Abstract

We present spatially-resolved observations of orbital angular momentum (OAM) conservation, via a Laguerre-Gauss (LG) basis decomposition, of spatially-entangled photon pairs produced in type-I collinear spontaneous parametric downconversion (SPDC). These results were obtained with a novel detection system for OAM-entangled photon pairs that combines a projective measurement for the signal photon to a specific value of the azimuthal index ls, with a spatially-resolved measurement for the idler photon using an intensified charge coupled (ICCD) camera. In combination with far-field diffraction of the idler photon through a triangular aperture, we are able to obtain: i) the spatial structure of the heralded idler photon, as governed by the user-selected topological charge of the signal photon; ii) the OAM spectrum; and iii) the topological charge (both magnitude and sign) for the heralded idler photon.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Classical to quantum transfer of optical vortices

Verónica Vicuña-Hernández, Héctor Cruz-Ramírez, Roberto Ramírez-Alarcón, and Alfred B. U’Ren
Opt. Express 22(17) 20027-20037 (2014)

Tunable entanglement distillation of spatially correlated down-converted photons

E. S. Gómez, P. Riquelme, M. A. Solís-Prosser, P. González, E. Ortega, G. B. Xavier, and G. Lima
Opt. Express 26(11) 13961-13972 (2018)

Observation of non-diffracting behavior at the single-photon level

Héctor Cruz-Ramírez, Roberto Ramírez-Alarcón, Francisco J. Morelos, Pedro A. Quinto-Su, Julio C. Gutiérrez-Vega, and Alfred B. U’Ren
Opt. Express 20(28) 29761-29768 (2012)

References

  • View by:
  • |
  • |
  • |

  1. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
    [Crossref] [PubMed]
  2. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
    [Crossref] [PubMed]
  3. T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579–4586 (2014).
    [Crossref] [PubMed]
  4. M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photon. 5, 343–347 (2011).
    [Crossref]
  5. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5455 (2004).
    [Crossref] [PubMed]
  6. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref] [PubMed]
  7. H. Arnaut and G. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85, 286–289 (2000).
    [Crossref] [PubMed]
  8. Franke-Arnold, S. S. Barnett, M. J. Padgett, and L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823 (2002).
    [Crossref]
  9. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [Crossref] [PubMed]
  10. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
    [Crossref]
  11. J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R.W. Boyd, A. K. Jha, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express 17, 8287–8293 (2009).
    [Crossref] [PubMed]
  12. B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the Violation of a Bell Inequality,” Phys. Rev. Lett. 103, 083602 (2009).
    [Crossref] [PubMed]
  13. T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
    [Crossref] [PubMed]
  14. R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
    [Crossref] [PubMed]
  15. E. Yao, S. Franke-Arnold, J. Courtial, M. J. Padgett, and S. M. Barnett, “Observation of quantum entanglement using spatial light modulators,” Opt. Express 14, 13089–13094 (2006).
    [Crossref] [PubMed]
  16. A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
    [Crossref]
  17. S. P. Walborn, A. N. de Oliveira, R. S. Thebaldi, and C. H. Monken, “Entanglement and conservation of orbital angular momentum in spontaneous parametric down-conversion,” Phys. Rev. A 69, 023811 (2004).
    [Crossref]
  18. A. M Yao, “Angular momentum decomposition of entangled photons with an arbitrary pump,” New J. Phys. 13, 053048 (2011).
    [Crossref]
  19. A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94, 123602 (2005).
    [Crossref]
  20. M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20, 23589–23597 (2012).
    [Crossref] [PubMed]
  21. Y. Jerónimo-Moreno and R. Jáuregui, “On-demand generation of propagation-invariant photons with orbital angular momentum,” Phys. Rev. A 90, 013833 (2014).
    [Crossref]
  22. H. Cruz-Ramírez, R. Ramírez-Alarćon, F. J. Morelos, P. A. Quinto-Su, J. C. Gutiérrez-Vega, and A. B. U’Ren, “Observation of non-diffracting behavior at the single-photon level,” Opt. Express 20, 29761–29768 (2012).
    [Crossref]
  23. V. Vicuña-Hernández, H. Cruz-Ramírez, R. Ramírez-Alarcón, and A.B. U’Ren, “Classical to quantum transfer of optical vortices,” Opt. Express 22, 20027–20037 (2014).
    [Crossref] [PubMed]
  24. R. Ramírez-Alarcón, V. Vicuña-Hernández, H. Cruz-Ramírez, and A.B. U’Ren, “Transverse amplitude transfer experiments based on the process of spontaneous parametric downconversion,” Phys. Scr. 90, 068013 (2015).
    [Crossref]
  25. R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Effects of crystal length on the angular spectrum of spontaneous parametric downconversion photon pairs,” Laser Phys. 23, 055204 (2013).
    [Crossref]
  26. C. I. Osorio, G. Molina-Terriza, and J. P. Torres, “Correlations in orbital angular momentum of spatially entangled paired photons generated in parametric down-conversion,” Phys. Rev. A 77, 015810 (2008).
    [Crossref]
  27. S. M. Barnett and R. Zambrini, “Optical angular momentum of light,” in Quantum Imaging, (Springer, 2007), pp. 284.
  28. S. J. van Enk and G. Nienhuis, “Eigenfunction description of laser beams and orbital angular momentum of light,” Opt. Commun. 94, 147–154 (1992).
    [Crossref]
  29. R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
    [Crossref]
  30. W. Han, Y. Yang, W. Cheng, and Q. Zhan, “Vectorial optical field generator for the creation of arbitrarily complex fields,” Opt. Express 21, 20692–20706 (2013).
    [Crossref] [PubMed]
  31. D. Klyshko, “A simple method of preparing pure states of the optical-field, a realization of the Einstein, Podolsky, Rosen experiment and a demonstration of the complementarity principle,” Usp. Fiz. Nauk 154, 133–152 (1988).
    [Crossref]
  32. R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Opt. 61, 547–551 (2014).
    [Crossref]
  33. J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
    [Crossref]
  34. A. J. Jesus-Silva, E. S. Fonseca, and J. M. Hickmann, “Measurement of the orbital angular momentum at photon level via the spatial probability distribution,” J. Mod. Opt. 59, 1194–1198 (2012).
    [Crossref]

