Abstract

An all-fiber linearly polarized supercontinuum (SC) laser source with 93 W average output power and spectrum ranging from 520 nm to 2300 nm is experimentally demonstrated. The linearly-polarized SC is generated in a piece of 2.6 m long polarization-maintaining photonic crystal fiber (PM-PCF), pumped by a polarization-maintaining picosecond Yb-doped master oscillator power amplifier (PM-MOPA). The source exhibits a flat spectrum from 600 nm to 1880 nm at −10 dB level except for the residual pump peak. A new method is proposed to measure the polarization extinction ratio (PER) of each single wavelength of the broadband supercontinuum at a high-power level, resulting in larger than 16 dB PER from 900 nm to 1600 nm and larger than 15 dB PER from 540 nm to 650 nm. To our knowledge, this is the first demonstration of hundred-watt level linearly polarized visible SC and the first demonstration of PER measurement of each single wavelength within such a wide spectrum range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-power near-infrared linearly-polarized supercontinuum generation in a polarization-maintaining Yb-doped fiber amplifier

Bin Zhang, Aijun Jin, Pengfei Ma, Shengping Chen, and Jing Hou
Opt. Express 23(22) 28683-28690 (2015)

Ultra-compact Watt-level flat supercontinuum source pumped by noise-like pulse from an all-fiber oscillator

He Chen, Xuanfeng Zhou, Sheng-Ping Chen, Zong-Fu Jiang, and Jing Hou
Opt. Express 23(26) 32909-32916 (2015)

Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor
Opt. Express 13(18) 6772-6776 (2005)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  2. S. P. Stark, T. Steinmetz, R. A. Probst, H. Hundertmark, T. Wilken, T. W. Hänsch, T. Udem, P. S. Russell, and R. Holzwarth, “14 GHz visible supercontinuum generation: calibration sources for astronomical spectrographs,” Opt. Express 19(17), 15690–15695 (2011).
    [Crossref] [PubMed]
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
    [Crossref] [PubMed]
  4. T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20(7), 7119–7127 (2012).
    [Crossref] [PubMed]
  5. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [Crossref] [PubMed]
  6. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]
  7. X. Qi, S. P. Chen, A. J. Jin, T. Liu, and J. Hou, “Design and analysis of seven-core photonic crystal fiber for high-power visible supercontinuum generation,” Opt. Eng. 54(6), 066102 (2015).
    [Crossref]
  8. C. Sun, T. Ge, S. Li, N. An, and Z. Wang, “67.9 W high-power white supercontinuum all-fiber laser source,” Appl. Opt. 55(14), 3746–3750 (2016).
    [Crossref] [PubMed]
  9. X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, and J. Hou, “High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm,” Opt. Lett. 43(5), 1019–1022 (2018).
    [Crossref] [PubMed]
  10. L. Zhao, Y. Li, C. Guo, H. Zhang, Y. Liu, X. Yang, J. Wang, F. Jing, and G. Feng, “Generation of 215 W supercontinuum containing visible spectra from 480 nm,” Opt. Commun. 425, 118–120 (2018).
    [Crossref]
  11. P. Blandin, F. Druon, M. Hanna, S. Lévêque-Fort, C. Lesvigne, V. Couderc, P. Leproux, A. Tonello, and P. Georges, “Picosecond polarized supercontinuum generation controlled by intermodal four-wave mixing for fluorescence lifetime imaging microscopy,” Opt. Express 16(23), 18844–18849 (2008).
    [Crossref] [PubMed]
  12. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
    [Crossref]
  13. Z. Zhu and T. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express 12(5), 791–796 (2004).
    [Crossref] [PubMed]
  14. C. Xiong and W. J. Wadsworth, “Polarized supercontinuum in birefringent photonic crystal fibre pumped at 1064 nm and application to tuneable visible/UV generation,” Opt. Express 16(4), 2438–2445 (2008).
    [Crossref] [PubMed]
  15. X. Y. Wang, S. G. Li, Y. Han, Y. Du, C. M. Xia, and L. T. Hou, “The polarization-dependent supercontinuum generation in photonic crystal fibers with high birefringence and two-zero dispersion,” Sci. China Phys. Mech. Astron. 55(2), 199–203 (2012).
    [Crossref]
  16. Y. Tao and S. P. Chen, “All-fiber high-power linearly polarized supercontinuum generation from polarization maintaining photonic crystal fibers,” High Power Laser Science and Engineering 7, e28 (2019).
    [Crossref]
  17. B. Zhang, A. Jin, P. Ma, S. Chen, and J. Hou, “High-power near-infrared linearly-polarized supercontinuum generation in a polarization-maintaining Yb-doped fiber amplifier,” Opt. Express 23(22), 28683–28690 (2015).
    [Crossref] [PubMed]
  18. P. H. Pioger, V. Couderc, P. Leproux, and P. A. Champert, “High spectral power density supercontinuum generation in a nonlinear fiber amplifier,” Opt. Express 15(18), 11358–11363 (2007).
    [Crossref] [PubMed]
  19. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14(20), 9391–9407 (2006).
    [Crossref] [PubMed]
  20. Z. Zhu and T. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express 12(5), 791–796 (2004).
    [Crossref] [PubMed]
  21. J. Song, H. Xu, J. Ye, H. Wu, H. Zhang, J. Xu, and P. Zhou, “A novel high-power all-fiberized flexible spectral filter for high power linearly-polarized Raman fiber laser,” Sci. Rep. 8(1), 10942–10950 (2018).
    [Crossref] [PubMed]
  22. B. Lyot, “Optical apparatus with wide feld using interference of polarized light,” C. R. Acad. Sci. (Paris) 197, 1593 (1933).

