Abstract

An integral-imaging based light field head-mounted display, which typically renders a 3D scene by reconstructing the directional light rays apparently emitted by the scene via an array optics, is potentially capable of rendering correct or nearly correct focus cues and therefore solving the well-known vergence-accommodation conflict problem plaguing conventional stereoscopic displays. Its true 3D image formation nature, however, imposes significant complications and the well-established optical design process for conventional head-mounted displays becomes inadequate to address the design challenges. To our best knowledge, there are no existing methods or framework that have been previously proposed or demonstrated to address the challenges of modeling and optimizing an optical system for this type of display systems. In this paper, we present novel and generalizable methodology and framework for designing and optimizing the optical performance of integral-imaging based light field head-mounted displays, including methods of system configurations, user-defined metrics for characterizing the performance of such systems, and optimization strategies unique in light field displays. A design example is further given based on the proposed design methodology for the purpose of validating the proposed design method and framework.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effects of ray position sampling on the visual responses of 3D light field displays

Hekun Huang and Hong Hua
Opt. Express 27(7) 9343-9360 (2019)

Systematic characterization and optimization of 3D light field displays

Hekun Huang and Hong Hua
Opt. Express 25(16) 18508-18525 (2017)

High-performance integral-imaging-based light field augmented reality display using freeform optics

Hekun Huang and Hong Hua
Opt. Express 26(13) 17578-17590 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Wann, S. Rushton, and M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35(19), 2731–2736 (1995).
    [Crossref]
  2. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
    [Crossref]
  3. S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 7 (2005).
    [Crossref]
  4. M. Mon-Williams, J. P. Warm, and S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display,” Ophthalmic Physiol. Opt. 13(4), 387–391 (1993).
    [Crossref]
  5. H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
    [Crossref]
  6. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
    [Crossref]
  7. G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
    [Crossref]
  8. A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007)..
    [Crossref]
  9. S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” J. Soc. Inf. Disp. 4(4), 255–261 (1996).
    [Crossref]
  10. T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy betweenaccommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
    [Crossref]
  11. S. Liu, D. Cheng, and H. Hua, “An optical see-through head mounted display with addressable focal planes,” Proceedings of IEEE Int. Symp. Mixed Augmented Reality (ISMAR) (2008), pp. 32–42.
  12. D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
    [Crossref]
  13. J. P. Rolland, M. W. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
    [Crossref]
  14. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
    [Crossref]
  15. S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
    [Crossref]
  16. X. Hu and H. Hua, “Design and Assessment of a Depth-Fused Multi-Focal-Plane Display Prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
    [Crossref]
  17. Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A Live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters,” IEEE Trans. Vis. Comput. Graph. 15(5), 841–852 (2009).
    [Crossref]
  18. A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “An interactive 360° light field display,” ACM Trans. Graph. 13, 1–4 (2007).
    [Crossref]
  19. D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
    [Crossref]
  20. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
    [Crossref]
  21. W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using micro structure array,” Chin. Opt. Lett. 12(6), 060010 (2014).
    [Crossref]
  22. J. Hong, S. W. Min, and B. Lee, “Integral floating display systems for augmented reality,” Appl. Opt. 51(18), 4201–4209 (2012).
    [Crossref]
  23. H. Huang and H. Hua, “An integral-imaging-based head-mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Disp. 25(3), 200–207 (2017).
    [Crossref]
  24. H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
    [Crossref]
  25. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
    [Crossref]
  26. M. Levoy and P. Hanrahan, “Light field rendering,” SIGGRAPH ‘96, Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (1996), pp. 31–36.
  27. H. Huang and H. Hua, “Effects of ray position sampling on the visual responses of 3D light field displays,” Opt. Express 27(7), 9343–9360 (2019).
    [Crossref]
  28. H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26(13), 17578–17590 (2018).
    [Crossref]
  29. J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE, 2004).

