Abstract

Coherent perfect absorber (CPA) is a novel strategy proposed and demonstrated for solving the challenge to attain efficient control of absorption by exploiting the inverse process of lasing. The operation condition of CPA results in narrow-band, which is the main limitation obstruct it from practical applications. Here, we demonstrate a CPA with tunable operation frequency employing the liquid metal made reconfigurable metasurface. The flow of liquid metal is restricted with a plastic pipe for realizing a controllable liquid metal cut-wire. The adjustable electric dipolar mode of the reconfigurable cur-wire metasurface ensures that the quasi-CPA point can be dynamically controlled; the measured CPA under proper phase modulation is in good agreement with the simulation results. The proposed CPA system involving liquid metal for dynamic control of operation frequency will have potential applications and may stimulate the exploitation of liquid based smart absorption control of optical waves.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable polarization-independent dual-band coherent perfect absorber based on metal-graphene nanoring structure

Jiangnan Si, Zhewei Dong, Xuanyi Yu, and Xiaoxu Deng
Opt. Express 26(17) 21768-21777 (2018)

Tunable polarization-independent coherent perfect absorber based on a metal-graphene nanostructure

Yaying Ning, Zhewei Dong, Jiangnan Si, and Xiaoxu Deng
Opt. Express 25(26) 32467-32474 (2017)

Bandwidth bounds of coherent perfect absorber in resonant metasurfaces

Ming Kang, Ming Li, and Jing Chen
Opt. Express 27(6) 9004-9012 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref]
  2. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [Crossref]
  3. S. Thongrattanasiri, F. H. Koppens, and G. D. A. Fj, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref]
  4. S. Longhi, “Viewpoint: Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
    [Crossref]
  5. C. F. Gmachl, “Laser science: Suckers for light,” Nature 467(7311), 37–39 (2010).
    [Crossref]
  6. S. Dutta-Gupta, O. J. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20(2), 1330–1336 (2012).
    [Crossref]
  7. D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
    [Crossref]
  8. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  9. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
    [Crossref]
  10. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
    [Crossref]
  11. S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
    [Crossref]
  12. J. Zhang, K. F. Macdonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
    [Crossref]
  13. X. Fang, M. L. Tseng, J. Y. Ou, and K. F. Macdonald, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
    [Crossref]
  14. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
    [Crossref]
  15. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref]
  16. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref]
  17. G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
    [Crossref]
  18. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
    [Crossref]
  19. H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
    [Crossref]
  20. H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
    [Crossref]
  21. S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
    [Crossref]
  22. F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
    [Crossref]
  23. H. H. Li, X. B. Wang, and J. Zhou, “Thermally tunable asymmetric metamolecule,” Appl. Phys. Lett. 114(8), 082901 (2019).
    [Crossref]
  24. Y. Z. Wen and J. Zhou, “Metamaterial route to direct photoelectric conversion,” Mater. Today 23, 37–44 (2019).
    [Crossref]
  25. N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
    [Crossref]
  26. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref]
  27. Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
    [Crossref]
  28. Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
    [Crossref]
  29. Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
    [Crossref]
  30. S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
    [Crossref]
  31. Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011).
    [Crossref]
  32. C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
    [Crossref]
  33. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
    [Crossref]
  34. W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
    [Crossref]
  35. J. F. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
    [Crossref]
  36. S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20(2), 1330–1336 (2012).
    [Crossref]
  37. M. Kang, F. Liu, T. F. Li, Q. H. Guo, J. S. Li, and J. Chen, “Polarization-independent coherent perfect absorption by a dipole-like metasurface,” Opt. Lett. 38(16), 3086–3088 (2013).
    [Crossref]
  38. M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
    [Crossref]
  39. P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
    [Crossref]
  40. A. Karvounis, V. Nalla, K. F. MacDonald, and N. I. Zheludev, “Ultrafast Coherent Absorption in Diamond Metamaterials,” Adv. Mater. 30(14), 1707354 (2018).
    [Crossref]
  41. A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
    [Crossref]
  42. T. Guo and C. Argyropoulos, “Broadband and Polarization-Insensitive Coherent Perfect Absorption by Black Phosphorus Metasurfaces,” arXiv preprint arXiv:1904.04165 (2019).
  43. S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014).
    [Crossref]
  44. X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
    [Crossref]
  45. Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
    [Crossref]
  46. M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
    [Crossref]
  47. H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref]
  48. L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
    [Crossref]
  49. Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
    [Crossref]
  50. R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
    [Crossref]
  51. W. J. Lv, J. G. Bing, Y. Y. Deng, D. Duan, Z. Zhu, Y. X. Li, C. Y. Guan, and J. H. Shi, “Polarization-controlled multifrequency coherent perfect absorption in stereometamaterials,” Opt. Express 26(13), 17236–17244 (2018).
    [Crossref]
  52. J. Q. Wang, S. C. Liu, S. Guruswamy, and A. Nahata, “Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
    [Crossref]
  53. J. Xu, Y. C. Fan, R. S. Yang, Q. H. Fu, and F. L. Zhang, “Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal,” Opt. Express 27(3), 2837–2843 (2019).
    [Crossref]
  54. F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).
  55. P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
    [Crossref]

