Abstract

We proposed and experimentally demonstrated a new scheme for enhancing the sensitivity of a fiber laser sensor using Brillouin slow light. The Brillouin laser was exposed to environmental vibrations, producing fluctuations at 408 kHz frequency, which were then interrogated using a Mach–Zehnder interferometer. By introducing Brillouin slow light into one arm of the interferometer, the sensitivity increased by 1.57 times that of a device without slow light. We believe this scheme may provide a new way of using Brillouin slow light and that it has some important implications regarding the use of fiber sensors for measuring the vibration, temperature, strain and so on.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical study on Brillouin fiber laser sensor based on white light cavity

Omer Kotlicki, Jacob Scheuer, and M.S. Shahriar
Opt. Express 20(27) 28234-28248 (2012)

Enhanced sensitivity of fiber-optic rotation sensors with squeezed light

Monika A. M. Marte and D. F. Walls
J. Opt. Soc. Am. B 4(11) 1849-1852 (1987)

Sensitive acoustic vibration sensor using single-mode fiber tapers

Yi Li, Xiaozhen Wang, and Xiaoyi Bao
Appl. Opt. 50(13) 1873-1878 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Chow, Z. S. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nat. Commun. 9(1), 2990 (2018).
    [Crossref]
  2. W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
    [Crossref]
  3. K. P. Koo and A. D. Kersey, “Fibre laser sensor with ultrahigh strain resolution using interferometric interrogation,” Electron. Lett. 31(14), 1180–1182 (1995).
    [Crossref]
  4. K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
    [Crossref]
  5. L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
    [Crossref]
  6. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
    [Crossref]
  7. C. Feng, H. Luo, L. Zhang, C. X. Gao, L. He, J. M. Liu, and L. Zhan, “Fast-light assisted four-wave-mixing in photonic bandgap,” Opt. Lett. 40(12), 2790–2793 (2015).
    [Crossref]
  8. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
    [Crossref]
  9. K. Digonnet, H. Wen, M. A. Terrel, and S. H. Fan, “Slow and fast light in fiber sensors,” Proc. SPIE 8273, 827301 (2012).
    [Crossref]
  10. Z. M. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B 25(12), C136–143 (2008).
    [Crossref]
  11. Y. D. Zhang, H. Tian, X. N. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slow-light structure,” Opt. Lett. 35(5), 691–693 (2010).
    [Crossref]
  12. H. Wen, G. Skolianos, S. H. Fan, M. Bernier, V. Réal, and M. J. Digonnet, “Slow-light fiber-Bragg-grating strain sensor with a 280-femtostrain/√Hz resolution,” J. Lightwave Technol. 31(11), 1804–1808 (2013).
    [Crossref]
  13. G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Measuring attostrains in a slow-light fiber Bragg grating,” Proc. SPIE 9763, 976317 (2016).
    [Crossref]
  14. G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Observation of thermodynamic phase noise using a slow-light resonance in a fiber Bragg grating,” Proc. SPIE 10119, 1011919 (2017).
    [Crossref]
  15. Z. M. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007).
    [Crossref]
  16. S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett. 36(21), 4161–4163 (2011).
    [Crossref]
  17. L. G. Huang, W. H. Peng, F. Gao, F. Bo, G. Q. Zhang, and J. J. Xu, “Mutually modulated cross-gain modulation with a considerable modulation wavenumber-interaction length product,” Opt. Express 23(9), 12004–12012 (2015).
    [Crossref]
  18. F. Gao, R. Pant, E. B. Li, C. G. Poulton, D. Y. Choi, B. Luther-Davies, B. J. Eggleton, and S. J. Madden, “On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation,” Opt. Express 21(7), 8605–8613 (2013).
    [Crossref]
  19. J. F. Wang, Y. D. Zhang, X. N. Zhang, H. Tian, H. Wu, J. Zhang, P. Yuan, and Y. X. Cai, “Enhancing the sensitivity of fiber Mach-Zehnder interferometers using slow and fast light,” Opt. Lett. 36(16), 3173–3175 (2011).
    [Crossref]
  20. M. Han, T. Q. Liu, L. L. Hu, and Q. Zhang, “Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection,” Opt. Express 21(24), 29269–29276 (2013).
    [Crossref]
  21. Z. G. Liu, X. P. Zhang, Z. F. Gong, Y. Zhang, and W. Peng, “Fiber ring laser-based displacement sensor,” IEEE Photonics Technol. Lett. 28(16), 1723–1726 (2016).
    [Crossref]
  22. L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
    [Crossref]
  23. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [Crossref]
  24. R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
    [Crossref]
  25. S. Takahashi, T. Kikuchi, and K. Ohkura, “Measurements of Acoustic Sensitivity of Fibers Used for Optical Fiber Hydrophones,” Acta Acust. United Ac. 60(1), 75–77 (1986).
  26. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
    [Crossref]
  27. L. Xing, L. Zhan, S. Y. Luo, and Y. X. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
    [Crossref]
  28. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
    [Crossref]
  29. C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
    [Crossref]

