Abstract

High-resolution, high-speed 3D printing by two-photon polymerization (2PP) with a Nd:YVO4 Q-switched microchip laser at its fundamental wavelength of 1064 nm is demonstrated. Polymerization scan speeds of up to 20 mm/s and feature sizes of 250 nm are achieved using a high repetition rate Q-switched microchip laser with a semiconductor saturable absorber mirror (SESAM) and photoresist with a new photo-initiator bearing 6-dialkylaminobenzufuran as electron donor and indene-1,3-dione moiety as electron acceptor. The obtained results demonstrate the high potential of Q-switched microchip lasers for applications in 2PP 3D printing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mesoscale laser 3D printing

Linas Jonušauskas, Darius Gailevičius, Sima Rekštytė, Tommaso Baldacchini, Saulius Juodkazis, and Mangirdas Malinauskas
Opt. Express 27(11) 15205-15221 (2019)

3D fabrication of all-polymer conductive microstructures by two photon polymerization

Kestutis Kurselis, Roman Kiyan, Victor N. Bagratashvili, Vladimir K. Popov, and Boris N. Chichkov
Opt. Express 21(25) 31029-31035 (2013)

95-ps all-solid-state laser with a low-power microchip laser seed and a two-stage single-pass bounce geometry amplifier

Chunhua Wang, Lifeng Shen, Zhiliang Zhao, Bin Liu, Hongbo Jiang, Jun Chen, Dong Liu, and Chong Liu
J. Opt. Soc. Am. B 33(5) 884-890 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Lee, C. H. J. Lim, M. J. Low, N. Tham, V. M. Murukeshan, and Y.-J. Kim, “Lasers in Additive Manufacturing: A Review,” Int. J. Pr. Eng. Man-GT. 4, 307–322 (2017).
  2. M. Brandt, Laser Additive Manufacturing (Materials, Design, Technologies, and Applications) (Elsevier Ltd 2017).
  3. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [Crossref] [PubMed]
  4. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
    [Crossref] [PubMed]
  5. C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton Fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
    [Crossref] [PubMed]
  6. K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “MultiphotonFabrication,” Light Sci. Appl. 2, e116 (2013).
    [Crossref]
  7. P. J. Bártolo, Stereolithography: Materials, Processes and Applications (Springer Science & Business Media 2011).
  8. P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
    [Crossref]
  9. V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
    [Crossref]
  10. A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro-Riviere, A. Doraiswamy, and R. Narayan, “Two Photon Polymerization of Polymer–Ceramic Hybrid Materials for Transdermal Drug Delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
    [Crossref]
  11. A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
    [Crossref] [PubMed]
  12. M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
    [Crossref]
  13. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
    [Crossref]
  14. P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405 nm diode laser,” Opt. Lett. 39(24), 6847–6850 (2014).
    [Crossref] [PubMed]
  15. J. J. Zayhowski and C. Dill Iii, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
    [Crossref] [PubMed]
  16. P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
    [Crossref]
  17. J. J. Zayhowski, “Passively Q-Switched Microchip Lasers and Applications,” Rev. Laser Eng. 26(12), 841–846 (1998).
    [Crossref]
  18. I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
    [Crossref] [PubMed]
  19. E. T. Ritschdorff and J. B. Shear, “Multiphoton Lithography Using a High-Repetition Rate Microchip Laser,” Anal. Chem. 82(20), 8733–8737 (2010).
    [Crossref] [PubMed]
  20. C. Martineau, G. Lemercier, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “New initiator for two-photon absorption induced polymerization with a microlaser at 1.06 µm,” Synth. Met. 138(1-2), 353–356 (2003).
    [Crossref]
  21. D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, “High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime,” Opt. Lett. 32(15), 2115–2117 (2007).
    [Crossref] [PubMed]
  22. R. Nazir, T. T. Meiling, P. J. Cywiński, and D. T. Gryko, “Synthesis and Optical Properties of α,β-Unsaturated Ketones Bearing a Benzofuran Moiety,” Asian J. Org. Chem. 4(9), 929–935 (2015).
    [Crossref]
  23. J.-P. Fouassier and J. Lavalée, Photoinitiators for Polymer Synthesis: Scope, Reactivity, and Efficiency (Wiley, 2012).
  24. R. Nazir, F. Bourquard, E. Balčiūnas, S. Smoleń, D. Gray, N. V. Tkachenko, M. Farsari, and D. T. Gryko, “π-Expanded α,β-Unsaturated Ketones: Synthesis, Optical Properties, and Two-Photon-Induced Polymerization,” ChemPhysChem 16(3), 682–690 (2015).
    [Crossref] [PubMed]
  25. Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
    [Crossref]
  26. A. I. Ciuciu and P. J. Cywinski, “Two-photon polymerization of hydrogels – versatile solutions to fabricate well-defined 3D structures,” RSC Advances 4(85), 45504–45516 (2014).
    [Crossref]
  27. M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J.-P. Fouassier, and J. Lavalée, “Blue-to-Red Light Sensitive Push–Pull Structured Photoinitiators: Indanedione Derivatives for Radical and Cationic Photopolymerization Reactions,” Macromolecules 46(9), 3332–3341 (2013).
    [Crossref]
  28. S. Shen, P. Jiang, C. He, J. Zhang, P. Shen, Y. Zhang, Y. Yi, Z. Zhang, Z. Li, and Y. Li, “Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups,” Chem. Mater. 25(11), 2274–2281 (2013).
    [Crossref]
  29. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
    [Crossref] [PubMed]
  30. T. Baldacchini, S. Snider, and R. Zadoyan, “Two-photon polymerization with variable repetition rate bursts of femtosecond laser pulses,” Opt. Express 20(28), 29890–29899 (2012).
    [Crossref] [PubMed]
  31. L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27(11), 15205–15221 (2019).
    [Crossref] [PubMed]

