Abstract

Light absorption in semiconductors is a fundamental problem that has broad impact on a wide range of fields. However, it is intrinsically limited by the bandgap energy of the semiconductor. Herein, we study the enhancement of sub-bandgap light absorption in inorganic-organic hybrid perovskite semiconductor films via critical coupling. This is achieved at large incidence angles by balancing radiative and nonradiative decay rates in a planar multilayer structure. We found that a very small loss in the semiconductor layer can result in substantial light absorption. This simple but general method can be used to enhance the optical and optoelectronic responses of semiconductors below the bandgap energy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Angle-dependent optical perfect absorption and enhanced photoluminescence in excitonic thin films

Byung Hoon Woo, In Cheol Seo, Eunsongyi Lee, Soo-Chan An, Hoon Yeub Jeong, and Young Chul Jun
Opt. Express 25(23) 28619-28629 (2017)

Wide-angle polarization-free plasmon-enhanced light absorption in perovskite films using silver nanowires

Geng Wang, Ke Meng, Zhen He, Longlong Wu, Zhou Liu, Xiao Wang, Wenqin Li, Renzhong Tai, Shu-Hong Yu, and Gang Chen
Opt. Express 25(4) 3594-3604 (2017)

Absorption enhancement in methylammonium lead iodide perovskite solar cells with embedded arrays of dielectric particles

Alberto Jiménez-Solano, Sol Carretero-Palacios, and Hernán Míguez
Opt. Express 26(18) A865-A878 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. F. Klingshirn, Semiconductor optics (Springer, 2012).
  2. J. Singh, Semiconductor optoelectronics: Physics and Technology (McGraw-Hill, 1995).
  3. A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
    [Crossref]
  4. Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
    [Crossref]
  5. S. H. Pan, D. Recht, S. Charnvanichborikarn, J. S. Williams, and M. J. Aziz, “Enhanced visible and near-infrared optical absorption in silicon supersaturated with chalcogens,” Appl. Phys. Lett. 98(12), 121913 (2011).
    [Crossref]
  6. J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
    [Crossref]
  7. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
    [Crossref]
  8. B. Franta, D. Pastor, H. H. Gandhi, P. H. Rekemeyer, S. Gradečak, M. J. Aziz, and E. Mazur, “Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing,” J. Appl. Phys. 118(22), 225303 (2015).
    [Crossref]
  9. J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2(7), 17042 (2017).
    [Crossref]
  10. M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
    [Crossref]
  11. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled mode theory for fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 567–572 (2003).
    [Crossref]
  12. S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
    [Crossref]
  13. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
    [Crossref]
  14. J. R. Tischler, M. S. Bradley, and V. Bulovic, “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” Opt. Lett. 31(13), 2045–2047 (2006).
    [Crossref]
  15. M. A. Kats, D. Sharma, Z. Yang, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  16. B. Ding, M. Qiu, and R. J. Blaikie, “Manipulating light absorption in dye-doped dielectric films on reflecting surfaces,” Opt. Express 22(21), 25965–25975 (2014).
    [Crossref]
  17. J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
    [Crossref]
  18. Y. Long, R. Su, Q. Wang, L. Shen, B. Li, and W. Zheng, “Deducing critical coupling condition to achieve perfect absorption for thin-film absorbers and identifying key characteristics of absorbing materials needed for perfect absorption,” Appl. Phys. Lett. 104(9), 091109 (2014).
    [Crossref]
  19. J.-B. You, W.-J. Lee, D. Won, and K. Yu, “Multiband perfect absorbers using metal-dielectric films with optically dense medium for angle and polarization insensitive operation,” Opt. Express 22(7), 8339–8348 (2014).
    [Crossref]
  20. J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
    [Crossref]
  21. Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
    [Crossref]
  22. M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
    [Crossref]
  23. S. S. Mirshafieyan, T. S. Luk, and J. Guo, “Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms,” Opt. Mater. Express 6(4), 1032–1042 (2016).
    [Crossref]
  24. B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).
    [Crossref]
  25. B. H. Woo, I. C. Seo, E. Lee, S.-C. An, H. Y. Jeong, and Y. C. Jun, “Angle-dependent optical perfect absorption and enhanced photoluminescence in excitonic thin films,” Opt. Express 25(23), 28619–28629 (2017).
    [Crossref]
  26. E. Lee, B. H. Woo, I. C. Seo, S.-C. An, and Y. C. Jun, “Surface bound waves and optical interactions in excitonic thin films,” Opt. Mater. Express 8(9), 2687–2701 (2018).
    [Crossref]
  27. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, and X. Luo, “Strong enhancement of light absorption and highly directive thermal emission in graphene,” Opt. Express 21(10), 11618–11627 (2013).
    [Crossref]
  28. L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light: Sci. Appl. 5(3), e16052 (2016).
    [Crossref]
  29. D. Liu and Q. Li, “Sub-nanometer planar solar absorber,” Nano Energy 34, 172–180 (2017).
    [Crossref]
  30. D. W. Miller, G. E. Eperon, E. T. Roe, C. W. Warren, H. J. Snaith, and M. C. Lonergan, “Defect states in perovskite solar cells associated with hysteresis and performance,” Appl. Phys. Lett. 109(15), 153902 (2016).
    [Crossref]
  31. C. M. Sutter-Fella, D. W. Miller, Q. P. Ngo, E. T. Roe, F. M. Toma, I. D. Sharp, M. C. Lonergan, and A. Javey, “Band tailing and deep defect states in CH3NH3Pb(I1−xBrx)3 perovskites as revealed by sub-bandgap photocurrent,” ACS Energy Lett. 2(3), 709–715 (2017).
    [Crossref]
  32. G.-H. Jung, S. J. Yoo, J.-S. Kim, and Q.-H. Park, “Maximal visible light energy transfer to ultrathin semiconductor films enabled by dispersion control,” Adv. Opt. Mater. 7(7), 1801229 (2019).
    [Crossref]
  33. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007), Chap. 10.
  34. J. D. Jackson, Classical Electrodynamics (Wiley, 1999), Chap. 6.
  35. S. J. Kim, G. Y. Margulis, S. Rim, M. L. Brongersma, M. D. McGehee, and P. Peumans, “Geometric light trapping with a V-trap for efficient organic solar cells,” Opt. Express 21(S3), A305–A312 (2013).
    [Crossref]