2015 (1)

R. Ramírez-Alarcón, V. Vicuña-Hernández, H. Cruz-Ramírez, and A.B. U’Ren, “Transverse amplitude transfer experiments based on the process of spontaneous parametric downconversion,” Phys. Scr. 90, 068013 (2015).
[Crossref]

2014 (4)

Y. Jerónimo-Moreno and R. Jáuregui, “On-demand generation of propagation-invariant photons with orbital angular momentum,” Phys. Rev. A 90, 013833 (2014).
[Crossref]

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Opt. 61, 547–551 (2014).
[Crossref]

V. Vicuña-Hernández, H. Cruz-Ramírez, R. Ramírez-Alarcón, and A.B. U’Ren, “Classical to quantum transfer of optical vortices,” Opt. Express 22, 20027–20037 (2014).
[Crossref] [PubMed]

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579–4586 (2014).
[Crossref] [PubMed]

2013 (5)

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

W. Han, Y. Yang, W. Cheng, and Q. Zhan, “Vectorial optical field generator for the creation of arbitrarily complex fields,” Opt. Express 21, 20692–20706 (2013).
[Crossref] [PubMed]

R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Effects of crystal length on the angular spectrum of spontaneous parametric downconversion photon pairs,” Laser Phys. 23, 055204 (2013).
[Crossref]

2012 (3)

2011 (3)

A. M Yao, “Angular momentum decomposition of entangled photons with an arbitrary pump,” New J. Phys. 13, 053048 (2011).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photon. 5, 343–347 (2011).
[Crossref]

2010 (1)

J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[Crossref]

2009 (2)

J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R.W. Boyd, A. K. Jha, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express 17, 8287–8293 (2009).
[Crossref] [PubMed]

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the Violation of a Bell Inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

2008 (1)

C. I. Osorio, G. Molina-Terriza, and J. P. Torres, “Correlations in orbital angular momentum of spatially entangled paired photons generated in parametric down-conversion,” Phys. Rev. A 77, 015810 (2008).
[Crossref]

2006 (1)

2005 (1)

A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94, 123602 (2005).
[Crossref]

2004 (2)

S. P. Walborn, A. N. de Oliveira, R. S. Thebaldi, and C. H. Monken, “Entanglement and conservation of orbital angular momentum in spontaneous parametric down-conversion,” Phys. Rev. A 69, 023811 (2004).
[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5455 (2004).
[Crossref] [PubMed]

