated with coherent light source. Here we present a multiple-image double-encryption method with spatially incoherent illumination. The first-encryption of multiple images is based on the speckle rotation decorrelation property, and the second-encryption of images’ order is based on the speckle shift decorrelation out of the angular memory-effect range. The double-encryption via two-dimensional rotations of the random phase mask enhances the security and keeps the simplicity of the cryptosystem. The capacity of the ciphertext is greatly increased by multiplexing, and further increased after crosstalk noise removal. The use of incoherent light source reduces the requirements for experimental conditions, and makes the cryptosystem easy to implement in various application scenarios.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetric double-image encryption based on cascaded discrete fractional random transform and logistic maps

Liansheng Sui, Kuaikuai Duan, Junli Liang, and Xinhong Hei
Opt. Express 22(9) 10605-10621 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
    [Crossref] [PubMed]
  2. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25(12), 887–889 (2000).
    [Crossref] [PubMed]
  3. S. Liu, Q. Mi, and B. Zhu, “Optical image encryption with multistage and multichannel fractional Fourier-domain filtering,” Opt. Lett. 26(16), 1242–1244 (2001).
    [Crossref] [PubMed]
  4. G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29(14), 1584–1586 (2004).
    [Crossref] [PubMed]
  5. Z. Liu, Q. Guo, L. Xu, M. A. Ahmad, and S. Liu, “Double image encryption by using iterative random binary encoding in gyrator domains,” Opt. Express 18(11), 12033–12043 (2010).
    [Crossref] [PubMed]
  6. N. Zhou, Y. Wang, and L. Gong, “Novel optical image encryption scheme based on fractional Mellin transform,” Opt. Commun. 284(13), 3234–3242 (2011).
    [Crossref]
  7. G. Situ and J. Zhang, “Multiple-image encryption by wavelength multiplexing,” Opt. Lett. 30(11), 1306–1308 (2005).
    [Crossref] [PubMed]
  8. G. Situ and J. Zhang, “Position multiplexing for multiple-image encryption,” J. Opt. A, Pure Appl. Opt. 8(5), 391–397 (2006).
    [Crossref]
  9. Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33(21), 2443–2445 (2008).
    [Crossref] [PubMed]
  10. Z. Zhong, H. Qin, L. Liu, Y. Zhang, and M. Shan, “Silhouette-free image encryption using interference in the multiple-parameter fractional Fourier transform domain,” Opt. Express 25(6), 6974–6982 (2017).
    [Crossref] [PubMed]
  11. Y. Wan, F. Wu, J. Yang, and T. Man, “Multiple-image encryption based on compressive holography using a multiple-beam interferometer,” Opt. Commun. 342, 95–101 (2015).
    [Crossref]
  12. H. E. Hwang, H. T. Chang, and W. N. Lie, “Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain,” Opt. Lett. 34(24), 3917–3919 (2009).
    [Crossref] [PubMed]
  13. J. J. Huang, H. E. Hwang, C. Y. Chen, and C. M. Chen, “Lensless multiple-image optical encryption based on improved phase retrieval algorithm,” Appl. Opt. 51(13), 2388–2394 (2012).
    [Crossref] [PubMed]
  14. J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
    [Crossref]
  15. M. R. Abuturab, “Asymmetric multiple information cryptosystem based on chaotic spiral phase mask and random spectrum decomposition,” Opt. Laser Technol. 98, 298–308 (2018).
    [Crossref]
  16. J. Yi and G. Tan, “Binary-tree encryption strategy for optical multiple-image encryption,” Appl. Opt. 55(20), 5280–5291 (2016).
    [Crossref] [PubMed]
  17. W. Liu, Z. Xie, Z. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on optical asymmetric key cryptosystem,” Opt. Commun. 335, 205–211 (2015).
    [Crossref]
  18. W. Chen and X. Chen, “Space-based optical image encryption,” Opt. Express 18(26), 27095–27104 (2010).
    [Crossref] [PubMed]
  19. B. M. Hennelly, T. J. Naughton, J. McDonald, J. T. Sheridan, G. Unnikrishnan, D. P. Kelly, and B. Javidi, “Spread-space spread-spectrum technique for secure multiplexing,” Opt. Lett. 32(9), 1060–1062 (2007).
    [Crossref] [PubMed]
  20. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1(3), 589–636 (2009).
    [Crossref]
  21. E. Tajahuerce, J. Lancis, B. Javidi, and P. Andrés, “Optical security and encryption with totally incoherent light,” Opt. Lett. 26(10), 678–680 (2001).
    [Crossref] [PubMed]
  22. J. Zang, Z. Xie, and Y. Zhang, “Optical image encryption with spatially incoherent illumination,” Opt. Lett. 38(8), 1289–1291 (2013).
    [Crossref] [PubMed]
  23. M. Liao, W. He, D. Lu, and X. Peng, “Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium,” Sci. Rep. 7(1), 41789 (2017).
    [Crossref] [PubMed]
  24. S. K. Sahoo, D. Tang, and C. Dang, “Enhancing security of incoherent optical cryptosystem by a simple position-multiplexing technique and ultra-broadband illumination,” Sci. Rep. 7(1), 17895 (2017).
    [Crossref] [PubMed]
  25. Q. Wang, D. Xiong, A. Alfalou, and C. Brosseau, “Optical image encryption method based on incoherent imaging and polarized light encoding,” Opt. Commun. 415, 56–63 (2018).
    [Crossref]
  26. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
    [Crossref] [PubMed]
  27. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [Crossref] [PubMed]
  28. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
    [Crossref]
  29. E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
    [Crossref] [PubMed]
  30. Y. Shi, Y. Liu, W. Sheng, J. Wang, and T. Wu, “Speckle rotation decorrelation based single-shot video through scattering media,” Opt. Express 27(10), 14567–14576 (2019).
    [Crossref] [PubMed]
  31. Y. Shi, Y. Liu, J. Wang, and T. Wu, “Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax,” Appl. Phys. Lett. 110(23), 231101 (2017).
    [Crossref]
  32. X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26(12), 15073–15083 (2018).
    [Crossref] [PubMed]
  33. X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8(1), 4585 (2018).
    [Crossref] [PubMed]