2019 (1)

G.-H. Jung, S. J. Yoo, J.-S. Kim, and Q.-H. Park, “Maximal visible light energy transfer to ultrathin semiconductor films enabled by dispersion control,” Adv. Opt. Mater. 7(7), 1801229 (2019).
[Crossref]

2018 (1)

2017 (5)

B. H. Woo, I. C. Seo, E. Lee, S.-C. An, H. Y. Jeong, and Y. C. Jun, “Angle-dependent optical perfect absorption and enhanced photoluminescence in excitonic thin films,” Opt. Express 25(23), 28619–28629 (2017).
[Crossref]

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).
[Crossref]

D. Liu and Q. Li, “Sub-nanometer planar solar absorber,” Nano Energy 34, 172–180 (2017).
[Crossref]

C. M. Sutter-Fella, D. W. Miller, Q. P. Ngo, E. T. Roe, F. M. Toma, I. D. Sharp, M. C. Lonergan, and A. Javey, “Band tailing and deep defect states in CH3NH3Pb(I1−xBrx)3 perovskites as revealed by sub-bandgap photocurrent,” ACS Energy Lett. 2(3), 709–715 (2017).
[Crossref]

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2(7), 17042 (2017).
[Crossref]

2016 (5)

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light: Sci. Appl. 5(3), e16052 (2016).
[Crossref]

D. W. Miller, G. E. Eperon, E. T. Roe, C. W. Warren, H. J. Snaith, and M. C. Lonergan, “Defect states in perovskite solar cells associated with hysteresis and performance,” Appl. Phys. Lett. 109(15), 153902 (2016).
[Crossref]

S. S. Mirshafieyan, T. S. Luk, and J. Guo, “Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms,” Opt. Mater. Express 6(4), 1032–1042 (2016).
[Crossref]

2015 (4)

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

B. Franta, D. Pastor, H. H. Gandhi, P. H. Rekemeyer, S. Gradečak, M. J. Aziz, and E. Mazur, “Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing,” J. Appl. Phys. 118(22), 225303 (2015).
[Crossref]

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

2014 (6)

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
[Crossref]

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
[Crossref]