2019 (9)

H. H. Li, X. B. Wang, and J. Zhou, “Thermally tunable asymmetric metamolecule,” Appl. Phys. Lett. 114(8), 082901 (2019).
[Crossref]

Y. Z. Wen and J. Zhou, “Metamaterial route to direct photoelectric conversion,” Mater. Today 23, 37–44 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

J. Xu, Y. C. Fan, R. S. Yang, Q. H. Fu, and F. L. Zhang, “Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal,” Opt. Express 27(3), 2837–2843 (2019).
[Crossref]

2018 (5)

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

W. J. Lv, J. G. Bing, Y. Y. Deng, D. Duan, Z. Zhu, Y. X. Li, C. Y. Guan, and J. H. Shi, “Polarization-controlled multifrequency coherent perfect absorption in stereometamaterials,” Opt. Express 26(13), 17236–17244 (2018).
[Crossref]

A. Karvounis, V. Nalla, K. F. MacDonald, and N. I. Zheludev, “Ultrafast Coherent Absorption in Diamond Metamaterials,” Adv. Mater. 30(14), 1707354 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

2017 (2)

C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
[Crossref]

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
[Crossref]

2016 (7)

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref]

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

2015 (4)

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref]

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

2014 (8)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, and K. F. Macdonald, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

J. Q. Wang, S. C. Liu, S. Guruswamy, and A. Nahata, “Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014).
[Crossref]

2013 (2)

2012 (8)

J. Zhang, K. F. Macdonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
[Crossref]

S. Dutta-Gupta, O. J. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20(2), 1330–1336 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

S. Thongrattanasiri, F. H. Koppens, and G. D. A. Fj, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

J. F. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20(2), 1330–1336 (2012).
[Crossref]

2011 (3)

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

2010 (4)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

S. Longhi, “Viewpoint: Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
[Crossref]

C. F. Gmachl, “Laser science: Suckers for light,” Nature 467(7311), 37–39 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

2006 (1)

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Agarwal, G. S.

Alù, A.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
[Crossref]

Argyropoulos, C.

T. Guo and C. Argyropoulos, “Broadband and Polarization-Insensitive Coherent Perfect Absorption by Black Phosphorus Metasurfaces,” arXiv preprint arXiv:1904.04165 (2019).

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Bai, P.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Baranov, D. G.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
[Crossref]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Belov, P. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Bing, J. G.

Blanchard, R.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Bo, H.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Bozhevolnyi, S. I.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Cai, G.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Cai, W.

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

Cao, H.

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

Capasso, F.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Chan, C. T.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Chen, H. T.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Chen, J.

Chen, Q.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Chen, S.

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Cheng, H.

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref]

Chong, Y.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
[Crossref]

Chong, Y. D.

M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref]

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

Chu, Q.

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Deng, Y.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Deng, Y. Y.