2018 (1)

D. M. Chow, Z. S. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nat. Commun. 9(1), 2990 (2018).
[Crossref]

2017 (2)

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Observation of thermodynamic phase noise using a slow-light resonance in a fiber Bragg grating,” Proc. SPIE 10119, 1011919 (2017).
[Crossref]

2016 (2)

G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Measuring attostrains in a slow-light fiber Bragg grating,” Proc. SPIE 9763, 976317 (2016).
[Crossref]

Z. G. Liu, X. P. Zhang, Z. F. Gong, Y. Zhang, and W. Peng, “Fiber ring laser-based displacement sensor,” IEEE Photonics Technol. Lett. 28(16), 1723–1726 (2016).
[Crossref]

2015 (3)

2014 (1)

L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]

2013 (3)

2012 (2)

2011 (4)

2010 (1)

2008 (3)

Z. M. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B 25(12), C136–143 (2008).
[Crossref]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

L. Xing, L. Zhan, S. Y. Luo, and Y. X. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]

2007 (2)

Z. M. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007).
[Crossref]

R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]

2006 (1)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

2005 (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

1995 (1)

K. P. Koo and A. D. Kersey, “Fibre laser sensor with ultrahigh strain resolution using interferometric interrogation,” Electron. Lett. 31(14), 1180–1182 (1995).
[Crossref]

1986 (1)

S. Takahashi, T. Kikuchi, and K. Ohkura, “Measurements of Acoustic Sensitivity of Fibers Used for Optical Fiber Hydrophones,” Acta Acust. United Ac. 60(1), 75–77 (1986).

1982 (1)

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

Arora, A.

G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Observation of thermodynamic phase noise using a slow-light resonance in a fiber Bragg grating,” Proc. SPIE 10119, 1011919 (2017).
[Crossref]

G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Measuring attostrains in a slow-light fiber Bragg grating,” Proc. SPIE 9763, 976317 (2016).
[Crossref]

Bernier, M.

G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Observation of thermodynamic phase noise using a slow-light resonance in a fiber Bragg grating,” Proc. SPIE 10119, 1011919 (2017).
[Crossref]

G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Measuring attostrains in a slow-light fiber Bragg grating,” Proc. SPIE 9763, 976317 (2016).
[Crossref]

H. Wen, G. Skolianos, S. H. Fan, M. Bernier, V. Réal, and M. J. Digonnet, “Slow-light fiber-Bragg-grating strain sensor with a 280-femtostrain/√Hz resolution,” J. Lightwave Technol. 31(11), 1804–1808 (2013).
[Crossref]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Bloch, S.

Bo, F.

Boyd, R. W.

Z. M. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B 25(12), C136–143 (2008).
[Crossref]

Z. M. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007).
[Crossref]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Byrnes, A.