2019 (1)

2018 (4)

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26(12), 15073–15083 (2018).
[Crossref] [PubMed]

M. R. Abuturab, “Asymmetric multiple information cryptosystem based on chaotic spiral phase mask and random spectrum decomposition,” Opt. Laser Technol. 98, 298–308 (2018).
[Crossref]

Q. Wang, D. Xiong, A. Alfalou, and C. Brosseau, “Optical image encryption method based on incoherent imaging and polarized light encoding,” Opt. Commun. 415, 56–63 (2018).
[Crossref]

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8(1), 4585 (2018).
[Crossref] [PubMed]

2017 (4)

M. Liao, W. He, D. Lu, and X. Peng, “Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium,” Sci. Rep. 7(1), 41789 (2017).
[Crossref] [PubMed]

S. K. Sahoo, D. Tang, and C. Dang, “Enhancing security of incoherent optical cryptosystem by a simple position-multiplexing technique and ultra-broadband illumination,” Sci. Rep. 7(1), 17895 (2017).
[Crossref] [PubMed]

Z. Zhong, H. Qin, L. Liu, Y. Zhang, and M. Shan, “Silhouette-free image encryption using interference in the multiple-parameter fractional Fourier transform domain,” Opt. Express 25(6), 6974–6982 (2017).
[Crossref] [PubMed]

Y. Shi, Y. Liu, J. Wang, and T. Wu, “Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax,” Appl. Phys. Lett. 110(23), 231101 (2017).
[Crossref]

2016 (3)

J. Yi and G. Tan, “Binary-tree encryption strategy for optical multiple-image encryption,” Appl. Opt. 55(20), 5280–5291 (2016).
[Crossref] [PubMed]

J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
[Crossref]

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref] [PubMed]

2015 (2)

Y. Wan, F. Wu, J. Yang, and T. Man, “Multiple-image encryption based on compressive holography using a multiple-beam interferometer,” Opt. Commun. 342, 95–101 (2015).
[Crossref]

W. Liu, Z. Xie, Z. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on optical asymmetric key cryptosystem,” Opt. Commun. 335, 205–211 (2015).
[Crossref]

2014 (1)

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

2013 (1)

2012 (2)