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

Y. Long, R. Su, Q. Wang, L. Shen, B. Li, and W. Zheng, “Deducing critical coupling condition to achieve perfect absorption for thin-film absorbers and identifying key characteristics of absorbing materials needed for perfect absorption,” Appl. Phys. Lett. 104(9), 091109 (2014).
[Crossref]

J.-B. You, W.-J. Lee, D. Won, and K. Yu, “Multiband perfect absorbers using metal-dielectric films with optically dense medium for angle and polarization insensitive operation,” Opt. Express 22(7), 8339–8348 (2014).
[Crossref]

B. Ding, M. Qiu, and R. J. Blaikie, “Manipulating light absorption in dye-doped dielectric films on reflecting surfaces,” Opt. Express 22(21), 25965–25975 (2014).
[Crossref]

2013 (2)

2012 (2)

M. A. Kats, D. Sharma, Z. Yang, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

2011 (1)

S. H. Pan, D. Recht, S. Charnvanichborikarn, J. S. Williams, and M. J. Aziz, “Enhanced visible and near-infrared optical absorption in silicon supersaturated with chalcogens,” Appl. Phys. Lett. 98(12), 121913 (2011).
[Crossref]

2006 (1)

2003 (1)

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled mode theory for fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 567–572 (2003).
[Crossref]

2002 (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

2001 (1)

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Ahsan, N.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Akey, A. J.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
[Crossref]

An, S.-C.

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Aziz, M. J.

B. Franta, D. Pastor, H. H. Gandhi, P. H. Rekemeyer, S. Gradečak, M. J. Aziz, and E. Mazur, “Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing,” J. Appl. Phys. 118(22), 225303 (2015).
[Crossref]

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
[Crossref]

S. H. Pan, D. Recht, S. Charnvanichborikarn, J. S. Williams, and M. J. Aziz, “Enhanced visible and near-infrared optical absorption in silicon supersaturated with chalcogens,” Appl. Phys. Lett. 98(12), 121913 (2011).
[Crossref]

Badsha, M. A.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Blaikie, R. J.

Bradley, M. S.

Brongersma, M. L.

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

S. J. Kim, G. Y. Margulis, S. Rim, M. L. Brongersma, M. D. McGehee, and P. Peumans, “Geometric light trapping with a V-trap for efficient organic solar cells,” Opt. Express 21(S3), A305–A312 (2013).
[Crossref]

Bulovic, V.

Buonassisi, T.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
[Crossref]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Capasso, F.

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

M. A. Kats, D. Sharma, Z. Yang, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Carey, J. E.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Charnvanichborikarn, S.

S. H. Pan, D. Recht, S. Charnvanichborikarn, J. S. Williams, and M. J. Aziz, “Enhanced visible and near-infrared optical absorption in silicon supersaturated with chalcogens,” Appl. Phys. Lett. 98(12), 121913 (2011).
[Crossref]

Chen, P.

Chikamatsu, M.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Collin, S.

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
[Crossref]

Crouch, C. H.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Ding, B.

Ekins-Daukes, N. J.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Eperon, G. E.

D. W. Miller, G. E. Eperon, E. T. Roe, C. W. Warren, H. J. Snaith, and M. C. Lonergan, “Defect states in perovskite solar cells associated with hysteresis and performance,” Appl. Phys. Lett. 109(15), 153902 (2016).
[Crossref]

Fan, S.

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light: Sci. Appl. 5(3), e16052 (2016).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled mode theory for fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 567–572 (2003).
[Crossref]

Farrell, D. J.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Farrell, R. M.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Franta, B.

B. Franta, D. Pastor, H. H. Gandhi, P. H. Rekemeyer, S. Gradečak, M. J. Aziz, and E. Mazur, “Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing,” J. Appl. Phys. 118(22), 225303 (2015).
[Crossref]

Fujimoto, S.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Fujiseki, T.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Fujiwara, H.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Gandhi, H. H.

B. Franta, D. Pastor, H. H. Gandhi, P. H. Rekemeyer, S. Gradečak, M. J. Aziz, and E. Mazur, “Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing,” J. Appl. Phys. 118(22), 225303 (2015).
[Crossref]

Gothoskar, P.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Gradecak, S.

B. Franta, D. Pastor, H. H. Gandhi, P. H. Rekemeyer, S. Gradečak, M. J. Aziz, and E. Mazur, “Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing,” J. Appl. Phys. 118(22), 225303 (2015).
[Crossref]

Guillemoles, J.-F.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Guo, J.

