D. M. Chow, Z. S. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nat. Commun. 9(1), 2990 (2018).
[Crossref]
K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]
G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Observation of thermodynamic phase noise using a slow-light resonance in a fiber Bragg grating,” Proc. SPIE 10119, 1011919 (2017).
[Crossref]
G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Measuring attostrains in a slow-light fiber Bragg grating,” Proc. SPIE 9763, 976317 (2016).
[Crossref]
Z. G. Liu, X. P. Zhang, Z. F. Gong, Y. Zhang, and W. Peng, “Fiber ring laser-based displacement sensor,” IEEE Photonics Technol. Lett. 28(16), 1723–1726 (2016).
[Crossref]
C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]
L. G. Huang, W. H. Peng, F. Gao, F. Bo, G. Q. Zhang, and J. J. Xu, “Mutually modulated cross-gain modulation with a considerable modulation wavenumber-interaction length product,” Opt. Express 23(9), 12004–12012 (2015).
[Crossref]
C. Feng, H. Luo, L. Zhang, C. X. Gao, L. He, J. M. Liu, and L. Zhan, “Fast-light assisted four-wave-mixing in photonic bandgap,” Opt. Lett. 40(12), 2790–2793 (2015).
[Crossref]
L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]
F. Gao, R. Pant, E. B. Li, C. G. Poulton, D. Y. Choi, B. Luther-Davies, B. J. Eggleton, and S. J. Madden, “On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation,” Opt. Express 21(7), 8605–8613 (2013).
[Crossref]
H. Wen, G. Skolianos, S. H. Fan, M. Bernier, V. Réal, and M. J. Digonnet, “Slow-light fiber-Bragg-grating strain sensor with a 280-femtostrain/√Hz resolution,” J. Lightwave Technol. 31(11), 1804–1808 (2013).
[Crossref]
M. Han, T. Q. Liu, L. L. Hu, and Q. Zhang, “Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection,” Opt. Express 21(24), 29269–29276 (2013).
[Crossref]
R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
[Crossref]
K. Digonnet, H. Wen, M. A. Terrel, and S. H. Fan, “Slow and fast light in fiber sensors,” Proc. SPIE 8273, 827301 (2012).
[Crossref]
L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]
W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref]
J. F. Wang, Y. D. Zhang, X. N. Zhang, H. Tian, H. Wu, J. Zhang, P. Yuan, and Y. X. Cai, “Enhancing the sensitivity of fiber Mach-Zehnder interferometers using slow and fast light,” Opt. Lett. 36(16), 3173–3175 (2011).
[Crossref]
S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett. 36(21), 4161–4163 (2011).
[Crossref]
Z. M. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B 25(12), C136–143 (2008).
[Crossref]
L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]
L. Xing, L. Zhan, S. Y. Luo, and Y. X. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]
Z. M. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007).
[Crossref]
R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]
R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]
Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]
K. P. Koo and A. D. Kersey, “Fibre laser sensor with ultrahigh strain resolution using interferometric interrogation,” Electron. Lett. 31(14), 1180–1182 (1995).
[Crossref]
S. Takahashi, T. Kikuchi, and K. Ohkura, “Measurements of Acoustic Sensitivity of Fibers Used for Optical Fiber Hydrophones,” Acta Acust. United Ac. 60(1), 75–77 (1986).
A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]
G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Observation of thermodynamic phase noise using a slow-light resonance in a fiber Bragg grating,” Proc. SPIE 10119, 1011919 (2017).
[Crossref]
G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Measuring attostrains in a slow-light fiber Bragg grating,” Proc. SPIE 9763, 976317 (2016).
[Crossref]
G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Observation of thermodynamic phase noise using a slow-light resonance in a fiber Bragg grating,” Proc. SPIE 10119, 1011919 (2017).
[Crossref]
G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Measuring attostrains in a slow-light fiber Bragg grating,” Proc. SPIE 9763, 976317 (2016).
[Crossref]
H. Wen, G. Skolianos, S. H. Fan, M. Bernier, V. Réal, and M. J. Digonnet, “Slow-light fiber-Bragg-grating strain sensor with a 280-femtostrain/√Hz resolution,” J. Lightwave Technol. 31(11), 1804–1808 (2013).