J. J. Huang, H. E. Hwang, C. Y. Chen, and C. M. Chen, “Lensless multiple-image optical encryption based on improved phase retrieval algorithm,” Appl. Opt. 51(13), 2388–2394 (2012).
[Crossref] [PubMed]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

2011 (1)

N. Zhou, Y. Wang, and L. Gong, “Novel optical image encryption scheme based on fractional Mellin transform,” Opt. Commun. 284(13), 3234–3242 (2011).
[Crossref]

2010 (2)

2009 (2)

2008 (1)

2007 (1)

2006 (1)

G. Situ and J. Zhang, “Position multiplexing for multiple-image encryption,” J. Opt. A, Pure Appl. Opt. 8(5), 391–397 (2006).
[Crossref]

2005 (1)

2004 (1)

2001 (2)

2000 (1)

1995 (1)

1988 (1)

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Abuturab, M. R.

M. R. Abuturab, “Asymmetric multiple information cryptosystem based on chaotic spiral phase mask and random spectrum decomposition,” Opt. Laser Technol. 98, 298–308 (2018).
[Crossref]

Ahmad, M. A.

Alfalou, A.

Q. Wang, D. Xiong, A. Alfalou, and C. Brosseau, “Optical image encryption method based on incoherent imaging and polarized light encoding,” Opt. Commun. 415, 56–63 (2018).
[Crossref]

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1(3), 589–636 (2009).
[Crossref]

Andrés, P.

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Brosseau, C.

Q. Wang, D. Xiong, A. Alfalou, and C. Brosseau, “Optical image encryption method based on incoherent imaging and polarized light encoding,” Opt. Commun. 415, 56–63 (2018).
[Crossref]

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1(3), 589–636 (2009).
[Crossref]

Chang, H. T.

Chen, C. M.

Chen, C. Y.

Chen, W.

Chen, X.

Dang, C.

S. K. Sahoo, D. Tang, and C. Dang, “Enhancing security of incoherent optical cryptosystem by a simple position-multiplexing technique and ultra-broadband illumination,” Sci. Rep. 7(1), 17895 (2017).
[Crossref] [PubMed]

Edrei, E.

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref] [PubMed]

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Gigan, S.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Gong, L.

N. Zhou, Y. Wang, and L. Gong, “Novel optical image encryption scheme based on fractional Mellin transform,” Opt. Commun. 284(13), 3234–3242 (2011).
[Crossref]

Guo, Q.

He, H.

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8(1), 4585 (2018).
[Crossref] [PubMed]

He, W.

M. Liao, W. He, D. Lu, and X. Peng, “Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium,” Sci. Rep. 7(1), 41789 (2017).
[Crossref] [PubMed]

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Hennelly, B. M.

Huang, J. J.

Hwang, H. E.

Javidi, B.

Joseph, J.

Katz, O.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Kelly, D. P.

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Lancis, J.

Liang, H.

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8(1), 4585 (2018).
[Crossref] [PubMed]

Liao, M.

M. Liao, W. He, D. Lu, and X. Peng, “Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium,” Sci. Rep. 7(1), 41789 (2017).
[Crossref] [PubMed]

Lie, W. N.

Liu, L.

Liu, S.

J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
[Crossref]

W. Liu, Z. Xie, Z. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on optical asymmetric key cryptosystem,” Opt. Commun. 335, 205–211 (2015).
[Crossref]

Z. Liu, Q. Guo, L. Xu, M. A. Ahmad, and S. Liu, “Double image encryption by using iterative random binary encoding in gyrator domains,” Opt. Express 18(11), 12033–12043 (2010).
[Crossref] [PubMed]

S. Liu, Q. Mi, and B. Zhu, “Optical image encryption with multistage and multichannel fractional Fourier-domain filtering,” Opt. Lett. 26(16), 1242–1244 (2001).
[Crossref] [PubMed]

Liu, W.

J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
[Crossref]

W. Liu, Z. Xie, Z. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on optical asymmetric key cryptosystem,” Opt. Commun. 335, 205–211 (2015).
[Crossref]

Liu, Y.

Y. Shi, Y. Liu, W. Sheng, J. Wang, and T. Wu, “Speckle rotation decorrelation based single-shot video through scattering media,” Opt. Express 27(10), 14567–14576 (2019).
[Crossref] [PubMed]

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26(12), 15073–15083 (2018).
[Crossref] [PubMed]

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8(1), 4585 (2018).
[Crossref] [PubMed]

Y. Shi, Y. Liu, J. Wang, and T. Wu, “Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax,” Appl. Phys. Lett. 110(23), 231101 (2017).
[Crossref]

Liu, Z.