Hara, S.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Hasman, E.

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

Hess, O.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Hu, C.

Hu, J.

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light: Sci. Appl. 5(3), e16052 (2016).
[Crossref]

Huang, C.

Huang, J.

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2(7), 17042 (2017).
[Crossref]

Hutchinson, D.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
[Crossref]

Hwangbo, C. K.

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).
[Crossref]

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999), Chap. 6.

Javey, A.

C. M. Sutter-Fella, D. W. Miller, Q. P. Ngo, E. T. Roe, F. M. Toma, I. D. Sharp, M. C. Lonergan, and A. Javey, “Band tailing and deep defect states in CH3NH3Pb(I1−xBrx)3 perovskites as revealed by sub-bandgap photocurrent,” ACS Energy Lett. 2(3), 709–715 (2017).
[Crossref]

Jeong, H. Y.

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).
[Crossref]

B. H. Woo, I. C. Seo, E. Lee, S.-C. An, H. Y. Jeong, and Y. C. Jun, “Angle-dependent optical perfect absorption and enhanced photoluminescence in excitonic thin films,” Opt. Express 25(23), 28619–28629 (2017).
[Crossref]

Joannopoulos, J. D.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled mode theory for fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 567–572 (2003).
[Crossref]

Jun, Y. C.

E. Lee, B. H. Woo, I. C. Seo, S.-C. An, and Y. C. Jun, “Surface bound waves and optical interactions in excitonic thin films,” Opt. Mater. Express 8(9), 2687–2701 (2018).
[Crossref]

B. H. Woo, I. C. Seo, E. Lee, S.-C. An, H. Y. Jeong, and Y. C. Jun, “Angle-dependent optical perfect absorption and enhanced photoluminescence in excitonic thin films,” Opt. Express 25(23), 28619–28629 (2017).
[Crossref]

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).
[Crossref]

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Jung, G.-H.

G.-H. Jung, S. J. Yoo, J.-S. Kim, and Q.-H. Park, “Maximal visible light energy transfer to ultrathin semiconductor films enabled by dispersion control,” Adv. Opt. Mater. 7(7), 1801229 (2019).
[Crossref]

Kadowaki, H.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Kang, J.-H.

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

Karger, A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Kato, M.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Kats, M. A.

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

M. A. Kats, D. Sharma, Z. Yang, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Kim, H.

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

Kim, J.-S.

G.-H. Jung, S. J. Yoo, J.-S. Kim, and Q.-H. Park, “Maximal visible light energy transfer to ultrathin semiconductor films enabled by dispersion control,” Adv. Opt. Mater. 7(7), 1801229 (2019).
[Crossref]

Kim, S. J.

Kim, S. Y.

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).
[Crossref]

Kim, T. Y.

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).
[Crossref]

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Kita, T.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Klingshirn, C. F.

C. F. Klingshirn, Semiconductor optics (Springer, 2012).

Lee, E.

Lee, W.-J.

Levinson, J. A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Li, B.

Y. Long, R. Su, Q. Wang, L. Shen, B. Li, and W. Zheng, “Deducing critical coupling condition to achieve perfect absorption for thin-film absorbers and identifying key characteristics of absorbing materials needed for perfect absorption,” Appl. Phys. Lett. 104(9), 091109 (2014).
[Crossref]

Li, Q.

D. Liu and Q. Li, “Sub-nanometer planar solar absorber,” Nano Energy 34, 172–180 (2017).
[Crossref]

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Lim, S. C.

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).
[Crossref]

Lin, H.

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light: Sci. Appl. 5(3), e16052 (2016).
[Crossref]

Liu, D.

D. Liu and Q. Li, “Sub-nanometer planar solar absorber,” Nano Energy 34, 172–180 (2017).
[Crossref]

Liu, F.

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light: Sci. Appl. 5(3), e16052 (2016).
[Crossref]

Lonergan, M. C.