2002 (2)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

Franke-Arnold, S. S. Barnett, M. J. Padgett, and L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823 (2002).
[Crossref]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

2000 (1)

H. Arnaut and G. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85, 286–289 (2000).
[Crossref] [PubMed]

1997 (1)

1995 (1)

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref] [PubMed]

1992 (2)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

S. J. van Enk and G. Nienhuis, “Eigenfunction description of laser beams and orbital angular momentum of light,” Opt. Commun. 94, 147–154 (1992).
[Crossref]

1988 (1)

D. Klyshko, “A simple method of preparing pure states of the optical-field, a realization of the Einstein, Podolsky, Rosen experiment and a demonstration of the complementarity principle,” Usp. Fiz. Nauk 154, 133–152 (1988).
[Crossref]

Agnew, M.

Allen, L.

Franke-Arnold, S. S. Barnett, M. J. Padgett, and L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823 (2002).
[Crossref]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Altman, A. R.

A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94, 123602 (2005).
[Crossref]

Andersson, E.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

Ando, T.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579–4586 (2014).
[Crossref] [PubMed]

Arlt, J.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

Arnaut, H.

H. Arnaut and G. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85, 286–289 (2000).
[Crossref] [PubMed]

Aspden, R. S.

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Opt. 61, 547–551 (2014).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

Barbosa, G.

H. Arnaut and G. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85, 286–289 (2000).
[Crossref] [PubMed]

Barbosa, G. A.

A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94, 123602 (2005).
[Crossref]

Barnett, S. M.

Barnett, S. S.

Franke-Arnold, S. S. Barnett, M. J. Padgett, and L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823 (2002).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Bowman, R.

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photon. 5, 343–347 (2011).
[Crossref]

Boyd, R. W.

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Opt. 61, 547–551 (2014).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20, 23589–23597 (2012).
[Crossref] [PubMed]

Boyd, R.W.

Buller, G. S.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

Chavez-Cerda, S.

J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[Crossref]

Cheng, W.

Corndorf, E.

A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94, 123602 (2005).
[Crossref]

Courtial, J.

Cruz-Ramírez, H.

R. Ramírez-Alarcón, V. Vicuña-Hernández, H. Cruz-Ramírez, and A.B. U’Ren, “Transverse amplitude transfer experiments based on the process of spontaneous parametric downconversion,” Phys. Scr. 90, 068013 (2015).
[Crossref]

V. Vicuña-Hernández, H. Cruz-Ramírez, R. Ramírez-Alarcón, and A.B. U’Ren, “Classical to quantum transfer of optical vortices,” Opt. Express 22, 20027–20037 (2014).
[Crossref] [PubMed]

R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Effects of crystal length on the angular spectrum of spontaneous parametric downconversion photon pairs,” Laser Phys. 23, 055204 (2013).
[Crossref]

H. Cruz-Ramírez, R. Ramírez-Alarćon, F. J. Morelos, P. A. Quinto-Su, J. C. Gutiérrez-Vega, and A. B. U’Ren, “Observation of non-diffracting behavior at the single-photon level,” Opt. Express 20, 29761–29768 (2012).
[Crossref]

Dada, A. C.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

de Oliveira, A. N.

S. P. Walborn, A. N. de Oliveira, R. S. Thebaldi, and C. H. Monken, “Entanglement and conservation of orbital angular momentum in spontaneous parametric down-conversion,” Phys. Rev. A 69, 023811 (2004).
[Crossref]

Dholakia, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[Crossref] [PubMed]

Fickler, R.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

Fonseca, E. J. S.

J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[Crossref]

Fonseca, E. S.

A. J. Jesus-Silva, E. S. Fonseca, and J. M. Hickmann, “Measurement of the orbital angular momentum at photon level via the spatial probability distribution,” J. Mod. Opt. 59, 1194–1198 (2012).
[Crossref]

Forbes, A.

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Opt. 61, 547–551 (2014).
[Crossref]

A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
[Crossref]

M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20, 23589–23597 (2012).
[Crossref] [PubMed]

Franke-Arnold,

Franke-Arnold, S. S. Barnett, M. J. Padgett, and L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823 (2002).
[Crossref]

Franke-Arnold, S.

Gibson, G.

Gutiérrez-Vega, J. C.

Han, W.

Hickmann, J. M.