Cai, Y. X.

Cao, Z. G.

R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]

Choi, D. Y.

Chow, D. M.

D. M. Chow, Z. S. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nat. Commun. 9(1), 2990 (2018).
[Crossref]

Dandridge, A.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

Digonnet, K.

K. Digonnet, H. Wen, M. A. Terrel, and S. H. Fan, “Slow and fast light in fiber sensors,” Proc. SPIE 8273, 827301 (2012).
[Crossref]

Digonnet, M.

G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Observation of thermodynamic phase noise using a slow-light resonance in a fiber Bragg grating,” Proc. SPIE 10119, 1011919 (2017).
[Crossref]

G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Measuring attostrains in a slow-light fiber Bragg grating,” Proc. SPIE 9763, 976317 (2016).
[Crossref]

Digonnet, M. J.

Dong, C. H.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]

Dong, X. Y.

Dudley, C. C.

Eggleton, B. J.

Fan, S. H.

Feng, C.

Fu, W.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Gao, C. X.

Gao, F.

Gauthier, D. J.

Z. M. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007).
[Crossref]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

Gong, Z. F.

Z. G. Liu, X. P. Zhang, Z. F. Gong, Y. Zhang, and W. Peng, “Fiber ring laser-based displacement sensor,” IEEE Photonics Technol. Lett. 28(16), 1723–1726 (2016).
[Crossref]

Granot, E.

Guo, G. C.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]

Guo, J. T.

Han, M.

He, L.

He, S. L.

Hu, L. L.

Hu, X.

L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]

Huang, L. G.

Jin, S. Z.

Ju, H. J.

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

Kersey, A. D.

K. P. Koo and A. D. Kersey, “Fibre laser sensor with ultrahigh strain resolution using interferometric interrogation,” Electron. Lett. 31(14), 1180–1182 (1995).
[Crossref]

Kikuchi, T.

S. Takahashi, T. Kikuchi, and K. Ohkura, “Measurements of Acoustic Sensitivity of Fibers Used for Optical Fiber Hydrophones,” Acta Acust. United Ac. 60(1), 75–77 (1986).

Kong, X. D.

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

Koo, K. P.

K. P. Koo and A. D. Kersey, “Fibre laser sensor with ultrahigh strain resolution using interferometric interrogation,” Electron. Lett. 31(14), 1180–1182 (1995).
[Crossref]

Li, E.

Li, E. B.

Li, J.

L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]

Liang, J.

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

Lifshitz, A.

Liu, C.

L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]

Liu, J. M.

C. Feng, H. Luo, L. Zhang, C. X. Gao, L. He, J. M. Liu, and L. Zhan, “Fast-light assisted four-wave-mixing in photonic bandgap,” Opt. Lett. 40(12), 2790–2793 (2015).
[Crossref]

L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]

Liu, R. Z.

R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]

Liu, T. Q.

Liu, Z. G.

Z. G. Liu, X. P. Zhang, Z. F. Gong, Y. Zhang, and W. Peng, “Fiber ring laser-based displacement sensor,” IEEE Photonics Technol. Lett. 28(16), 1723–1726 (2016).
[Crossref]

Luo, H.

Luo, S. Y.

L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]

L. Xing, L. Zhan, S. Y. Luo, and Y. X. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]

Luther-Davies, B.

Madden, S.

Madden, S. J.

Ohkura, K.

S. Takahashi, T. Kikuchi, and K. Ohkura, “Measurements of Acoustic Sensitivity of Fibers Used for Optical Fiber Hydrophones,” Acta Acust. United Ac. 60(1), 75–77 (1986).

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Pant, R.

Pei, L.

L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]

Peng, W.

Z. G. Liu, X. P. Zhang, Z. F. Gong, Y. Zhang, and W. Peng, “Fiber ring laser-based displacement sensor,” IEEE Photonics Technol. Lett. 28(16), 1723–1726 (2016).
[Crossref]

Peng, W. H.