C. M. Sutter-Fella, D. W. Miller, Q. P. Ngo, E. T. Roe, F. M. Toma, I. D. Sharp, M. C. Lonergan, and A. Javey, “Band tailing and deep defect states in CH3NH3Pb(I1−xBrx)3 perovskites as revealed by sub-bandgap photocurrent,” ACS Energy Lett. 2(3), 709–715 (2017).
[Crossref]

D. W. Miller, G. E. Eperon, E. T. Roe, C. W. Warren, H. J. Snaith, and M. C. Lonergan, “Defect states in perovskite solar cells associated with hysteresis and performance,” Appl. Phys. Lett. 109(15), 153902 (2016).
[Crossref]

Long, Y.

Y. Long, R. Su, Q. Wang, L. Shen, B. Li, and W. Zheng, “Deducing critical coupling condition to achieve perfect absorption for thin-film absorbers and identifying key characteristics of absorbing materials needed for perfect absorption,” Appl. Phys. Lett. 104(9), 091109 (2014).
[Crossref]

Luk, T. S.

Luo, X.

Luque, A.

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

Mailoa, J. P.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
[Crossref]

Margulis, G. Y.

Martí, A.

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

Mathews, J.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
[Crossref]

Mazur, E.

B. Franta, D. Pastor, H. H. Gandhi, P. H. Rekemeyer, S. Gradečak, M. J. Aziz, and E. Mazur, “Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing,” J. Appl. Phys. 118(22), 225303 (2015).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

McGehee, M. D.

Miller, D. W.

C. M. Sutter-Fella, D. W. Miller, Q. P. Ngo, E. T. Roe, F. M. Toma, I. D. Sharp, M. C. Lonergan, and A. Javey, “Band tailing and deep defect states in CH3NH3Pb(I1−xBrx)3 perovskites as revealed by sub-bandgap photocurrent,” ACS Energy Lett. 2(3), 709–715 (2017).
[Crossref]

D. W. Miller, G. E. Eperon, E. T. Roe, C. W. Warren, H. J. Snaith, and M. C. Lonergan, “Defect states in perovskite solar cells associated with hysteresis and performance,” Appl. Phys. Lett. 109(15), 153902 (2016).
[Crossref]

Mirshafieyan, S. S.

Miyadera, T.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Murakami, T. N.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Murata, D.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Ngo, Q. P.

C. M. Sutter-Fella, D. W. Miller, Q. P. Ngo, E. T. Roe, F. M. Toma, I. D. Sharp, M. C. Lonergan, and A. Javey, “Band tailing and deep defect states in CH3NH3Pb(I1−xBrx)3 perovskites as revealed by sub-bandgap photocurrent,” ACS Energy Lett. 2(3), 709–715 (2017).
[Crossref]

Okada, Y.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Pan, S. H.

S. H. Pan, D. Recht, S. Charnvanichborikarn, J. S. Williams, and M. J. Aziz, “Enhanced visible and near-infrared optical absorption in silicon supersaturated with chalcogens,” Appl. Phys. Lett. 98(12), 121913 (2011).
[Crossref]

Park, J.

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

Park, Q.-H.

G.-H. Jung, S. J. Yoo, J.-S. Kim, and Q.-H. Park, “Maximal visible light energy transfer to ultrathin semiconductor films enabled by dispersion control,” Adv. Opt. Mater. 7(7), 1801229 (2019).
[Crossref]

Pastor, D.

B. Franta, D. Pastor, H. H. Gandhi, P. H. Rekemeyer, S. Gradečak, M. J. Aziz, and E. Mazur, “Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing,” J. Appl. Phys. 118(22), 225303 (2015).
[Crossref]

Persans, P. D.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
[Crossref]

Peumans, P.

Phillips, C. C.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Pu, M.

Pusch, A.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Qiu, M.

Recht, D.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
[Crossref]

S. H. Pan, D. Recht, S. Charnvanichborikarn, J. S. Williams, and M. J. Aziz, “Enhanced visible and near-infrared optical absorption in silicon supersaturated with chalcogens,” Appl. Phys. Lett. 98(12), 121913 (2011).
[Crossref]

Rekemeyer, P. H.

B. Franta, D. Pastor, H. H. Gandhi, P. H. Rekemeyer, S. Gradečak, M. J. Aziz, and E. Mazur, “Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing,” J. Appl. Phys. 118(22), 225303 (2015).
[Crossref]

Rim, S.

Roe, E. T.