2019 (1)

2018 (1)

2017 (4)

H. Huang and H. Hua, “An integral-imaging-based head-mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Disp. 25(3), 200–207 (2017).
[Crossref]

H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
[Crossref]

H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
[Crossref]

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref]

2014 (3)

2013 (1)

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

2012 (1)

2010 (1)

2009 (2)

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A Live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters,” IEEE Trans. Vis. Comput. Graph. 15(5), 841–852 (2009).
[Crossref]

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
[Crossref]

2008 (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

2007 (2)

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007)..
[Crossref]

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “An interactive 360° light field display,” ACM Trans. Graph. 13, 1–4 (2007).
[Crossref]

2005 (2)

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy betweenaccommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 7 (2005).
[Crossref]

2004 (1)

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

2002 (1)

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

2000 (1)

1996 (1)

S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” J. Soc. Inf. Disp. 4(4), 255–261 (1996).
[Crossref]

1995 (1)

J. P. Wann, S. Rushton, and M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35(19), 2731–2736 (1995).
[Crossref]

1994 (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref]

1993 (1)

M. Mon-Williams, J. P. Warm, and S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display,” Ophthalmic Physiol. Opt. 13(4), 387–391 (1993).
[Crossref]

Akeley, K.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 7 (2005).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Aksit, K.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref]

Banks, M. S.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 7 (2005).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref]

Bolas, M.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007)..
[Crossref]

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “An interactive 360° light field display,” ACM Trans. Graph. 13, 1–4 (2007).
[Crossref]

Cheng, D.

Chun, W. S.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Debevec, P.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007)..
[Crossref]

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “An interactive 360° light field display,” ACM Trans. Graph. 13, 1–4 (2007).
[Crossref]

Didyk, P.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref]

Dorval, R. K.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Dunn, D.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref]

Ernst, M. O.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 7 (2005).
[Crossref]

Favalora, G. E.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Fuchs, H.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref]

Giovinco, M. G.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Goon, A.

Hall, D. M.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Hanrahan, P.

M. Levoy and P. Hanrahan, “Light field rendering,” SIGGRAPH ‘96, Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (1996), pp. 31–36.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref]

Hoffman, D. M.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Hong, J.

Hu, X.

X. Hu and H. Hua, “Design and Assessment of a Depth-Fused Multi-Focal-Plane Display Prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

Hua, H.

H. Huang and H. Hua, “Effects of ray position sampling on the visual responses of 3D light field displays,” Opt. Express 27(7), 9343–9360 (2019).
[Crossref]

H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26(13), 17578–17590 (2018).
[Crossref]

H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
[Crossref]

H. Huang and H. Hua, “An integral-imaging-based head-mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Disp. 25(3), 200–207 (2017).
[Crossref]

H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
[Crossref]

X. Hu and H. Hua, “Design and Assessment of a Depth-Fused Multi-Focal-Plane Display Prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref]

S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
[Crossref]

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
[Crossref]

S. Liu, D. Cheng, and H. Hua, “An optical see-through head mounted display with addressable focal planes,” Proceedings of IEEE Int. Symp. Mixed Augmented Reality (ISMAR) (2008), pp. 32–42.

Huang, H.

Iwasaki, T.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy betweenaccommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

Javidi, B.

Jones, A.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “An interactive 360° light field display,” ACM Trans. Graph. 13, 1–4 (2007).
[Crossref]

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007)..
[Crossref]

Kawai, T.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy betweenaccommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

Kellnhofer, P.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref]

Kishino, F.

S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” J. Soc. Inf. Disp. 4(4), 255–261 (1996).
[Crossref]

Koike, T.

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A Live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters,” IEEE Trans. Vis. Comput. Graph. 15(5), 841–852 (2009).
[Crossref]

Krueger, M. W.

Lanman, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

Lee, B.

Levoy, M.

M. Levoy and P. Hanrahan, “Light field rendering,” SIGGRAPH ‘96, Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (1996), pp. 31–36.

Liu, S.