[Crossref]
Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]
Z. M. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B 25(12), C136–143 (2008).
[Crossref]
Z. M. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007).
[Crossref]
R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]
Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]
R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
[Crossref]
J. F. Wang, Y. D. Zhang, X. N. Zhang, H. Tian, H. Wu, J. Zhang, P. Yuan, and Y. X. Cai, “Enhancing the sensitivity of fiber Mach-Zehnder interferometers using slow and fast light,” Opt. Lett. 36(16), 3173–3175 (2011).
[Crossref]
R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]
F. Gao, R. Pant, E. B. Li, C. G. Poulton, D. Y. Choi, B. Luther-Davies, B. J. Eggleton, and S. J. Madden, “On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation,” Opt. Express 21(7), 8605–8613 (2013).
[Crossref]
R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
[Crossref]
D. M. Chow, Z. S. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nat. Commun. 9(1), 2990 (2018).
[Crossref]
A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]
K. Digonnet, H. Wen, M. A. Terrel, and S. H. Fan, “Slow and fast light in fiber sensors,” Proc. SPIE 8273, 827301 (2012).
[Crossref]
G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Observation of thermodynamic phase noise using a slow-light resonance in a fiber Bragg grating,” Proc. SPIE 10119, 1011919 (2017).
[Crossref]
G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Measuring attostrains in a slow-light fiber Bragg grating,” Proc. SPIE 9763, 976317 (2016).
[Crossref]
C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]
W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref]
F. Gao, R. Pant, E. B. Li, C. G. Poulton, D. Y. Choi, B. Luther-Davies, B. J. Eggleton, and S. J. Madden, “On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation,” Opt. Express 21(7), 8605–8613 (2013).
[Crossref]
R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
[Crossref]
H. Wen, G. Skolianos, S. H. Fan, M. Bernier, V. Réal, and M. J. Digonnet, “Slow-light fiber-Bragg-grating strain sensor with a 280-femtostrain/√Hz resolution,” J. Lightwave Technol. 31(11), 1804–1808 (2013).
[Crossref]
K. Digonnet, H. Wen, M. A. Terrel, and S. H. Fan, “Slow and fast light in fiber sensors,” Proc. SPIE 8273, 827301 (2012).
[Crossref]
C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]
R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]
Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]
L. G. Huang, W. H. Peng, F. Gao, F. Bo, G. Q. Zhang, and J. J. Xu, “Mutually modulated cross-gain modulation with a considerable modulation wavenumber-interaction length product,” Opt. Express 23(9), 12004–12012 (2015).
[Crossref]
F. Gao, R. Pant, E. B. Li, C. G. Poulton, D. Y. Choi, B. Luther-Davies, B. J. Eggleton, and S. J. Madden, “On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation,” Opt. Express 21(7), 8605–8613 (2013).
[Crossref]
Z. M. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007).
[Crossref]
R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]
Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]
A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]
Z. G. Liu, X. P. Zhang, Z. F. Gong, Y. Zhang, and W. Peng, “Fiber ring laser-based displacement sensor,” IEEE Photonics Technol. Lett. 28(16), 1723–1726 (2016).
[Crossref]
C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]
W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref]
W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref]
L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]
W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref]
K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]
K. P. Koo and A. D. Kersey, “Fibre laser sensor with ultrahigh strain resolution using interferometric interrogation,” Electron. Lett. 31(14), 1180–1182 (1995).
[Crossref]
S. Takahashi, T. Kikuchi, and K. Ohkura, “Measurements of Acoustic Sensitivity of Fibers Used for Optical Fiber Hydrophones,” Acta Acust. United Ac. 60(1), 75–77 (1986).
K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]
K. P. Koo and A. D. Kersey, “Fibre laser sensor with ultrahigh strain resolution using interferometric interrogation,” Electron. Lett. 31(14), 1180–1182 (1995).
[Crossref]
R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
[Crossref]
F. Gao, R. Pant, E. B. Li, C. G. Poulton, D. Y. Choi, B. Luther-Davies, B. J. Eggleton, and S. J. Madden, “On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation,” Opt. Express 21(7), 8605–8613 (2013).