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Ding, F.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Ding, K.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Dong, J. J.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Dong, L.

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Duan, D.

Dutta-Gupta, S.

Faccio, D.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014).
[Crossref]

Fan, Y.

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Fan, Y. C.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

J. Xu, Y. C. Fan, R. S. Yang, Q. H. Fu, and F. L. Zhang, “Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal,” Opt. Express 27(3), 2837–2843 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Fang, X.

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, and K. F. Macdonald, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Feng, Q.

Fj, G. D. A.

S. Thongrattanasiri, F. H. Koppens, and G. D. A. Fj, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Fu, Q.

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Fu, Q. H.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

J. Xu, Y. C. Fan, R. S. Yang, Q. H. Fu, and F. L. Zhang, “Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal,” Opt. Express 27(3), 2837–2843 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Ge, L.

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

Genevet, P.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Glybovski, S. B.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Gmachl, C. F.

C. F. Gmachl, “Laser science: Suckers for light,” Nature 467(7311), 37–39 (2010).
[Crossref]

Gokkavas, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Gu, B.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Gu, C.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Guan, C. Y.

Guo, Q. H.

Guo, T.

T. Guo and C. Argyropoulos, “Broadband and Polarization-Insensitive Coherent Perfect Absorption by Black Phosphorus Metasurfaces,” arXiv preprint arXiv:1904.04165 (2019).

Gupta, S. D.

Guruswamy, S.

J. Q. Wang, S. C. Liu, S. Guruswamy, and A. Nahata, “Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

Heitz, J. J. F.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Hu, C.

Huang, C.

Jain, A.

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Jiang, H. W.

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Kafesaki, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Kang, M.

M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

M. Kang, F. Liu, T. F. Li, Q. H. Guo, J. S. Li, and J. Chen, “Polarization-independent coherent perfect absorption by a dipole-like metasurface,” Opt. Lett. 38(16), 3086–3088 (2013).
[Crossref]

Karvounis, A.

A. Karvounis, V. Nalla, K. F. MacDonald, and N. I. Zheludev, “Ultrafast Coherent Absorption in Diamond Metamaterials,” Adv. Mater. 30(14), 1707354 (2018).
[Crossref]

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Kivshar, Y. S.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Koppens, F. H.

S. Thongrattanasiri, F. H. Koppens, and G. D. A. Fj, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Koschny, T.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Krasnok, A.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
[Crossref]

Lai, Y.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Li, C.

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Li, H.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref]

Li, H. H.

H. H. Li, X. B. Wang, and J. Zhou, “Thermally tunable asymmetric metamolecule,” Appl. Phys. Lett. 114(8), 082901 (2019).
[Crossref]

Li, H. Q.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Li, J.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Li, J. S.

Li, S.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Li, T. F.

Li, Y. X.

Li, Z.

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

Liang, L.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Liu, F.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Liu, P.

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Liu, Q. H.

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

Liu, S. C.

J. Q. Wang, S. C. Liu, S. Guruswamy, and A. Nahata, “Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

Liu, W.

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

Liu, Y.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

Liu, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref]

Longhi, S.

S. Longhi, “Viewpoint: Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
[Crossref]

Lu, W.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Luo, J.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Luo, X.

Lv, W. J.

Lyons, A.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Ma, G. C.

G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
[Crossref]

Ma, X.

MacDonald, K. F.

A. Karvounis, V. Nalla, K. F. MacDonald, and N. I. Zheludev, “Ultrafast Coherent Absorption in Diamond Metamaterials,” Adv. Mater. 30(14), 1707354 (2018).
[Crossref]

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, and K. F. Macdonald, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

J. Zhang, K. F. Macdonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

J. F. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

Manceau, J. M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Martin, O. J.

Martin, O. J. F.

Massaouti, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Meng, C.

C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Nahata, A.

J. Q. Wang, S. C. Liu, S. Guruswamy, and A. Nahata, “Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

Nalla, V.