S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
[Crossref]

S. Liu, D. Cheng, and H. Hua, “An optical see-through head mounted display with addressable focal planes,” Proceedings of IEEE Int. Symp. Mixed Augmented Reality (ISMAR) (2008), pp. 32–42.

Liu, Y.

Luebke, D.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

McDowall, I.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “An interactive 360° light field display,” ACM Trans. Graph. 13, 1–4 (2007).
[Crossref]

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007)..
[Crossref]

Min, S. W.

Miyake, N.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy betweenaccommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

Mon-Williams, M.

J. P. Wann, S. Rushton, and M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35(19), 2731–2736 (1995).
[Crossref]

M. Mon-Williams, J. P. Warm, and S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display,” Ophthalmic Physiol. Opt. 13(4), 387–391 (1993).
[Crossref]

Myszkowski, K.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref]

Naemura, T.

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A Live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters,” IEEE Trans. Vis. Comput. Graph. 15(5), 841–852 (2009).
[Crossref]

Napoli, J.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Ohta, K.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy betweenaccommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

Omura, K.

S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” J. Soc. Inf. Disp. 4(4), 255–261 (1996).
[Crossref]

Otsuki, M.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy betweenaccommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

Richmond, M. J.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Rolland, J. P.

Rushton, S.

J. P. Wann, S. Rushton, and M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35(19), 2731–2736 (1995).
[Crossref]

M. Mon-Williams, J. P. Warm, and S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display,” Ophthalmic Physiol. Opt. 13(4), 387–391 (1993).
[Crossref]

Schwiegerling, J.

J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE, 2004).

Shibata, T.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy betweenaccommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

Shiwa, S.

S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” J. Soc. Inf. Disp. 4(4), 255–261 (1996).
[Crossref]

Song, W.

Taguchi, Y.

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A Live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters,” IEEE Trans. Vis. Comput. Graph. 15(5), 841–852 (2009).
[Crossref]

Takahashi, K.

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A Live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters,” IEEE Trans. Vis. Comput. Graph. 15(5), 841–852 (2009).
[Crossref]

Talha, M. M.

Tippets, C.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref]

Torell, K.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref]

Wang, Y.

Wann, J. P.

J. P. Wann, S. Rushton, and M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35(19), 2731–2736 (1995).
[Crossref]

Warm, J. P.

M. Mon-Williams, J. P. Warm, and S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display,” Ophthalmic Physiol. Opt. 13(4), 387–391 (1993).
[Crossref]

Watt, S. J.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 7 (2005).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Yamada, H.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007)..
[Crossref]

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “An interactive 360° light field display,” ACM Trans. Graph. 13, 1–4 (2007).
[Crossref]

Yoshihara, Y.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy betweenaccommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

ACM Trans. Graph. (4)

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007)..
[Crossref]

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “An interactive 360° light field display,” ACM Trans. Graph. 13, 1–4 (2007).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Appl. Opt. (3)

Chin. Opt. Lett. (1)

IEEE Trans. Vis. Comput. Graph. (2)

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A Live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters,” IEEE Trans. Vis. Comput. Graph. 15(5), 841–852 (2009).
[Crossref]

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref]

J. Disp. Technol. (1)

X. Hu and H. Hua, “Design and Assessment of a Depth-Fused Multi-Focal-Plane Display Prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

J. Soc. Inf. Disp. (3)

H. Huang and H. Hua, “An integral-imaging-based head-mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Disp. 25(3), 200–207 (2017).
[Crossref]

S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” J. Soc. Inf. Disp. 4(4), 255–261 (1996).
[Crossref]

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy betweenaccommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

J. Vis. (2)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 7 (2005).
[Crossref]

Ophthalmic Physiol. Opt. (1)

M. Mon-Williams, J. P. Warm, and S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display,” Ophthalmic Physiol. Opt. 13(4), 387–391 (1993).
[Crossref]

Opt. Express (5)

Proc. IEEE (1)

H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
[Crossref]

Proc. SPIE (1)

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref]

Vision Res. (1)

J. P. Wann, S. Rushton, and M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35(19), 2731–2736 (1995).
[Crossref]

Other (3)

M. Levoy and P. Hanrahan, “Light field rendering,” SIGGRAPH ‘96, Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (1996), pp. 31–36.