[Crossref]
L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]
K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]
L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]
C. Feng, H. Luo, L. Zhang, C. X. Gao, L. He, J. M. Liu, and L. Zhan, “Fast-light assisted four-wave-mixing in photonic bandgap,” Opt. Lett. 40(12), 2790–2793 (2015).
[Crossref]
L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]
R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]
Z. G. Liu, X. P. Zhang, Z. F. Gong, Y. Zhang, and W. Peng, “Fiber ring laser-based displacement sensor,” IEEE Photonics Technol. Lett. 28(16), 1723–1726 (2016).
[Crossref]
L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]
L. Xing, L. Zhan, S. Y. Luo, and Y. X. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]
F. Gao, R. Pant, E. B. Li, C. G. Poulton, D. Y. Choi, B. Luther-Davies, B. J. Eggleton, and S. J. Madden, “On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation,” Opt. Express 21(7), 8605–8613 (2013).
[Crossref]
R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
[Crossref]
R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
[Crossref]
F. Gao, R. Pant, E. B. Li, C. G. Poulton, D. Y. Choi, B. Luther-Davies, B. J. Eggleton, and S. J. Madden, “On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation,” Opt. Express 21(7), 8605–8613 (2013).
[Crossref]
S. Takahashi, T. Kikuchi, and K. Ohkura, “Measurements of Acoustic Sensitivity of Fibers Used for Optical Fiber Hydrophones,” Acta Acust. United Ac. 60(1), 75–77 (1986).
Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]
F. Gao, R. Pant, E. B. Li, C. G. Poulton, D. Y. Choi, B. Luther-Davies, B. J. Eggleton, and S. J. Madden, “On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation,” Opt. Express 21(7), 8605–8613 (2013).
[Crossref]
R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
[Crossref]
L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]
Z. G. Liu, X. P. Zhang, Z. F. Gong, Y. Zhang, and W. Peng, “Fiber ring laser-based displacement sensor,” IEEE Photonics Technol. Lett. 28(16), 1723–1726 (2016).
[Crossref]
F. Gao, R. Pant, E. B. Li, C. G. Poulton, D. Y. Choi, B. Luther-Davies, B. J. Eggleton, and S. J. Madden, “On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation,” Opt. Express 21(7), 8605–8613 (2013).
[Crossref]
R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
[Crossref]
L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]
W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref]
K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]
K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]
Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]
Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]
L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]
C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]
G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Observation of thermodynamic phase noise using a slow-light resonance in a fiber Bragg grating,” Proc. SPIE 10119, 1011919 (2017).
[Crossref]
G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Measuring attostrains in a slow-light fiber Bragg grating,” Proc. SPIE 9763, 976317 (2016).
[Crossref]
H. Wen, G. Skolianos, S. H. Fan, M. Bernier, V. Réal, and M. J. Digonnet, “Slow-light fiber-Bragg-grating strain sensor with a 280-femtostrain/√Hz resolution,” J. Lightwave Technol. 31(11), 1804–1808 (2013).
[Crossref]
D. M. Chow, Z. S. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nat. Commun. 9(1), 2990 (2018).
[Crossref]
S. Takahashi, T. Kikuchi, and K. Ohkura, “Measurements of Acoustic Sensitivity of Fibers Used for Optical Fiber Hydrophones,” Acta Acust. United Ac. 60(1), 75–77 (1986).
K. Digonnet, H. Wen, M. A. Terrel, and S. H. Fan, “Slow and fast light in fiber sensors,” Proc. SPIE 8273, 827301 (2012).
[Crossref]
D. M. Chow, Z. S. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nat. Commun. 9(1), 2990 (2018).
[Crossref]
L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]
J. F. Wang, Y. D. Zhang, X. N. Zhang, H. Tian, H. Wu, J. Zhang, P. Yuan, and Y. X. Cai, “Enhancing the sensitivity of fiber Mach-Zehnder interferometers using slow and fast light,” Opt. Lett. 36(16), 3173–3175 (2011).
[Crossref]
Y. D. Zhang, H. Tian, X. N. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slow-light structure,” Opt. Lett. 35(5), 691–693 (2010).