C. M. Sutter-Fella, D. W. Miller, Q. P. Ngo, E. T. Roe, F. M. Toma, I. D. Sharp, M. C. Lonergan, and A. Javey, “Band tailing and deep defect states in CH3NH3Pb(I1−xBrx)3 perovskites as revealed by sub-bandgap photocurrent,” ACS Energy Lett. 2(3), 709–715 (2017).
[Crossref]

D. W. Miller, G. E. Eperon, E. T. Roe, C. W. Warren, H. J. Snaith, and M. C. Lonergan, “Defect states in perovskite solar cells associated with hysteresis and performance,” Appl. Phys. Lett. 109(15), 153902 (2016).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007), Chap. 10.

Schoen, D. T.

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

Seo, I. C.

Shao, Y.

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2(7), 17042 (2017).
[Crossref]

Sharma, D.

M. A. Kats, D. Sharma, Z. Yang, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Sharp, I. D.

C. M. Sutter-Fella, D. W. Miller, Q. P. Ngo, E. T. Roe, F. M. Toma, I. D. Sharp, M. C. Lonergan, and A. Javey, “Band tailing and deep defect states in CH3NH3Pb(I1−xBrx)3 perovskites as revealed by sub-bandgap photocurrent,” ACS Energy Lett. 2(3), 709–715 (2017).
[Crossref]

Shen, L.

Y. Long, R. Su, Q. Wang, L. Shen, B. Li, and W. Zheng, “Deducing critical coupling condition to achieve perfect absorption for thin-film absorbers and identifying key characteristics of absorbing materials needed for perfect absorption,” Appl. Phys. Lett. 104(9), 091109 (2014).
[Crossref]

Shirayama, M.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Shoji, Y.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Simmons, C. B.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
[Crossref]

Singh, J.

J. Singh, Semiconductor optoelectronics: Physics and Technology (McGraw-Hill, 1995).

Snaith, H. J.

D. W. Miller, G. E. Eperon, E. T. Roe, C. W. Warren, H. J. Snaith, and M. C. Lonergan, “Defect states in perovskite solar cells associated with hysteresis and performance,” Appl. Phys. Lett. 109(15), 153902 (2016).
[Crossref]

Sogabe, T.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Stanley, C.

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

Su, R.

Y. Long, R. Su, Q. Wang, L. Shen, B. Li, and W. Zheng, “Deducing critical coupling condition to achieve perfect absorption for thin-film absorbers and identifying key characteristics of absorbing materials needed for perfect absorption,” Appl. Phys. Lett. 104(9), 091109 (2014).
[Crossref]

Sugita, T.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Suh, W.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled mode theory for fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 567–572 (2003).
[Crossref]

Sullivan, J. T.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
[Crossref]

Sutter-Fella, C. M.

C. M. Sutter-Fella, D. W. Miller, Q. P. Ngo, E. T. Roe, F. M. Toma, I. D. Sharp, M. C. Lonergan, and A. Javey, “Band tailing and deep defect states in CH3NH3Pb(I1−xBrx)3 perovskites as revealed by sub-bandgap photocurrent,” ACS Energy Lett. 2(3), 709–715 (2017).
[Crossref]

Tamaki, R.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Tamakoshi, M.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007), Chap. 10.

Tischler, J. R.

Toma, F. M.

C. M. Sutter-Fella, D. W. Miller, Q. P. Ngo, E. T. Roe, F. M. Toma, I. D. Sharp, M. C. Lonergan, and A. Javey, “Band tailing and deep defect states in CH3NH3Pb(I1−xBrx)3 perovskites as revealed by sub-bandgap photocurrent,” ACS Energy Lett. 2(3), 709–715 (2017).
[Crossref]

Vasudev, A. P.

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

Wang, C.

Wang, Q.

Y. Long, R. Su, Q. Wang, L. Shen, B. Li, and W. Zheng, “Deducing critical coupling condition to achieve perfect absorption for thin-film absorbers and identifying key characteristics of absorbing materials needed for perfect absorption,” Appl. Phys. Lett. 104(9), 091109 (2014).
[Crossref]

Wang, X.

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light: Sci. Appl. 5(3), e16052 (2016).
[Crossref]

Wang, Y.

Warren, C. W.