Poulton, C. G.

Qian, K.

L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]

Qian, W. W.

Réal, V.

Ren, K. L.

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

Ren, L. Y.

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Shen, Q. S.

L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]

Shen, Z.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]

Shi, Z. M.

Skolianos, G.

G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Observation of thermodynamic phase noise using a slow-light resonance in a fiber Bragg grating,” Proc. SPIE 10119, 1011919 (2017).
[Crossref]

G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Measuring attostrains in a slow-light fiber Bragg grating,” Proc. SPIE 9763, 976317 (2016).
[Crossref]

H. Wen, G. Skolianos, S. H. Fan, M. Bernier, V. Réal, and M. J. Digonnet, “Slow-light fiber-Bragg-grating strain sensor with a 280-femtostrain/√Hz resolution,” J. Lightwave Technol. 31(11), 1804–1808 (2013).
[Crossref]

Soto, M. A.

D. M. Chow, Z. S. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nat. Commun. 9(1), 2990 (2018).
[Crossref]

Sternklar, S.

Takahashi, S.

S. Takahashi, T. Kikuchi, and K. Ohkura, “Measurements of Acoustic Sensitivity of Fibers Used for Optical Fiber Hydrophones,” Acta Acust. United Ac. 60(1), 75–77 (1986).

Terrel, M. A.

K. Digonnet, H. Wen, M. A. Terrel, and S. H. Fan, “Slow and fast light in fiber sensors,” Proc. SPIE 8273, 827301 (2012).
[Crossref]

Thévenaz, L.

D. M. Chow, Z. S. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nat. Commun. 9(1), 2990 (2018).
[Crossref]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

Tian, H.

Tveten, A. B.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

Vart, M.

Wang, J. F.

Wang, N.

Wei, H. F.

Wen, H.

Wu, H.

Wu, L. Y.

L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]

Wu, Z. X.

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

Xia, Y. X.

L. Xing, L. Zhan, S. Y. Luo, and Y. X. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]

Xing, L.

L. Xing, L. Zhan, S. Y. Luo, and Y. X. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]

Xu, J. J.

Yang, Z. S.

D. M. Chow, Z. S. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nat. Commun. 9(1), 2990 (2018).
[Crossref]

Yu, B. L.

R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]

Yu, S. W.

L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]

Yuan, P.

Zhan, L.

C. Feng, H. Luo, L. Zhang, C. X. Gao, L. He, J. M. Liu, and L. Zhan, “Fast-light assisted four-wave-mixing in photonic bandgap,” Opt. Lett. 40(12), 2790–2793 (2015).
[Crossref]

L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]

L. Xing, L. Zhan, S. Y. Luo, and Y. X. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]

Zhang, G. Q.

Zhang, J.

Zhang, L.

C. Feng, H. Luo, L. Zhang, C. X. Gao, L. He, J. M. Liu, and L. Zhan, “Fast-light assisted four-wave-mixing in photonic bandgap,” Opt. Lett. 40(12), 2790–2793 (2015).
[Crossref]

L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]

Zhang, Q.

Zhang, R. J.

R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]

Zhang, S. Q.

Zhang, X. N.

Zhang, X. P.

Z. G. Liu, X. P. Zhang, Z. F. Gong, Y. Zhang, and W. Peng, “Fiber ring laser-based displacement sensor,” IEEE Photonics Technol. Lett. 28(16), 1723–1726 (2016).
[Crossref]

Zhang, Y.

Z. G. Liu, X. P. Zhang, Z. F. Gong, Y. Zhang, and W. Peng, “Fiber ring laser-based displacement sensor,” IEEE Photonics Technol. Lett. 28(16), 1723–1726 (2016).
[Crossref]

Zhang, Y. D.

Zhang, Y. L.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]

Zhang, Z. X.