[Crossref]
A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]
J. F. Wang, Y. D. Zhang, X. N. Zhang, H. Tian, H. Wu, J. Zhang, P. Yuan, and Y. X. Cai, “Enhancing the sensitivity of fiber Mach-Zehnder interferometers using slow and fast light,” Opt. Lett. 36(16), 3173–3175 (2011).
[Crossref]
W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref]
H. Wen, G. Skolianos, S. H. Fan, M. Bernier, V. Réal, and M. J. Digonnet, “Slow-light fiber-Bragg-grating strain sensor with a 280-femtostrain/√Hz resolution,” J. Lightwave Technol. 31(11), 1804–1808 (2013).
[Crossref]
K. Digonnet, H. Wen, M. A. Terrel, and S. H. Fan, “Slow and fast light in fiber sensors,” Proc. SPIE 8273, 827301 (2012).
[Crossref]
J. F. Wang, Y. D. Zhang, X. N. Zhang, H. Tian, H. Wu, J. Zhang, P. Yuan, and Y. X. Cai, “Enhancing the sensitivity of fiber Mach-Zehnder interferometers using slow and fast light,” Opt. Lett. 36(16), 3173–3175 (2011).
[Crossref]
Y. D. Zhang, H. Tian, X. N. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slow-light structure,” Opt. Lett. 35(5), 691–693 (2010).
[Crossref]
L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]
K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]
L. Xing, L. Zhan, S. Y. Luo, and Y. X. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]
L. Xing, L. Zhan, S. Y. Luo, and Y. X. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]
D. M. Chow, Z. S. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nat. Commun. 9(1), 2990 (2018).
[Crossref]
R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]
L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]
J. F. Wang, Y. D. Zhang, X. N. Zhang, H. Tian, H. Wu, J. Zhang, P. Yuan, and Y. X. Cai, “Enhancing the sensitivity of fiber Mach-Zehnder interferometers using slow and fast light,” Opt. Lett. 36(16), 3173–3175 (2011).
[Crossref]
Y. D. Zhang, H. Tian, X. N. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slow-light structure,” Opt. Lett. 35(5), 691–693 (2010).
[Crossref]
C. Feng, H. Luo, L. Zhang, C. X. Gao, L. He, J. M. Liu, and L. Zhan, “Fast-light assisted four-wave-mixing in photonic bandgap,” Opt. Lett. 40(12), 2790–2793 (2015).
[Crossref]
L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]
L. Xing, L. Zhan, S. Y. Luo, and Y. X. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]
J. F. Wang, Y. D. Zhang, X. N. Zhang, H. Tian, H. Wu, J. Zhang, P. Yuan, and Y. X. Cai, “Enhancing the sensitivity of fiber Mach-Zehnder interferometers using slow and fast light,” Opt. Lett. 36(16), 3173–3175 (2011).
[Crossref]
Y. D. Zhang, H. Tian, X. N. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slow-light structure,” Opt. Lett. 35(5), 691–693 (2010).
[Crossref]
C. Feng, H. Luo, L. Zhang, C. X. Gao, L. He, J. M. Liu, and L. Zhan, “Fast-light assisted four-wave-mixing in photonic bandgap,” Opt. Lett. 40(12), 2790–2793 (2015).
[Crossref]
L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]
R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]
W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref]
J. F. Wang, Y. D. Zhang, X. N. Zhang, H. Tian, H. Wu, J. Zhang, P. Yuan, and Y. X. Cai, “Enhancing the sensitivity of fiber Mach-Zehnder interferometers using slow and fast light,” Opt. Lett. 36(16), 3173–3175 (2011).
[Crossref]
Y. D. Zhang, H. Tian, X. N. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slow-light structure,” Opt. Lett. 35(5), 691–693 (2010).
[Crossref]
Z. G. Liu, X. P. Zhang, Z. F. Gong, Y. Zhang, and W. Peng, “Fiber ring laser-based displacement sensor,” IEEE Photonics Technol. Lett. 28(16), 1723–1726 (2016).
[Crossref]
Z. G. Liu, X. P. Zhang, Z. F. Gong, Y. Zhang, and W. Peng, “Fiber ring laser-based displacement sensor,” IEEE Photonics Technol. Lett. 28(16), 1723–1726 (2016).