2019 (1)

2018 (1)

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

2017 (1)

H. Lee, C. H. J. Lim, M. J. Low, N. Tham, V. M. Murukeshan, and Y.-J. Kim, “Lasers in Additive Manufacturing: A Review,” Int. J. Pr. Eng. Man-GT. 4, 307–322 (2017).

2015 (2)

R. Nazir, T. T. Meiling, P. J. Cywiński, and D. T. Gryko, “Synthesis and Optical Properties of α,β-Unsaturated Ketones Bearing a Benzofuran Moiety,” Asian J. Org. Chem. 4(9), 929–935 (2015).
[Crossref]

R. Nazir, F. Bourquard, E. Balčiūnas, S. Smoleń, D. Gray, N. V. Tkachenko, M. Farsari, and D. T. Gryko, “π-Expanded α,β-Unsaturated Ketones: Synthesis, Optical Properties, and Two-Photon-Induced Polymerization,” ChemPhysChem 16(3), 682–690 (2015).
[Crossref] [PubMed]

2014 (2)

A. I. Ciuciu and P. J. Cywinski, “Two-photon polymerization of hydrogels – versatile solutions to fabricate well-defined 3D structures,” RSC Advances 4(85), 45504–45516 (2014).
[Crossref]

P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405 nm diode laser,” Opt. Lett. 39(24), 6847–6850 (2014).
[Crossref] [PubMed]

2013 (5)

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J.-P. Fouassier, and J. Lavalée, “Blue-to-Red Light Sensitive Push–Pull Structured Photoinitiators: Indanedione Derivatives for Radical and Cationic Photopolymerization Reactions,” Macromolecules 46(9), 3332–3341 (2013).
[Crossref]

S. Shen, P. Jiang, C. He, J. Zhang, P. Shen, Y. Zhang, Y. Yi, Z. Zhang, Z. Li, and Y. Li, “Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups,” Chem. Mater. 25(11), 2274–2281 (2013).
[Crossref]

Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “MultiphotonFabrication,” Light Sci. Appl. 2, e116 (2013).
[Crossref]

2012 (2)

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

T. Baldacchini, S. Snider, and R. Zadoyan, “Two-photon polymerization with variable repetition rate bursts of femtosecond laser pulses,” Opt. Express 20(28), 29890–29899 (2012).
[Crossref] [PubMed]

2010 (2)

E. T. Ritschdorff and J. B. Shear, “Multiphoton Lithography Using a High-Repetition Rate Microchip Laser,” Anal. Chem. 82(20), 8733–8737 (2010).
[Crossref] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

2009 (1)

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

2008 (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

2007 (4)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton Fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro-Riviere, A. Doraiswamy, and R. Narayan, “Two Photon Polymerization of Polymer–Ceramic Hybrid Materials for Transdermal Drug Delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[Crossref]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[Crossref] [PubMed]

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, “High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime,” Opt. Lett. 32(15), 2115–2117 (2007).
[Crossref] [PubMed]

2003 (2)

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[Crossref] [PubMed]

C. Martineau, G. Lemercier, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “New initiator for two-photon absorption induced polymerization with a microlaser at 1.06 µm,” Synth. Met. 138(1-2), 353–356 (2003).
[Crossref]

2002 (1)

2001 (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

1998 (1)

J. J. Zayhowski, “Passively Q-Switched Microchip Lasers and Applications,” Rev. Laser Eng. 26(12), 841–846 (1998).
[Crossref]

1994 (1)

Ajami, A.

Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Andraud, C.

C. Martineau, G. Lemercier, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “New initiator for two-photon absorption induced polymerization with a microlaser at 1.06 µm,” Synth. Met. 138(1-2), 353–356 (2003).
[Crossref]

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
[Crossref] [PubMed]

Balciunas, E.

R. Nazir, F. Bourquard, E. Balčiūnas, S. Smoleń, D. Gray, N. V. Tkachenko, M. Farsari, and D. T. Gryko, “π-Expanded α,β-Unsaturated Ketones: Synthesis, Optical Properties, and Two-Photon-Induced Polymerization,” ChemPhysChem 16(3), 682–690 (2015).
[Crossref] [PubMed]

Baldacchini, T.

Baldeck, P. L.

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

C. Martineau, G. Lemercier, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “New initiator for two-photon absorption induced polymerization with a microlaser at 1.06 µm,” Synth. Met. 138(1-2), 353–356 (2003).
[Crossref]

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
[Crossref] [PubMed]

Billah, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Blaicher, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Bouriau, M.