2019 (1)

Y. Tao and S. P. Chen, “All-fiber high-power linearly polarized supercontinuum generation from polarization maintaining photonic crystal fibers,” High Power Laser Science and Engineering 7, e28 (2019).
[Crossref]

2018 (3)

X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, and J. Hou, “High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm,” Opt. Lett. 43(5), 1019–1022 (2018).
[Crossref] [PubMed]

L. Zhao, Y. Li, C. Guo, H. Zhang, Y. Liu, X. Yang, J. Wang, F. Jing, and G. Feng, “Generation of 215 W supercontinuum containing visible spectra from 480 nm,” Opt. Commun. 425, 118–120 (2018).
[Crossref]

J. Song, H. Xu, J. Ye, H. Wu, H. Zhang, J. Xu, and P. Zhou, “A novel high-power all-fiberized flexible spectral filter for high power linearly-polarized Raman fiber laser,” Sci. Rep. 8(1), 10942–10950 (2018).
[Crossref] [PubMed]

2016 (1)

2015 (2)

X. Qi, S. P. Chen, A. J. Jin, T. Liu, and J. Hou, “Design and analysis of seven-core photonic crystal fiber for high-power visible supercontinuum generation,” Opt. Eng. 54(6), 066102 (2015).
[Crossref]

B. Zhang, A. Jin, P. Ma, S. Chen, and J. Hou, “High-power near-infrared linearly-polarized supercontinuum generation in a polarization-maintaining Yb-doped fiber amplifier,” Opt. Express 23(22), 28683–28690 (2015).
[Crossref] [PubMed]

2012 (2)

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20(7), 7119–7127 (2012).
[Crossref] [PubMed]

X. Y. Wang, S. G. Li, Y. Han, Y. Du, C. M. Xia, and L. T. Hou, “The polarization-dependent supercontinuum generation in photonic crystal fibers with high birefringence and two-zero dispersion,” Sci. China Phys. Mech. Astron. 55(2), 199–203 (2012).
[Crossref]

2011 (1)

2008 (2)

2007 (1)

2006 (1)

2004 (2)

2003 (1)

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[Crossref]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

2001 (1)

1997 (1)

1996 (1)

1933 (1)

B. Lyot, “Optical apparatus with wide feld using interference of polarized light,” C. R. Acad. Sci. (Paris) 197, 1593 (1933).