D. W. Miller, G. E. Eperon, E. T. Roe, C. W. Warren, H. J. Snaith, and M. C. Lonergan, “Defect states in perovskite solar cells associated with hysteresis and performance,” Appl. Phys. Lett. 109(15), 153902 (2016).
[Crossref]

Warrender, J. M.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
[Crossref]

Williams, J. S.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
[Crossref]

S. H. Pan, D. Recht, S. Charnvanichborikarn, J. S. Williams, and M. J. Aziz, “Enhanced visible and near-infrared optical absorption in silicon supersaturated with chalcogens,” Appl. Phys. Lett. 98(12), 121913 (2011).
[Crossref]

Winkler, M. T.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
[Crossref]

Won, D.

Woo, B. H.

Wu, C.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Yan, Y.

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2(7), 17042 (2017).
[Crossref]

Yang, Z.

M. A. Kats, D. Sharma, Z. Yang, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

Yoo, S. J.

G.-H. Jung, S. J. Yoo, J.-S. Kim, and Q.-H. Park, “Maximal visible light energy transfer to ultrathin semiconductor films enabled by dispersion control,” Adv. Opt. Mater. 7(7), 1801229 (2019).
[Crossref]

Yoon, J.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Yoshida, K.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Yoshida, M.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

You, J.-B.

Younkin, R.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Yu, K.

Yu, Z.

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light: Sci. Appl. 5(3), e16052 (2016).
[Crossref]

Yuan, Y.

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2(7), 17042 (2017).
[Crossref]

Zhao, L.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Zhao, Z.

Zheng, W.

Y. Long, R. Su, Q. Wang, L. Shen, B. Li, and W. Zheng, “Deducing critical coupling condition to achieve perfect absorption for thin-film absorbers and identifying key characteristics of absorbing materials needed for perfect absorption,” Appl. Phys. Lett. 104(9), 091109 (2014).
[Crossref]

Zhou, M.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Zhu, L.

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light: Sci. Appl. 5(3), e16052 (2016).
[Crossref]

ACS Energy Lett. (1)

C. M. Sutter-Fella, D. W. Miller, Q. P. Ngo, E. T. Roe, F. M. Toma, I. D. Sharp, M. C. Lonergan, and A. Javey, “Band tailing and deep defect states in CH3NH3Pb(I1−xBrx)3 perovskites as revealed by sub-bandgap photocurrent,” ACS Energy Lett. 2(3), 709–715 (2017).
[Crossref]

ACS Photonics (3)

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).
[Crossref]

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

Adv. Opt. Mater. (1)

G.-H. Jung, S. J. Yoo, J.-S. Kim, and Q.-H. Park, “Maximal visible light energy transfer to ultrathin semiconductor films enabled by dispersion control,” Adv. Opt. Mater. 7(7), 1801229 (2019).
[Crossref]

Appl. Phys. Lett. (5)

Y. Long, R. Su, Q. Wang, L. Shen, B. Li, and W. Zheng, “Deducing critical coupling condition to achieve perfect absorption for thin-film absorbers and identifying key characteristics of absorbing materials needed for perfect absorption,” Appl. Phys. Lett. 104(9), 091109 (2014).
[Crossref]

M. A. Kats, D. Sharma, Z. Yang, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

S. H. Pan, D. Recht, S. Charnvanichborikarn, J. S. Williams, and M. J. Aziz, “Enhanced visible and near-infrared optical absorption in silicon supersaturated with chalcogens,” Appl. Phys. Lett. 98(12), 121913 (2011).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

D. W. Miller, G. E. Eperon, E. T. Roe, C. W. Warren, H. J. Snaith, and M. C. Lonergan, “Defect states in perovskite solar cells associated with hysteresis and performance,” Appl. Phys. Lett. 109(15), 153902 (2016).
[Crossref]

Appl. Phys. Rev. (1)

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

J. Appl. Phys. (1)

B. Franta, D. Pastor, H. H. Gandhi, P. H. Rekemeyer, S. Gradečak, M. J. Aziz, and E. Mazur, “Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing,” J. Appl. Phys. 118(22), 225303 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled mode theory for fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 567–572 (2003).
[Crossref]

Laser Photonics Rev. (1)

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

Light: Sci. Appl. (1)

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light: Sci. Appl. 5(3), e16052 (2016).
[Crossref]

Nano Energy (1)

D. Liu and Q. Li, “Sub-nanometer planar solar absorber,” Nano Energy 34, 172–180 (2017).
[Crossref]

Nat. Commun. (1)