A. Karvounis, V. Nalla, K. F. MacDonald, and N. I. Zheludev, “Ultrafast Coherent Absorption in Diamond Metamaterials,” Adv. Mater. 30(14), 1707354 (2018).
[Crossref]

Noh, H.

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Oren, D.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Ou, J. Y.

X. Fang, M. L. Tseng, J. Y. Ou, and K. F. Macdonald, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Ozbay, E.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Plum, E.

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref]

Pors, A.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Premaratne, M.

M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

Pu, M.

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Qian, D.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Qiang, Y.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Qiu, K.

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Rao, S. M.

Roger, T.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014).
[Crossref]

Savinov, V.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Segev, M.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Shegai, T.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
[Crossref]

Shen, N. H.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Shen, N.-H.

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Sheng, P.

G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
[Crossref]

Shi, J. H.

Simovski, C. R.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Song, J. M.

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Song, Z.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

Soukoulis, C. M.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Stone, A. D.

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

Tang, S. T.

C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
[Crossref]

Taylor, A. J.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. Koppens, and G. D. A. Fj, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Tian, J.

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref]

Tretyakov, S. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Tseng, M. L.

X. Fang, M. L. Tseng, J. Y. Ou, and K. F. Macdonald, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Tzortzakis, S.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Valente, J.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Vezzoli, S.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Wan, W. J.

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

Wang, C.

Wang, G.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Wang, H. T.

M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

Wang, J. Q.

J. Q. Wang, S. C. Liu, S. Guruswamy, and A. Nahata, “Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

Wang, M.

Wang, Q. G.

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Wang, X. B.

H. H. Li, X. B. Wang, and J. Zhou, “Thermally tunable asymmetric metamolecule,” Appl. Phys. Lett. 114(8), 082901 (2019).
[Crossref]

Wang, Z.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

Wei, M.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Wei, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref]

Wei, Z. Y.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Wen, W.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Wen, Y. Z.

Y. Z. Wen and J. Zhou, “Metamaterial route to direct photoelectric conversion,” Mater. Today 23, 37–44 (2019).
[Crossref]

Westerberg, N.

Wu, H. J.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Wu, Y.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Xiao, S. W.

G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
[Crossref]

Xu, J.

Yang, M.

C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
[Crossref]

G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
[Crossref]

Yang, R.

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Yang, R. S.

Yang, S. M.

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Yang, Z. Y.

C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
[Crossref]

G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
[Crossref]

Ye, L.

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

Yu, N.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

Zhang, F.

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Zhang, F. L.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

J. Xu, Y. C. Fan, R. S. Yang, Q. H. Fu, and F. L. Zhang, “Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal,” Opt. Express 27(3), 2837–2843 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Zhang, J.

J. Zhang, K. F. Macdonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

Zhang, J. F.

J. F. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

Zhang, L.

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

Zhang, P.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Zhang, S.

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

Zhang, W.

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Zhang, X. N.

C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
[Crossref]

Zhang, Z. Q.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Zhao, Q.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Zhao, Z.

Zheludev, N. I.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

A. Karvounis, V. Nalla, K. F. MacDonald, and N. I. Zheludev, “Ultrafast Coherent Absorption in Diamond Metamaterials,” Adv. Mater. 30(14), 1707354 (2018).
[Crossref]

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref]

J. Zhang, K. F. Macdonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

J. F. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

Zhou, J.

H. H. Li, X. B. Wang, and J. Zhou, “Thermally tunable asymmetric metamolecule,” Appl. Phys. Lett. 114(8), 082901 (2019).
[Crossref]

Y. Z. Wen and J. Zhou, “Metamaterial route to direct photoelectric conversion,” Mater. Today 23, 37–44 (2019).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Zhou, Y.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Zhu, W. R.

M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

Zhu, Z.

Zide, J. M.