A. J. Jesus-Silva, E. S. Fonseca, and J. M. Hickmann, “Measurement of the orbital angular momentum at photon level via the spatial probability distribution,” J. Mod. Opt. 59, 1194–1198 (2012).
[Crossref]

J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[Crossref]

Ibrahim, A. H.

A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
[Crossref]

Itoh, H.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579–4586 (2014).
[Crossref] [PubMed]

Jack, B.

J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R.W. Boyd, A. K. Jha, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express 17, 8287–8293 (2009).
[Crossref] [PubMed]

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the Violation of a Bell Inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

Jáuregui, R.

Y. Jerónimo-Moreno and R. Jáuregui, “On-demand generation of propagation-invariant photons with orbital angular momentum,” Phys. Rev. A 90, 013833 (2014).
[Crossref]

Jerónimo-Moreno, Y.

Y. Jerónimo-Moreno and R. Jáuregui, “On-demand generation of propagation-invariant photons with orbital angular momentum,” Phys. Rev. A 90, 013833 (2014).
[Crossref]

Jesus-Silva, A. J.

A. J. Jesus-Silva, E. S. Fonseca, and J. M. Hickmann, “Measurement of the orbital angular momentum at photon level via the spatial probability distribution,” J. Mod. Opt. 59, 1194–1198 (2012).
[Crossref]

Jha, A. K.

Klyshko, D.

D. Klyshko, “A simple method of preparing pure states of the optical-field, a realization of the Einstein, Podolsky, Rosen experiment and a demonstration of the complementarity principle,” Usp. Fiz. Nauk 154, 133–152 (1988).
[Crossref]

Konrad, T.

A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
[Crossref]

Köprülü, K. G.

A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94, 123602 (2005).
[Crossref]

Krenn, M.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

Kumar, P.

A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94, 123602 (2005).
[Crossref]

Lapkiewicz, R.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

Leach, J.

M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20, 23589–23597 (2012).
[Crossref] [PubMed]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R.W. Boyd, A. K. Jha, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express 17, 8287–8293 (2009).
[Crossref] [PubMed]

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the Violation of a Bell Inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

MacDonald, M. P.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

McLaren, M.

A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
[Crossref]

M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20, 23589–23597 (2012).
[Crossref] [PubMed]

Molina-Terriza, G.

C. I. Osorio, G. Molina-Terriza, and J. P. Torres, “Correlations in orbital angular momentum of spatially entangled paired photons generated in parametric down-conversion,” Phys. Rev. A 77, 015810 (2008).
[Crossref]

Monken, C. H.

S. P. Walborn, A. N. de Oliveira, R. S. Thebaldi, and C. H. Monken, “Entanglement and conservation of orbital angular momentum in spontaneous parametric down-conversion,” Phys. Rev. A 69, 023811 (2004).
[Crossref]

Morelos, F. J.

Nienhuis, G.

S. J. van Enk and G. Nienhuis, “Eigenfunction description of laser beams and orbital angular momentum of light,” Opt. Commun. 94, 147–154 (1992).
[Crossref]

Ohtake, Y.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579–4586 (2014).
[Crossref] [PubMed]

Osorio, C. I.

C. I. Osorio, G. Molina-Terriza, and J. P. Torres, “Correlations in orbital angular momentum of spatially entangled paired photons generated in parametric down-conversion,” Phys. Rev. A 77, 015810 (2008).
[Crossref]

Otsu, T.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579–4586 (2014).
[Crossref] [PubMed]

Padgett, M. J.

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Opt. 61, 547–551 (2014).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20, 23589–23597 (2012).
[Crossref] [PubMed]

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photon. 5, 343–347 (2011).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R.W. Boyd, A. K. Jha, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express 17, 8287–8293 (2009).
[Crossref] [PubMed]

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the Violation of a Bell Inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

E. Yao, S. Franke-Arnold, J. Courtial, M. J. Padgett, and S. M. Barnett, “Observation of quantum entanglement using spatial light modulators,” Opt. Express 14, 13089–13094 (2006).
[Crossref] [PubMed]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5455 (2004).
[Crossref] [PubMed]

Franke-Arnold, S. S. Barnett, M. J. Padgett, and L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823 (2002).
[Crossref]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[Crossref] [PubMed]

Pas’ko, V.

Paterson, L.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

Pittman, T.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref] [PubMed]

Quinto-Su, P. A.

Ramelow, S.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

Ramírez-Alarcon, R.

Ramírez-Alarcón, R.