J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
[Crossref]

W. Liu, Z. Xie, Z. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on optical asymmetric key cryptosystem,” Opt. Commun. 335, 205–211 (2015).
[Crossref]

Z. Liu, Q. Guo, L. Xu, M. A. Ahmad, and S. Liu, “Double image encryption by using iterative random binary encoding in gyrator domains,” Opt. Express 18(11), 12033–12043 (2010).
[Crossref] [PubMed]

Lu, D.

M. Liao, W. He, D. Lu, and X. Peng, “Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium,” Sci. Rep. 7(1), 41789 (2017).
[Crossref] [PubMed]

Man, T.

Y. Wan, F. Wu, J. Yang, and T. Man, “Multiple-image encryption based on compressive holography using a multiple-beam interferometer,” Opt. Commun. 342, 95–101 (2015).
[Crossref]

McDonald, J.

Mi, Q.

Mosk, A. P.

Naughton, T. J.

Peng, X.

M. Liao, W. He, D. Lu, and X. Peng, “Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium,” Sci. Rep. 7(1), 41789 (2017).
[Crossref] [PubMed]

Qin, H.

Refregier, P.

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Sahoo, S. K.

S. K. Sahoo, D. Tang, and C. Dang, “Enhancing security of incoherent optical cryptosystem by a simple position-multiplexing technique and ultra-broadband illumination,” Sci. Rep. 7(1), 17895 (2017).
[Crossref] [PubMed]

Scarcelli, G.

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref] [PubMed]

Shan, M.

Sheng, W.

Sheridan, J. T.

Shi, Y.

Y. Shi, Y. Liu, W. Sheng, J. Wang, and T. Wu, “Speckle rotation decorrelation based single-shot video through scattering media,” Opt. Express 27(10), 14567–14576 (2019).
[Crossref] [PubMed]

Y. Shi, Y. Liu, J. Wang, and T. Wu, “Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax,” Appl. Phys. Lett. 110(23), 231101 (2017).
[Crossref]

Singh, K.

Situ, G.

Tajahuerce, E.

Tan, G.

Tang, D.

S. K. Sahoo, D. Tang, and C. Dang, “Enhancing security of incoherent optical cryptosystem by a simple position-multiplexing technique and ultra-broadband illumination,” Sci. Rep. 7(1), 17895 (2017).
[Crossref] [PubMed]

Thendiyammal, A.

Unnikrishnan, G.

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Wan, Y.

Y. Wan, F. Wu, J. Yang, and T. Man, “Multiple-image encryption based on compressive holography using a multiple-beam interferometer,” Opt. Commun. 342, 95–101 (2015).
[Crossref]

Wang, B.

Wang, J.

Y. Shi, Y. Liu, W. Sheng, J. Wang, and T. Wu, “Speckle rotation decorrelation based single-shot video through scattering media,” Opt. Express 27(10), 14567–14576 (2019).
[Crossref] [PubMed]

Y. Shi, Y. Liu, J. Wang, and T. Wu, “Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax,” Appl. Phys. Lett. 110(23), 231101 (2017).
[Crossref]

Wang, Q.

Q. Wang, D. Xiong, A. Alfalou, and C. Brosseau, “Optical image encryption method based on incoherent imaging and polarized light encoding,” Opt. Commun. 415, 56–63 (2018).
[Crossref]

Wang, Y.

N. Zhou, Y. Wang, and L. Gong, “Novel optical image encryption scheme based on fractional Mellin transform,” Opt. Commun. 284(13), 3234–3242 (2011).
[Crossref]

Wu, F.

Y. Wan, F. Wu, J. Yang, and T. Man, “Multiple-image encryption based on compressive holography using a multiple-beam interferometer,” Opt. Commun. 342, 95–101 (2015).
[Crossref]

Wu, J.

J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
[Crossref]

Wu, T.