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

ACS Photonics (1)

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Adv. Mater. (4)

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref]

A. Karvounis, V. Nalla, K. F. MacDonald, and N. I. Zheludev, “Ultrafast Coherent Absorption in Diamond Metamaterials,” Adv. Mater. 30(14), 1707354 (2018).
[Crossref]

Adv. Opt. Mater. (3)

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

J. Q. Wang, S. C. Liu, S. Guruswamy, and A. Nahata, “Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Appl. Phys. Express (1)

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Appl. Phys. Lett. (5)

H. H. Li, X. B. Wang, and J. Zhou, “Thermally tunable asymmetric metamolecule,” Appl. Phys. Lett. 114(8), 082901 (2019).
[Crossref]

M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, and K. F. Macdonald, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

IEEE Photonics J. (1)

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

J. Appl. Phys. (1)

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Light: Sci. Appl. (2)

J. Zhang, K. F. Macdonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

J. F. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

Mater. Lett. (1)

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Mater. Today (1)

Y. Z. Wen and J. Zhou, “Metamaterial route to direct photoelectric conversion,” Mater. Today 23, 37–44 (2019).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Nat. Mater. (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
[Crossref]

Nat. Photonics (1)

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Nat. Rev. Mater. (1)

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
[Crossref]

Nature (2)

C. F. Gmachl, “Laser science: Suckers for light,” Nature 467(7311), 37–39 (2010).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Photonics Res. (1)

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

Phys. Rep. (1)

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Phys. Rev. A (2)

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Phys. Rev. Lett. (4)

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

S. Thongrattanasiri, F. H. Koppens, and G. D. A. Fj, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Physics (1)

S. Longhi, “Viewpoint: Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
[Crossref]

Rep. Prog. Phys. (2)

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref]

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Sci. Rep. (3)

C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref]

Science (3)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Other (2)

T. Guo and C. Argyropoulos, “Broadband and Polarization-Insensitive Coherent Perfect Absorption by Black Phosphorus Metasurfaces,” arXiv preprint arXiv:1904.04165 (2019).

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of a liquid metal-based metasurface and the setup with two counter-propagating input beams (I+ and I-), O+ and O- representing the amplitudes of output beams.
Fig. 2.
Fig. 2. Designing of the CPA metasurface. (a) Transmission coefficient |t| and reflection coefficient |r| of a liquid metal metasurface (with w = 22 mm and m = 6 mm). (b) The normalized intensity of outgoing wave O+ (or O-) as function of the modulated phase difference at the quasi-CPA point and a frequency near the quasi-CPA point.
Fig. 3.
Fig. 3. Experimental setup and the demonstration of a quasi-CPA point. (a) A standard waveguide with 2 ports was used to fix and measure the scatterings of the liquid metal metasurface (c). (b) A power divider connected to both the ports of the waveguide providing coherently counter-propagating electromagnetic beams. (d) Measured transmission and reflection spectra of a liquid metal metasurface (w = 22 mm, m = 6 mm).
Fig. 4.
Fig. 4. Tunability of the quasi-CPA point by changing the position (m = 6 mm, 4 mm, 2 mm, 0 mm; the length was fixed as w = 22 mm) of the liquid metal rod in simulations (a, c) and in experiments (b, d). The solid and dashed curves represent transmission coefficient and the reflection coefficient, respectively.
Fig. 5.
Fig. 5. Tunability of the quasi-CPA point by changing the length of the liquid metal rod (w = 22 mm, 21 mm, 20 mm, 19 mm; the position is fixed as m = 6 mm) of the liquid metal rod in simulations (a, c) and in experiments (b), (d). The solid and dashed curves represent transmission coefficient and the reflection coefficient, respectively.
Fig. 6.
Fig. 6. Spectra of the transmission coefficient (blue solid line) and reflection coefficient (blue dotted line) obtained through double port measurement. The redline indicate the reflection coefficient under single port measurement for different structures. (a) Without liquid metal. The length and location of liquid metal rod are (b) w = 19 mm, m = 6 mm, (c) w = 22 mm, m = 4 mm, (d) w = 21 mm, m = 5 mm, (e) w = 21 mm, m = 6 mm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( O + O ) = S g ( I + I ) = ( t + r r + t ) ( I e i φ + I e i φ ) ,
| O + | = | O | = | t I e i φ + + r I e i φ | .

Metrics