An, N.

Atkin, D. M.

Bang, O.

Birks, T. A.

Bjarklev, A.

Blandin, P.

Brown, T.

Champert, P. A.

Chen, S.

Chen, S. P.

Y. Tao and S. P. Chen, “All-fiber high-power linearly polarized supercontinuum generation from polarization maintaining photonic crystal fibers,” High Power Laser Science and Engineering 7, e28 (2019).
[Crossref]

X. Qi, S. P. Chen, A. J. Jin, T. Liu, and J. Hou, “Design and analysis of seven-core photonic crystal fiber for high-power visible supercontinuum generation,” Opt. Eng. 54(6), 066102 (2015).
[Crossref]

Chen, Y.

Chudoba, C.

Couderc, V.

Druon, F.

Du, Y.

X. Y. Wang, S. G. Li, Y. Han, Y. Du, C. M. Xia, and L. T. Hou, “The polarization-dependent supercontinuum generation in photonic crystal fibers with high birefringence and two-zero dispersion,” Sci. China Phys. Mech. Astron. 55(2), 199–203 (2012).
[Crossref]

Feng, G.

L. Zhao, Y. Li, C. Guo, H. Zhang, Y. Liu, X. Yang, J. Wang, F. Jing, and G. Feng, “Generation of 215 W supercontinuum containing visible spectra from 480 nm,” Opt. Commun. 425, 118–120 (2018).
[Crossref]

Frosz, M. H.

Fujimoto, J. G.

Ge, T.

Genty, G.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[Crossref]

Georges, P.

Ghanta, R. K.

Guo, C.

L. Zhao, Y. Li, C. Guo, H. Zhang, Y. Liu, X. Yang, J. Wang, F. Jing, and G. Feng, “Generation of 215 W supercontinuum containing visible spectra from 480 nm,” Opt. Commun. 425, 118–120 (2018).
[Crossref]

Hakala, T.

Han, Y.

X. Y. Wang, S. G. Li, Y. Han, Y. Du, C. M. Xia, and L. T. Hou, “The polarization-dependent supercontinuum generation in photonic crystal fibers with high birefringence and two-zero dispersion,” Sci. China Phys. Mech. Astron. 55(2), 199–203 (2012).
[Crossref]

Hanna, M.

Hänsch, T. W.

Hartl, I.

Holzwarth, R.

Hou, J.

Hou, L. T.

X. Y. Wang, S. G. Li, Y. Han, Y. Du, C. M. Xia, and L. T. Hou, “The polarization-dependent supercontinuum generation in photonic crystal fibers with high birefringence and two-zero dispersion,” Sci. China Phys. Mech. Astron. 55(2), 199–203 (2012).
[Crossref]

Hundertmark, H.

Jin, A.

Jin, A. J.

X. Qi, S. P. Chen, A. J. Jin, T. Liu, and J. Hou, “Design and analysis of seven-core photonic crystal fiber for high-power visible supercontinuum generation,” Opt. Eng. 54(6), 066102 (2015).
[Crossref]

Jing, F.

L. Zhao, Y. Li, C. Guo, H. Zhang, Y. Liu, X. Yang, J. Wang, F. Jing, and G. Feng, “Generation of 215 W supercontinuum containing visible spectra from 480 nm,” Opt. Commun. 425, 118–120 (2018).
[Crossref]

Kaasalainen, S.

Kaivola, M.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[Crossref]

Knight, J. C.

Ko, T. H.

Lehtonen, M.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[Crossref]

Leproux, P.

Lesvigne, C.

Lévêque-Fort, S.

Li, S.

Li, S. G.