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(1), 3011 (2014).
[Crossref]

Nat. Photonics (1)

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

Nat. Rev. Mater. (1)

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2(7), 17042 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. Appl. (1)

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Rep. Prog. Phys. (1)

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
[Crossref]

Sci. Rep. (1)

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Other (4)

C. F. Klingshirn, Semiconductor optics (Springer, 2012).

J. Singh, Semiconductor optoelectronics: Physics and Technology (McGraw-Hill, 1995).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007), Chap. 10.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999), Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. General idea for sub-bandgap absorption enhancement. (a) Schematic for light absorption in a planar multilayer film. (b) Critical coupling can be achieved by balancing radiative and nonradiative decay rates. Large absorption can be obtained even in a low-loss film at critical coupling.
Fig. 2.
Fig. 2. (a) Schematic of the MAPbI3 crystal structure. (b) X-ray diffraction pattern of the perovskite (MAPbI3) film used in this work.
Fig. 3.
Fig. 3. Key experimental results: (a) Net absorption in normal incidence for [MAPbI3 (270 nm)/quartz]. The perovskite film on quartz has small but non-zero absorption (about 1.45% at 1130 nm). (b) Net absorption in normal incidence for [PMMA/MAPbI3/SiO2/silver/quartz]. (c) Nominal absorption (Anominal = 1 – Rspecular) in s-polarized oblique incidence for [PMMA/MAPbI3/SiO2/silver/quartz]. (d) and (e) Reference sample measurements in normal and s-polarized oblique incidences.
Fig. 4.
Fig. 4. Diffuse reflection measurements in normal incidence for (a) [MAPbI3/quartz] and (b) [PMMA/MAPbI3/SiO2/silver/quartz].
Fig. 5.
Fig. 5. Comparison between measured (red line) and calculated (dotted line) spectra. (a) By comparing normal incidence measurement data with multilayer calculations, the extinction coefficient k of the perovskite layer is estimated to be k ∼ 0.001. (b) Calculated net absorption for oblique incidence is compared to the measured spectrum Anominal. We obtain net absorption about 11.5% at 1000 nm for the incidence angle of 70°. The difference between measured and calculated spectra is considered to be caused by diffuse reflection.
Fig. 6.
Fig. 6. (a) Absorption colormap as a function of wavelength and incidence angle for s-polarization. (b) Absorbed power profile in our multilayer film for incidence angles of 0 ° and 70°. By integrating the absorbed power density in each layer, the fraction of light absorption in each layer can be obtained.
Fig. 7.
Fig. 7. (a) Simulated absorption spectra for s-polarization. (b) Extracted radiative and nonradiative damping rates for different incidence angles. Two damping rates are getting very close at large incidence angles and thus strong absorption can be achieved in the low-loss, sub-bandgap region.
Fig. 8.
Fig. 8. Net absorption spectrum for bare quartz.
Fig. 9.
Fig. 9. p-polarized nominal absorption spectra for [PMMA/MAPbI3/SiO2/silver/quartz].
Fig. 10.
Fig. 10. (a) The optical constants for silver used in simulations. (b) Simulations match well the experimental spectra from the reference sample for both (b) normal and (c) oblique (70°) incidences.
Fig. 11.
Fig. 11. (a) Estimation of perovskite extinction coefficient k in the sub-bandgap region from [MAPbI3/quartz]. We find a larger extinction coefficient about k ∼ 0.0045 in the perovskite layer. (b) Extracted radiative and nonradiative damping rates (c) Absorption color map. (d) Absorbed power profile for k ∼ 0.0045. The absorbed fraction in the perovskite reaches 76.4% at the incidence angle of 70°.
Fig. 12.
Fig. 12. Measured spectra for 75 nm and 100 nm oxides. The resonance peaks shift to longer wavelengths (1100 nm and 1200 nm, respectively). Sub-bandgap absorption can be tuned over a broad spectral region by adjusting the spacer layer thickness.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A ( ω ) = 4 γ r a d γ n o n r a d ( ω ω 0 ) 2 + ( γ r a d + γ n o n r a d ) 2 ,
A m = 4 γ r a d γ n o n r a d ( γ r a d + γ n o n r a d ) 2 .
P a b s = 1 2 ω | E ( ω ) | 2 Im [ ε 0 ε ( ω ) ] .

Metrics