R. Ramírez-Alarcón, V. Vicuña-Hernández, H. Cruz-Ramírez, and A.B. U’Ren, “Transverse amplitude transfer experiments based on the process of spontaneous parametric downconversion,” Phys. Scr. 90, 068013 (2015).
[Crossref]

V. Vicuña-Hernández, H. Cruz-Ramírez, R. Ramírez-Alarcón, and A.B. U’Ren, “Classical to quantum transfer of optical vortices,” Opt. Express 22, 20027–20037 (2014).
[Crossref] [PubMed]

R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Effects of crystal length on the angular spectrum of spontaneous parametric downconversion photon pairs,” Laser Phys. 23, 055204 (2013).
[Crossref]

Ritsch-Marte, M.

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the Violation of a Bell Inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R.W. Boyd, A. K. Jha, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express 17, 8287–8293 (2009).
[Crossref] [PubMed]

Romero, J.

J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R.W. Boyd, A. K. Jha, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express 17, 8287–8293 (2009).
[Crossref] [PubMed]

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the Violation of a Bell Inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

Roux, F. S.

A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
[Crossref]

M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20, 23589–23597 (2012).
[Crossref] [PubMed]

Sergienko, A.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref] [PubMed]

Shih, Y.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref] [PubMed]

Sibbett, W.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

Simpson, N. B.

Soares, W. C.

J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Strekalov, D.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref] [PubMed]

Takiguchi, Y.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579–4586 (2014).
[Crossref] [PubMed]

Tasca, D. S.

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Opt. 61, 547–551 (2014).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

Thebaldi, R. S.

S. P. Walborn, A. N. de Oliveira, R. S. Thebaldi, and C. H. Monken, “Entanglement and conservation of orbital angular momentum in spontaneous parametric down-conversion,” Phys. Rev. A 69, 023811 (2004).
[Crossref]

Torres, J. P.

C. I. Osorio, G. Molina-Terriza, and J. P. Torres, “Correlations in orbital angular momentum of spatially entangled paired photons generated in parametric down-conversion,” Phys. Rev. A 77, 015810 (2008).
[Crossref]

Toyoda, H.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579–4586 (2014).
[Crossref] [PubMed]

U’Ren, A. B.

R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Effects of crystal length on the angular spectrum of spontaneous parametric downconversion photon pairs,” Laser Phys. 23, 055204 (2013).
[Crossref]

H. Cruz-Ramírez, R. Ramírez-Alarćon, F. J. Morelos, P. A. Quinto-Su, J. C. Gutiérrez-Vega, and A. B. U’Ren, “Observation of non-diffracting behavior at the single-photon level,” Opt. Express 20, 29761–29768 (2012).
[Crossref]

U’Ren, A.B.

R. Ramírez-Alarcón, V. Vicuña-Hernández, H. Cruz-Ramírez, and A.B. U’Ren, “Transverse amplitude transfer experiments based on the process of spontaneous parametric downconversion,” Phys. Scr. 90, 068013 (2015).
[Crossref]

V. Vicuña-Hernández, H. Cruz-Ramírez, R. Ramírez-Alarcón, and A.B. U’Ren, “Classical to quantum transfer of optical vortices,” Opt. Express 22, 20027–20037 (2014).
[Crossref] [PubMed]

van Enk, S. J.

S. J. van Enk and G. Nienhuis, “Eigenfunction description of laser beams and orbital angular momentum of light,” Opt. Commun. 94, 147–154 (1992).
[Crossref]

Vasnetsov, M.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Vicuña-Hernández, V.

R. Ramírez-Alarcón, V. Vicuña-Hernández, H. Cruz-Ramírez, and A.B. U’Ren, “Transverse amplitude transfer experiments based on the process of spontaneous parametric downconversion,” Phys. Scr. 90, 068013 (2015).
[Crossref]

V. Vicuña-Hernández, H. Cruz-Ramírez, R. Ramírez-Alarcón, and A.B. U’Ren, “Classical to quantum transfer of optical vortices,” Opt. Express 22, 20027–20037 (2014).
[Crossref] [PubMed]

Volke-Sepulveda, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

Walborn, S. P.

S. P. Walborn, A. N. de Oliveira, R. S. Thebaldi, and C. H. Monken, “Entanglement and conservation of orbital angular momentum in spontaneous parametric down-conversion,” Phys. Rev. A 69, 023811 (2004).
[Crossref]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Yang, Y.