X. Y. Wang, S. G. Li, Y. Han, Y. Du, C. M. Xia, and L. T. Hou, “The polarization-dependent supercontinuum generation in photonic crystal fibers with high birefringence and two-zero dispersion,” Sci. China Phys. Mech. Astron. 55(2), 199–203 (2012).
[Crossref]

Li, X. D.

Li, Y.

L. Zhao, Y. Li, C. Guo, H. Zhang, Y. Liu, X. Yang, J. Wang, F. Jing, and G. Feng, “Generation of 215 W supercontinuum containing visible spectra from 480 nm,” Opt. Commun. 425, 118–120 (2018).
[Crossref]

Li, Z.

Liu, T.

X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, and J. Hou, “High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm,” Opt. Lett. 43(5), 1019–1022 (2018).
[Crossref] [PubMed]

X. Qi, S. P. Chen, A. J. Jin, T. Liu, and J. Hou, “Design and analysis of seven-core photonic crystal fiber for high-power visible supercontinuum generation,” Opt. Eng. 54(6), 066102 (2015).
[Crossref]

Liu, Y.

L. Zhao, Y. Li, C. Guo, H. Zhang, Y. Liu, X. Yang, J. Wang, F. Jing, and G. Feng, “Generation of 215 W supercontinuum containing visible spectra from 480 nm,” Opt. Commun. 425, 118–120 (2018).
[Crossref]

Ludvigsen, H.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[Crossref]

Lyot, B.

B. Lyot, “Optical apparatus with wide feld using interference of polarized light,” C. R. Acad. Sci. (Paris) 197, 1593 (1933).

Ma, P.

Ou, Y.

Pioger, P. H.

Probst, R. A.

Qi, X.

X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, and J. Hou, “High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm,” Opt. Lett. 43(5), 1019–1022 (2018).
[Crossref] [PubMed]

X. Qi, S. P. Chen, A. J. Jin, T. Liu, and J. Hou, “Design and analysis of seven-core photonic crystal fiber for high-power visible supercontinuum generation,” Opt. Eng. 54(6), 066102 (2015).
[Crossref]

Ranka, J. K.

Russell, P. S.

Russell, P. S. J.

Song, J.

J. Song, H. Xu, J. Ye, H. Wu, H. Zhang, J. Xu, and P. Zhou, “A novel high-power all-fiberized flexible spectral filter for high power linearly-polarized Raman fiber laser,” Sci. Rep. 8(1), 10942–10950 (2018).
[Crossref] [PubMed]

Stark, S. P.

Steinmetz, T.

Sun, C.

Suomalainen, J.

Tao, Y.

Y. Tao and S. P. Chen, “All-fiber high-power linearly polarized supercontinuum generation from polarization maintaining photonic crystal fibers,” High Power Laser Science and Engineering 7, e28 (2019).
[Crossref]

Tonello, A.

Udem, T.

Wadsworth, W. J.

Wang, J.

L. Zhao, Y. Li, C. Guo, H. Zhang, Y. Liu, X. Yang, J. Wang, F. Jing, and G. Feng, “Generation of 215 W supercontinuum containing visible spectra from 480 nm,” Opt. Commun. 425, 118–120 (2018).
[Crossref]

Wang, N.

Wang, X. Y.

X. Y. Wang, S. G. Li, Y. Han, Y. Du, C. M. Xia, and L. T. Hou, “The polarization-dependent supercontinuum generation in photonic crystal fibers with high birefringence and two-zero dispersion,” Sci. China Phys. Mech. Astron. 55(2), 199–203 (2012).
[Crossref]

Wang, Z.

Wilken, T.

Windeler, R. S.

Wu, H.

J. Song, H. Xu, J. Ye, H. Wu, H. Zhang, J. Xu, and P. Zhou, “A novel high-power all-fiberized flexible spectral filter for high power linearly-polarized Raman fiber laser,” Sci. Rep. 8(1), 10942–10950 (2018).
[Crossref] [PubMed]

Xia, C. M.