Zhao, C. L.

Zhen, S. L.

R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]

Zheng, J. J.

L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]

Zhu, J.

R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]

Zhu, Z. M.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Zou, C. L.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]

Acta Acust. United Ac. (1)

S. Takahashi, T. Kikuchi, and K. Ohkura, “Measurements of Acoustic Sensitivity of Fibers Used for Optical Fiber Hydrophones,” Acta Acust. United Ac. 60(1), 75–77 (1986).

Electron. Lett. (1)

K. P. Koo and A. D. Kersey, “Fibre laser sensor with ultrahigh strain resolution using interferometric interrogation,” Electron. Lett. 31(14), 1180–1182 (1995).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

L. Xing, L. Zhan, S. Y. Luo, and Y. X. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Z. G. Liu, X. P. Zhang, Z. F. Gong, Y. Zhang, and W. Peng, “Fiber ring laser-based displacement sensor,” IEEE Photonics Technol. Lett. 28(16), 1723–1726 (2016).
[Crossref]

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (2)

D. M. Chow, Z. S. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nat. Commun. 9(1), 2990 (2018).
[Crossref]

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]

Nat. Photonics (1)

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

Opt. Commun. (1)

R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

J. F. Wang, Y. D. Zhang, X. N. Zhang, H. Tian, H. Wu, J. Zhang, P. Yuan, and Y. X. Cai, “Enhancing the sensitivity of fiber Mach-Zehnder interferometers using slow and fast light,” Opt. Lett. 36(16), 3173–3175 (2011).
[Crossref]

Z. M. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007).
[Crossref]

S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett. 36(21), 4161–4163 (2011).
[Crossref]

Y. D. Zhang, H. Tian, X. N. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slow-light structure,” Opt. Lett. 35(5), 691–693 (2010).
[Crossref]

W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref]

C. Feng, H. Luo, L. Zhang, C. X. Gao, L. He, J. M. Liu, and L. Zhan, “Fast-light assisted four-wave-mixing in photonic bandgap,” Opt. Lett. 40(12), 2790–2793 (2015).
[Crossref]

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
[Crossref]

Opt. Photonics News (1)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

Phys. Rev. Lett. (2)

L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Proc. SPIE (3)

K. Digonnet, H. Wen, M. A. Terrel, and S. H. Fan, “Slow and fast light in fiber sensors,” Proc. SPIE 8273, 827301 (2012).
[Crossref]

G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Measuring attostrains in a slow-light fiber Bragg grating,” Proc. SPIE 9763, 976317 (2016).
[Crossref]

G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Observation of thermodynamic phase noise using a slow-light resonance in a fiber Bragg grating,” Proc. SPIE 10119, 1011919 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experiment setup: ISO, polarization independent isolator; BFL, Brillouin fiber laser; C1–C6, coupler; EDFA, Erbium-doped fiber amplifier; HNLF, high nonlinearity fiber; PC, polarization controller; PZT, piezoelectric transducer; VOA, variable optical attenuator.
Fig. 2.
Fig. 2. Observation of delayed pulse under different pump powers.
Fig. 3.
Fig. 3. (a) Optical and (b) homodyne spectra of narrow linewidth and Brillouin fiber lasers.
Fig. 4.
Fig. 4. Spectra of MZRI output at different slow light pump powers.
Fig. 5.
Fig. 5. Group index of the HNLF and phase difference of the MZRI as a function of the pump power.
Fig. 6.
Fig. 6. Output signal after phase generated carrier demodulation: (a) waveform and (b) spectrum of the recovered signal.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ v = Δ L L F L ζ v ,
d v d L = ζ v L F L .
Δ ϕ = 2 π v c n L M Z ,
d Δ ϕ d v = 2 π L M Z c n g ,
d Δ ϕ d L = 2 π L M Z ζ v c L F L n g .
n g   =   n + g 0 c Γ B I p ,

Metrics