Y. Shi, Y. Liu, W. Sheng, J. Wang, and T. Wu, “Speckle rotation decorrelation based single-shot video through scattering media,” Opt. Express 27(10), 14567–14576 (2019).
[Crossref] [PubMed]

Y. Shi, Y. Liu, J. Wang, and T. Wu, “Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax,” Appl. Phys. Lett. 110(23), 231101 (2017).
[Crossref]

Xie, J.

Xie, X.

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26(12), 15073–15083 (2018).
[Crossref] [PubMed]

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8(1), 4585 (2018).
[Crossref] [PubMed]

Xie, Z.

J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
[Crossref]

W. Liu, Z. Xie, Z. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on optical asymmetric key cryptosystem,” Opt. Commun. 335, 205–211 (2015).
[Crossref]

J. Zang, Z. Xie, and Y. Zhang, “Optical image encryption with spatially incoherent illumination,” Opt. Lett. 38(8), 1289–1291 (2013).
[Crossref] [PubMed]

Xiong, D.

Q. Wang, D. Xiong, A. Alfalou, and C. Brosseau, “Optical image encryption method based on incoherent imaging and polarized light encoding,” Opt. Commun. 415, 56–63 (2018).
[Crossref]

Xu, L.

Xu, X.

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26(12), 15073–15083 (2018).
[Crossref] [PubMed]

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8(1), 4585 (2018).
[Crossref] [PubMed]

Yang, J.

Y. Wan, F. Wu, J. Yang, and T. Man, “Multiple-image encryption based on compressive holography using a multiple-beam interferometer,” Opt. Commun. 342, 95–101 (2015).
[Crossref]

Yi, J.

Zang, J.

Zhang, J.

Zhang, Y.

Zhong, Z.

Zhou, J.

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26(12), 15073–15083 (2018).
[Crossref] [PubMed]

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8(1), 4585 (2018).
[Crossref] [PubMed]

Zhou, N.

N. Zhou, Y. Wang, and L. Gong, “Novel optical image encryption scheme based on fractional Mellin transform,” Opt. Commun. 284(13), 3234–3242 (2011).
[Crossref]

Zhu, B.

Zhuang, H.

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8(1), 4585 (2018).
[Crossref] [PubMed]

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26(12), 15073–15083 (2018).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1(3), 589–636 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Shi, Y. Liu, J. Wang, and T. Wu, “Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax,” Appl. Phys. Lett. 110(23), 231101 (2017).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

G. Situ and J. Zhang, “Position multiplexing for multiple-image encryption,” J. Opt. A, Pure Appl. Opt. 8(5), 391–397 (2006).
[Crossref]

Nat. Photonics (1)

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Opt. Commun. (5)

N. Zhou, Y. Wang, and L. Gong, “Novel optical image encryption scheme based on fractional Mellin transform,” Opt. Commun. 284(13), 3234–3242 (2011).
[Crossref]

Y. Wan, F. Wu, J. Yang, and T. Man, “Multiple-image encryption based on compressive holography using a multiple-beam interferometer,” Opt. Commun. 342, 95–101 (2015).
[Crossref]

J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
[Crossref]

W. Liu, Z. Xie, Z. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on optical asymmetric key cryptosystem,” Opt. Commun. 335, 205–211 (2015).
[Crossref]

Q. Wang, D. Xiong, A. Alfalou, and C. Brosseau, “Optical image encryption method based on incoherent imaging and polarized light encoding,” Opt. Commun. 415, 56–63 (2018).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

M. R. Abuturab, “Asymmetric multiple information cryptosystem based on chaotic spiral phase mask and random spectrum decomposition,” Opt. Laser Technol. 98, 298–308 (2018).
[Crossref]

Opt. Lett. (10)

G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25(12), 887–889 (2000).
[Crossref] [PubMed]

P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
[Crossref] [PubMed]

E. Tajahuerce, J. Lancis, B. Javidi, and P. Andrés, “Optical security and encryption with totally incoherent light,” Opt. Lett. 26(10), 678–680 (2001).
[Crossref] [PubMed]

S. Liu, Q. Mi, and B. Zhu, “Optical image encryption with multistage and multichannel fractional Fourier-domain filtering,” Opt. Lett. 26(16), 1242–1244 (2001).
[Crossref] [PubMed]

G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29(14), 1584–1586 (2004).
[Crossref] [PubMed]

G. Situ and J. Zhang, “Multiple-image encryption by wavelength multiplexing,” Opt. Lett. 30(11), 1306–1308 (2005).
[Crossref] [PubMed]