Yao, A. M

A. M Yao, “Angular momentum decomposition of entangled photons with an arbitrary pump,” New J. Phys. 13, 053048 (2011).
[Crossref]

Yao, E.

Zambrini, R.

S. M. Barnett and R. Zambrini, “Optical angular momentum of light,” in Quantum Imaging, (Springer, 2007), pp. 284.

Zeilinger, A.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Zhan, Q.

J. Mod. Opt. (2)

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Opt. 61, 547–551 (2014).
[Crossref]

A. J. Jesus-Silva, E. S. Fonseca, and J. M. Hickmann, “Measurement of the orbital angular momentum at photon level via the spatial probability distribution,” J. Mod. Opt. 59, 1194–1198 (2012).
[Crossref]

Laser Phys. (1)

R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Effects of crystal length on the angular spectrum of spontaneous parametric downconversion photon pairs,” Laser Phys. 23, 055204 (2013).
[Crossref]

Nat. Photon. (1)

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photon. 5, 343–347 (2011).
[Crossref]

Nat. Phys. (1)

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

New J. Phys. (2)

A. M Yao, “Angular momentum decomposition of entangled photons with an arbitrary pump,” New J. Phys. 13, 053048 (2011).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

Opt. Commun. (1)

S. J. van Enk and G. Nienhuis, “Eigenfunction description of laser beams and orbital angular momentum of light,” Opt. Commun. 94, 147–154 (1992).
[Crossref]

Opt. Express (7)

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5455 (2004).
[Crossref] [PubMed]

E. Yao, S. Franke-Arnold, J. Courtial, M. J. Padgett, and S. M. Barnett, “Observation of quantum entanglement using spatial light modulators,” Opt. Express 14, 13089–13094 (2006).
[Crossref] [PubMed]

J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R.W. Boyd, A. K. Jha, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express 17, 8287–8293 (2009).
[Crossref] [PubMed]

M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20, 23589–23597 (2012).
[Crossref] [PubMed]

H. Cruz-Ramírez, R. Ramírez-Alarćon, F. J. Morelos, P. A. Quinto-Su, J. C. Gutiérrez-Vega, and A. B. U’Ren, “Observation of non-diffracting behavior at the single-photon level,” Opt. Express 20, 29761–29768 (2012).
[Crossref]

W. Han, Y. Yang, W. Cheng, and Q. Zhan, “Vectorial optical field generator for the creation of arbitrarily complex fields,” Opt. Express 21, 20692–20706 (2013).
[Crossref] [PubMed]

V. Vicuña-Hernández, H. Cruz-Ramírez, R. Ramírez-Alarcón, and A.B. U’Ren, “Classical to quantum transfer of optical vortices,” Opt. Express 22, 20027–20037 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (7)

Y. Jerónimo-Moreno and R. Jáuregui, “On-demand generation of propagation-invariant photons with orbital angular momentum,” Phys. Rev. A 90, 013833 (2014).
[Crossref]

C. I. Osorio, G. Molina-Terriza, and J. P. Torres, “Correlations in orbital angular momentum of spatially entangled paired photons generated in parametric down-conversion,” Phys. Rev. A 77, 015810 (2008).
[Crossref]

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref] [PubMed]

A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
[Crossref]

S. P. Walborn, A. N. de Oliveira, R. S. Thebaldi, and C. H. Monken, “Entanglement and conservation of orbital angular momentum in spontaneous parametric down-conversion,” Phys. Rev. A 69, 023811 (2004).
[Crossref]

Franke-Arnold, S. S. Barnett, M. J. Padgett, and L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823 (2002).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

H. Arnaut and G. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85, 286–289 (2000).
[Crossref] [PubMed]

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the Violation of a Bell Inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94, 123602 (2005).
[Crossref]

J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[Crossref]

Phys. Scr. (1)

R. Ramírez-Alarcón, V. Vicuña-Hernández, H. Cruz-Ramírez, and A.B. U’Ren, “Transverse amplitude transfer experiments based on the process of spontaneous parametric downconversion,” Phys. Scr. 90, 068013 (2015).
[Crossref]

Sci. Rep. (2)

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579–4586 (2014).
[Crossref] [PubMed]

Science (1)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

Usp. Fiz. Nauk (1)

D. Klyshko, “A simple method of preparing pure states of the optical-field, a realization of the Einstein, Podolsky, Rosen experiment and a demonstration of the complementarity principle,” Usp. Fiz. Nauk 154, 133–152 (1988).
[Crossref]