[Crossref]
J. F. Wang, Y. D. Zhang, X. N. Zhang, H. Tian, H. Wu, J. Zhang, P. Yuan, and Y. X. Cai, “Enhancing the sensitivity of fiber Mach-Zehnder interferometers using slow and fast light,” Opt. Lett. 36(16), 3173–3175 (2011).
[Crossref]
Y. D. Zhang, H. Tian, X. N. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slow-light structure,” Opt. Lett. 35(5), 691–693 (2010).
[Crossref]
C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]
W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref]
W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref]
R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]
L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]
R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]
Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]
C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]
S. Takahashi, T. Kikuchi, and K. Ohkura, “Measurements of Acoustic Sensitivity of Fibers Used for Optical Fiber Hydrophones,” Acta Acust. United Ac. 60(1), 75–77 (1986).
K. P. Koo and A. D. Kersey, “Fibre laser sensor with ultrahigh strain resolution using interferometric interrogation,” Electron. Lett. 31(14), 1180–1182 (1995).
[Crossref]
A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]
L. Xing, L. Zhan, S. Y. Luo, and Y. X. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]
Z. G. Liu, X. P. Zhang, Z. F. Gong, Y. Zhang, and W. Peng, “Fiber ring laser-based displacement sensor,” IEEE Photonics Technol. Lett. 28(16), 1723–1726 (2016).
[Crossref]
K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]
L. Pei, C. Liu, J. Li, J. J. Zheng, S. W. Yu, and L. Y. Wu, “Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter,” IEEE Photonics Technol. Lett. 26(24), 2430–2433 (2014).
[Crossref]
D. M. Chow, Z. S. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nat. Commun. 9(1), 2990 (2018).
[Crossref]
C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]
L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]
R. J. Zhang, B. L. Yu, Z. G. Cao, S. L. Zhen, J. Zhu, and R. Z. Liu, “Frequency modulated and polarization maintaining fiber laser with narrow linewidth,” Opt. Commun. 274(2), 392–395 (2007).
[Crossref]
M. Han, T. Q. Liu, L. L. Hu, and Q. Zhang, “Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection,” Opt. Express 21(24), 29269–29276 (2013).
[Crossref]
L. G. Huang, W. H. Peng, F. Gao, F. Bo, G. Q. Zhang, and J. J. Xu, “Mutually modulated cross-gain modulation with a considerable modulation wavenumber-interaction length product,” Opt. Express 23(9), 12004–12012 (2015).
[Crossref]
F. Gao, R. Pant, E. B. Li, C. G. Poulton, D. Y. Choi, B. Luther-Davies, B. J. Eggleton, and S. J. Madden, “On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation,” Opt. Express 21(7), 8605–8613 (2013).
[Crossref]
J. F. Wang, Y. D. Zhang, X. N. Zhang, H. Tian, H. Wu, J. Zhang, P. Yuan, and Y. X. Cai, “Enhancing the sensitivity of fiber Mach-Zehnder interferometers using slow and fast light,” Opt. Lett. 36(16), 3173–3175 (2011).
[Crossref]
Z. M. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007).
[Crossref]
S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett. 36(21), 4161–4163 (2011).
[Crossref]
Y. D. Zhang, H. Tian, X. N. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slow-light structure,” Opt. Lett. 35(5), 691–693 (2010).
[Crossref]
W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref]
C. Feng, H. Luo, L. Zhang, C. X. Gao, L. He, J. M. Liu, and L. Zhan, “Fast-light assisted four-wave-mixing in photonic bandgap,” Opt. Lett. 40(12), 2790–2793 (2015).
[Crossref]
R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
[Crossref]
R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]
L. Zhang, L. Zhan, K. Qian, J. M. Liu, Q. S. Shen, X. Hu, and S. Y. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref]
Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]
K. Digonnet, H. Wen, M. A. Terrel, and S. H. Fan, “Slow and fast light in fiber sensors,” Proc. SPIE 8273, 827301 (2012).
[Crossref]
G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Measuring attostrains in a slow-light fiber Bragg grating,” Proc. SPIE 9763, 976317 (2016).
[Crossref]
G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, “Observation of thermodynamic phase noise using a slow-light resonance in a fiber Bragg grating,” Proc. SPIE 10119, 1011919 (2017).
[Crossref]