B. M. Hennelly, T. J. Naughton, J. McDonald, J. T. Sheridan, G. Unnikrishnan, D. P. Kelly, and B. Javidi, “Spread-space spread-spectrum technique for secure multiplexing,” Opt. Lett. 32(9), 1060–1062 (2007).
[Crossref] [PubMed]

Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33(21), 2443–2445 (2008).
[Crossref] [PubMed]

H. E. Hwang, H. T. Chang, and W. N. Lie, “Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain,” Opt. Lett. 34(24), 3917–3919 (2009).
[Crossref] [PubMed]

J. Zang, Z. Xie, and Y. Zhang, “Optical image encryption with spatially incoherent illumination,” Opt. Lett. 38(8), 1289–1291 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Sci. Rep. (4)

M. Liao, W. He, D. Lu, and X. Peng, “Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium,” Sci. Rep. 7(1), 41789 (2017).
[Crossref] [PubMed]

S. K. Sahoo, D. Tang, and C. Dang, “Enhancing security of incoherent optical cryptosystem by a simple position-multiplexing technique and ultra-broadband illumination,” Sci. Rep. 7(1), 17895 (2017).
[Crossref] [PubMed]

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8(1), 4585 (2018).
[Crossref] [PubMed]

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref] [PubMed]

Supplementary Material (2)

NameDescription
» Visualization 1       The video of the moving object with a correct motion trail is decrypted with both keys.
» Visualization 2       The video of the moving object with a wrong motion trail is decrypted without keyII.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic and conceptual description of the multiple-image double-encryption system. Spatially incoherent light from a plaintext passes through the RPM, and the scattered speckles are detected by a camera. The speckle images from various plaintexts are multiplexed by rotating the RPM around the optical axis. The speckle image of the encrypted images’ order is detected after rotating the RPM around the vertical axis. The ciphertext is the superposition of all the rotated and shifted speckle images.
Fig. 2
Fig. 2 Intensity cross-correlations between the speckles before and after rotating the RPM around the optical axis (the left curve) and the vertical axis (the light curve). The insets are the experimental diagrams.
Fig. 3
Fig. 3 (a)-(c) are KeyI, KeyII, and the ciphertext. Angle sequence is decrypted by numerical rotation of KeyII with (d) 28degree and (e) 0degree. (f) Autocorrelation of the ciphertext. (g) Plaintext decrypted with both keys. (h) Plaintext in a wrong order decrypted without KeyII. (i) The plaintext generated on the SLM. Scale bars: 0.42 mm on SLM.
Fig. 4
Fig. 4 (a)-(c) are KeyI, KeyII, and the ciphertext. (d) Angle sequence decrypted with KeyII. (e) Autocorrelation of the ciphertext. (f) are 6 frames of the video decrypted with both keys (Visualization 1). The video recording the object moving with a totally wrong motion trail is decrypted without KeyII (Visualization 2). (g) The images from left to right are decrypted by rotating KeyI from 65 to 69 degree with 0.5 degree intervals. (h) The PSNRs of images decrypted with rotation angle from 65 to 70 degree. Scale bars: 0.42 mm on SLM.
Fig. 5
Fig. 5 Plaintexts respectively decrypted from (a) one speckle image, (b) one of three multiplexed speckle images, and (c) one of three multiplexed speckle images after CTNR. (d) PSNRs of an image recovered from the multiplexed speckle images of various image numbers.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I i = S I P i ,
I I = i I i ( θ i ) = i S I ( θ i ) P i ( θ i ) ,
I II = S II P II ,
I C = I I + I II ( θ II ) = i S I ( θ i ) P i ( θ i ) + S II ( θ II ) P II ( θ II ),
Ke y II ( θ II ) I C = S II ( θ II )[ i S I ( θ i ) P i ( θ i ) + S II ( θ II ) P II ( θ II ) ] = P II ( θ II )+C,
Ke y I ( θ i ) I C = S I ( θ i )[ i S I ( θ i ) P i ( θ i ) + S II ( θ II ) P II ( θ II ) ] = P i ( θ i )+C.
C= S I ( θ 1 )[ i1 S I ( θ i ) P i ( θ i ) + S II ( θ II ) P II ( θ II ) ].