X. Y. Wang, S. G. Li, Y. Han, Y. Du, C. M. Xia, and L. T. Hou, “The polarization-dependent supercontinuum generation in photonic crystal fibers with high birefringence and two-zero dispersion,” Sci. China Phys. Mech. Astron. 55(2), 199–203 (2012).
[Crossref]

Xiong, C.

Xu, H.

J. Song, H. Xu, J. Ye, H. Wu, H. Zhang, J. Xu, and P. Zhou, “A novel high-power all-fiberized flexible spectral filter for high power linearly-polarized Raman fiber laser,” Sci. Rep. 8(1), 10942–10950 (2018).
[Crossref] [PubMed]

Xu, J.

J. Song, H. Xu, J. Ye, H. Wu, H. Zhang, J. Xu, and P. Zhou, “A novel high-power all-fiberized flexible spectral filter for high power linearly-polarized Raman fiber laser,” Sci. Rep. 8(1), 10942–10950 (2018).
[Crossref] [PubMed]

Yang, X.

L. Zhao, Y. Li, C. Guo, H. Zhang, Y. Liu, X. Yang, J. Wang, F. Jing, and G. Feng, “Generation of 215 W supercontinuum containing visible spectra from 480 nm,” Opt. Commun. 425, 118–120 (2018).
[Crossref]

Ye, J.

J. Song, H. Xu, J. Ye, H. Wu, H. Zhang, J. Xu, and P. Zhou, “A novel high-power all-fiberized flexible spectral filter for high power linearly-polarized Raman fiber laser,” Sci. Rep. 8(1), 10942–10950 (2018).
[Crossref] [PubMed]

Zhang, B.

Zhang, H.

J. Song, H. Xu, J. Ye, H. Wu, H. Zhang, J. Xu, and P. Zhou, “A novel high-power all-fiberized flexible spectral filter for high power linearly-polarized Raman fiber laser,” Sci. Rep. 8(1), 10942–10950 (2018).
[Crossref] [PubMed]

L. Zhao, Y. Li, C. Guo, H. Zhang, Y. Liu, X. Yang, J. Wang, F. Jing, and G. Feng, “Generation of 215 W supercontinuum containing visible spectra from 480 nm,” Opt. Commun. 425, 118–120 (2018).
[Crossref]

Zhao, L.

L. Zhao, Y. Li, C. Guo, H. Zhang, Y. Liu, X. Yang, J. Wang, F. Jing, and G. Feng, “Generation of 215 W supercontinuum containing visible spectra from 480 nm,” Opt. Commun. 425, 118–120 (2018).
[Crossref]

Zhou, P.

J. Song, H. Xu, J. Ye, H. Wu, H. Zhang, J. Xu, and P. Zhou, “A novel high-power all-fiberized flexible spectral filter for high power linearly-polarized Raman fiber laser,” Sci. Rep. 8(1), 10942–10950 (2018).
[Crossref] [PubMed]

Zhu, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[Crossref]

C. R. Acad. Sci. (Paris) (1)

B. Lyot, “Optical apparatus with wide feld using interference of polarized light,” C. R. Acad. Sci. (Paris) 197, 1593 (1933).

High Power Laser Science and Engineering (1)

Y. Tao and S. P. Chen, “All-fiber high-power linearly polarized supercontinuum generation from polarization maintaining photonic crystal fibers,” High Power Laser Science and Engineering 7, e28 (2019).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

L. Zhao, Y. Li, C. Guo, H. Zhang, Y. Liu, X. Yang, J. Wang, F. Jing, and G. Feng, “Generation of 215 W supercontinuum containing visible spectra from 480 nm,” Opt. Commun. 425, 118–120 (2018).
[Crossref]

Opt. Eng. (1)

X. Qi, S. P. Chen, A. J. Jin, T. Liu, and J. Hou, “Design and analysis of seven-core photonic crystal fiber for high-power visible supercontinuum generation,” Opt. Eng. 54(6), 066102 (2015).
[Crossref]