Other (1)

S. M. Barnett and R. Zambrini, “Optical angular momentum of light,” in Quantum Imaging, (Springer, 2007), pp. 284.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Experimental setup consisting of: a) Collinear type-I SPDC photon pair source. b) OAM single photon spatial mode projector, and c) Spatially-resolved heralded idler photon detection system. After being separated by a 50:50 beam splitter (BS), the signal photon interacts with the phase mask displayed on the SLM, placed in the image plane (IP3) of the crystal and is detected by a bucket detector in the form of a SPAD. The idler photon is detected in the far-field (FP1) by a spatially-resolved array detector in the form of an ICCD camera.
Fig. 2
Fig. 2 Phase masks displayed on the SLM used to convert the ls = −l signal photon Laguerre-Gauss component into a ls = 0 Gaussian mode.
Fig. 3
Fig. 3 Laguerre-Gauss spatial modes carrying a definite OAM value with the corresponding l-index. The modes were generated by the SLM with the phase masks shown in Fig. 2 (shown also here as insets). This backward-propagating scenario demonstrates the correct operation of the OAM spatial mode projector.
Fig. 4
Fig. 4 Coincidence count rate recorded by the ICCD, representing the far-field transverse intensity distribution of the heralded idler photon for ls values selected with the OAM spatial mode projector. The axes of the plots represent the camera pixels, with the corresponding scale shown for the ls = 0 case, and the colorbars are expressed in coincidences per minute. The inset shows the phase mask displayed on the SLM.
Fig. 5
Fig. 5 Measured coefficients |C(l,−l)|2 of the bi-photon state Laguerre-Gauss basis expansion in Eq. (7), for azimuthal coefficients li = −ls.
Fig. 6
Fig. 6 Setup for measuring the topological charge of the heralded idler photon, with a front view of the TA showing the lateral dimensions and orientation.
Fig. 7
Fig. 7 Coincidence count rate recorded by the ICCD, representing the far-field diffraction pattern of the heralded idler photon from the TA, for the cases of ls = ±1 and ls = ±2. The plot axes represent the camera pixels, with the corresponding scale shown for the ls = 1 case, and the colorbars are expressed in coincidences per minute.
Fig. 8
Fig. 8 Detail of the image-preserving optical delay line (OD).
Fig. 9
Fig. 9 Total normalized coincidence rate and the spatial mode distribution of the heralded idler photon for an acquisition time of 10s and for the specific case where the mode ls = 0 is selected for the signal photon. The fine tuning in the electronic delay required for optimizing the image acquisition system can be appreciated. The zero delay configuration for which coincidence counts are maximized is used in the experiments presented.
Fig. 10
Fig. 10 Coincidence count rate recorded by the ICCD, representing the far-field transverse intensity distribution of the heralded idler photon for ls ≤ 0 values. The plot axes represent the camera pixels, with the corresponding scale shown for the ls = 0 case, and the colorbars are expressed in coincidences per minute. The inset shows the phase mask displayed on the SLM.
Fig. 11
Fig. 11 Coincidence count rate recorded by the ICCD, representing the far-field transverse intensity distribution of the heralded idler photon for ls ≥ 0 values. The plot axes represent the camera pixels, with the corresponding scale shown for the ls = 0 case, and the colorbars are expressed in coincidences per minute. The inset shows the phase mask displayed on the SLM.
Fig. 12
Fig. 12 Setup for aligning the equilateral triangular aperture (TA).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

l p = l s + l i ,
| Ψ SPDC = l s , p s l i , p i C l s , l i p s , p i | l s , p s | l i , p i ,
LG l , p ( ρ , ϕ ) = 2 p ! π ( p + | l | ) ! 1 w 0 ( ρ 2 w 0 ) | l | exp ( ρ 2 w 0 2 ) L p | l | ( 2 ρ 2 w 0 2 ) exp ( i l ϕ ) ,
L p | l | ( x ) = i = 0 p ( 1 ) i ( p + | l | ) ! ( p i ) ! ( | l | + i ) ! i ! x i .
C l j | l j j = p j C l j p j | l j , p j j .
| Ψ SPDC = l s l i C l s , l i | l s s | l i i .
| Ψ SPDC = l = 0 ( C l , l | l s | l i + C l , l | l s | l i ) .

Metrics