J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE, 2004).

S. Liu, D. Cheng, and H. Hua, “An optical see-through head mounted display with addressable focal planes,” Proceedings of IEEE Int. Symp. Mixed Augmented Reality (ISMAR) (2008), pp. 32–42.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Illustrations of basic optical principle of reconstructing 3D scene of InI-based LF-3D HMD system.
Fig. 2.
Fig. 2. Illustrations of (a) mapping the light field function and (b) basic optical principle of reconstructing 3D scene of InI-based LF-3D display.
Fig. 3.
Fig. 3. Illustrations of (a) footprints on viewing window and imaged apertures of lenslets of MLA (real exit pupil), (b) the divide of the elemental images on the microdisplay, (c) sub-system including elemental image, lenslet of MLA and shared eyepiece group, and (d) partially overlapped virtual images of elemental images on the virtual CDP.
Fig. 4.
Fig. 4. Simulations of effects of GD regarding the global distortion in ray positions upon full field distortion grid.
Fig. 5.
Fig. 5. Simulations of effects of PA regarding the pupil aberration in ray directions upon footprint diagram on the viewing window.
Fig. 6.
Fig. 6. Real design setup of the integrated system.
Fig. 7.
Fig. 7. (a) Full field image contrast plot of the display path. MTFs of (b) the on-axis field points of each elemental images corresponding to three sampled lenslets covering the whole FOV of the display path, and (c) the on-axis field points of each elemental images corresponding to the central lenslets with their virtual CDP sampled from 3 diopters to 0 diopters away from the viewing window.
Fig. 8.
Fig. 8. (a) Distortion grid of display path covering the full field. Footprint diagrams at the viewing window (b) before and (c) after optimization of pupil aberration of the system.
Fig. 9.
Fig. 9. (a) Computationally rendered 3D scene as test target and (b) rendered array of elemental images of the central part of the 3D scene on microdisplay. Captured images of the test target displayed by the prototype when the camera is focusing on depth of (c) 600 mm, (d) 1000 mm and (e) 1400 mm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

{ u 0 ( m , n ) = ( 2 m M 1 ) p M L A 2 v 0 ( m , n ) = ( 2 n N 1 ) p M L A 2 .
Δ p E I = p E I = p M L A ( 1 + g l + z I C + z x p ) ,
z x p = f e p z x p z x p f e p ,
{ s 0 ( m , n ) = ( 2 m M 1 ) p E I 2 t 0 ( m , n ) = ( 2 n N 1 ) p E I 2 .
d v = p M L A z I C l | 1 z x p f e p + z x p z I C | ,
D v = p E I l + z I C g | 1 z x p f e p + z x p l + z I C | ,
Δ p E I c = Δ p E I z x p g + l + z I C + z x p z C D P z x p ,
p E I c = p E I l ( z C D P z x p ) g z I C .
{ x c 0 ( m , n ) = ( 2 m M 1 ) Δ p E I c 2 y c 0 ( m , n ) = ( 2 n N 1 ) Δ p E I c 2 .
F O V D = 2 tan 1 ( ( M 2 + N 2 ) 2 Δ p E I c Z C D P ) .
G D ( m , n ) = tan 1 ( ( x c ( m , n ) x c ( m , n ) ) 2 + ( y c ( m , n ) y c ( m , n ) ) 2 Z C D P ) ,
P A ( m , n , i , j ) = 1 4 k = 1 4 ( x v k ( m , n , i , j ) x v k ( m , n , i , j ) ) 2 + ( y v k ( m , n , i , j ) y v k ( m , n , i , j ) ) 2 2 d v ,

Metrics