Opt. Express (9)

P. Blandin, F. Druon, M. Hanna, S. Lévêque-Fort, C. Lesvigne, V. Couderc, P. Leproux, A. Tonello, and P. Georges, “Picosecond polarized supercontinuum generation controlled by intermodal four-wave mixing for fluorescence lifetime imaging microscopy,” Opt. Express 16(23), 18844–18849 (2008).
[Crossref] [PubMed]

S. P. Stark, T. Steinmetz, R. A. Probst, H. Hundertmark, T. Wilken, T. W. Hänsch, T. Udem, P. S. Russell, and R. Holzwarth, “14 GHz visible supercontinuum generation: calibration sources for astronomical spectrographs,” Opt. Express 19(17), 15690–15695 (2011).
[Crossref] [PubMed]

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20(7), 7119–7127 (2012).
[Crossref] [PubMed]

B. Zhang, A. Jin, P. Ma, S. Chen, and J. Hou, “High-power near-infrared linearly-polarized supercontinuum generation in a polarization-maintaining Yb-doped fiber amplifier,” Opt. Express 23(22), 28683–28690 (2015).
[Crossref] [PubMed]

P. H. Pioger, V. Couderc, P. Leproux, and P. A. Champert, “High spectral power density supercontinuum generation in a nonlinear fiber amplifier,” Opt. Express 15(18), 11358–11363 (2007).
[Crossref] [PubMed]

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14(20), 9391–9407 (2006).
[Crossref] [PubMed]

Z. Zhu and T. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express 12(5), 791–796 (2004).
[Crossref] [PubMed]

Z. Zhu and T. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express 12(5), 791–796 (2004).
[Crossref] [PubMed]

C. Xiong and W. J. Wadsworth, “Polarized supercontinuum in birefringent photonic crystal fibre pumped at 1064 nm and application to tuneable visible/UV generation,” Opt. Express 16(4), 2438–2445 (2008).
[Crossref] [PubMed]

Opt. Lett. (4)

Sci. China Phys. Mech. Astron. (1)

X. Y. Wang, S. G. Li, Y. Han, Y. Du, C. M. Xia, and L. T. Hou, “The polarization-dependent supercontinuum generation in photonic crystal fibers with high birefringence and two-zero dispersion,” Sci. China Phys. Mech. Astron. 55(2), 199–203 (2012).
[Crossref]

Sci. Rep. (1)

J. Song, H. Xu, J. Ye, H. Wu, H. Zhang, J. Xu, and P. Zhou, “A novel high-power all-fiberized flexible spectral filter for high power linearly-polarized Raman fiber laser,” Sci. Rep. 8(1), 10942–10950 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the high-power LP- SC source.
Fig. 2
Fig. 2 (a) Calculated dispersion curve of the PM-PCF. Inset: cross section of the PM-PCF. (b) The measurement date of the PM-PCF.
Fig. 3
Fig. 3 (a) Spectral evolution of the main amplifier at different power (b) Temporal pulse shapes of the main amplifier. Inset: the pulse train shape of the main amplifier.
Fig. 4
Fig. 4 Average output power versus input pump power of the MOPA.
Fig. 5
Fig. 5 (a) Output spectra of the linearly polarized SC at different output power. (b) Output power versus pump power of the SC source. Inset: Temporal pulse shapes of the linearly polarized SC.
Fig. 6
Fig. 6 Spectral-domain measurement diagram for the PER of the linearly polarized SC source.
Fig. 7
Fig. 7 The PER of spectra (a) 900-1600 nm. (b) 520-650 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δφ= 2π λ Δn L 1
T= 1+cos(Δφ) 2
PER( λ 1 )=lg E λ 1 (s) E λ 1 (f) lg E λ 1 (s) E λ 2 (f) =lg E λ 1 (s)lg E λ 2 (f)