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

C. Martineau, G. Lemercier, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “New initiator for two-photon absorption induced polymerization with a microlaser at 1.06 µm,” Synth. Met. 138(1-2), 353–356 (2003).
[Crossref]

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
[Crossref] [PubMed]

Bourquard, F.

R. Nazir, F. Bourquard, E. Balčiūnas, S. Smoleń, D. Gray, N. V. Tkachenko, M. Farsari, and D. T. Gryko, “π-Expanded α,β-Unsaturated Ketones: Synthesis, Optical Properties, and Two-Photon-Induced Polymerization,” ChemPhysChem 16(3), 682–690 (2015).
[Crossref] [PubMed]

Caer, C.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Chaumeil, H.

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

Chichkov, B.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro-Riviere, A. Doraiswamy, and R. Narayan, “Two Photon Polymerization of Polymer–Ceramic Hybrid Materials for Transdermal Drug Delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[Crossref]

Chichkov, B. N.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “MultiphotonFabrication,” Light Sci. Appl. 2, e116 (2013).
[Crossref]

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[Crossref] [PubMed]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[Crossref] [PubMed]

Chung, T.-T.

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

Cicha, K.

Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Ciuciu, A. I.

A. I. Ciuciu and P. J. Cywinski, “Two-photon polymerization of hydrogels – versatile solutions to fabricate well-defined 3D structures,” RSC Advances 4(85), 45504–45516 (2014).
[Crossref]

Cronauer, C.

Cywinski, P. J.

R. Nazir, T. T. Meiling, P. J. Cywiński, and D. T. Gryko, “Synthesis and Optical Properties of α,β-Unsaturated Ketones Bearing a Benzofuran Moiety,” Asian J. Org. Chem. 4(9), 929–935 (2015).
[Crossref]

A. I. Ciuciu and P. J. Cywinski, “Two-photon polymerization of hydrogels – versatile solutions to fabricate well-defined 3D structures,” RSC Advances 4(85), 45504–45516 (2014).
[Crossref]

Dangel, R.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Dietrich, P.-I.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Dill Iii, C.

Domann, G.

Doraiswamy, A.

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro-Riviere, A. Doraiswamy, and R. Narayan, “Two Photon Polymerization of Polymer–Ceramic Hybrid Materials for Transdermal Drug Delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[Crossref]

Dumur, F.

M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J.-P. Fouassier, and J. Lavalée, “Blue-to-Red Light Sensitive Push–Pull Structured Photoinitiators: Indanedione Derivatives for Radical and Cationic Photopolymerization Reactions,” Macromolecules 46(9), 3332–3341 (2013).
[Crossref]

Egbert, A.

El-Tamer, A.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “MultiphotonFabrication,” Light Sci. Appl. 2, e116 (2013).
[Crossref]

Emons, M.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Farrer, R. A.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton Fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

Farsari, M.

R. Nazir, F. Bourquard, E. Balčiūnas, S. Smoleń, D. Gray, N. V. Tkachenko, M. Farsari, and D. T. Gryko, “π-Expanded α,β-Unsaturated Ketones: Synthesis, Optical Properties, and Two-Photon-Induced Polymerization,” ChemPhysChem 16(3), 682–690 (2015).
[Crossref] [PubMed]

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Fischer, J.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Fotakis, C.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Fouassier, J.-P.

M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J.-P. Fouassier, and J. Lavalée, “Blue-to-Red Light Sensitive Push–Pull Structured Photoinitiators: Indanedione Derivatives for Radical and Cationic Photopolymerization Reactions,” Macromolecules 46(9), 3332–3341 (2013).
[Crossref]

Fourkas, J. T.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton Fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

Frenner, K.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Freude, W.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Fröhlich, L.

Gailevicius, D.

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Gigmes, D.

M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J.-P. Fouassier, and J. Lavalée, “Blue-to-Red Light Sensitive Push–Pull Structured Photoinitiators: Indanedione Derivatives for Radical and Cationic Photopolymerization Reactions,” Macromolecules 46(9), 3332–3341 (2013).
[Crossref]

Graff, B.

M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J.-P. Fouassier, and J. Lavalée, “Blue-to-Red Light Sensitive Push–Pull Structured Photoinitiators: Indanedione Derivatives for Radical and Cationic Photopolymerization Reactions,” Macromolecules 46(9), 3332–3341 (2013).
[Crossref]

Gray, D.

R. Nazir, F. Bourquard, E. Balčiūnas, S. Smoleń, D. Gray, N. V. Tkachenko, M. Farsari, and D. T. Gryko, “π-Expanded α,β-Unsaturated Ketones: Synthesis, Optical Properties, and Two-Photon-Induced Polymerization,” ChemPhysChem 16(3), 682–690 (2015).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Gredy, L.

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

Gryko, D. T.

R. Nazir, T. T. Meiling, P. J. Cywiński, and D. T. Gryko, “Synthesis and Optical Properties of α,β-Unsaturated Ketones Bearing a Benzofuran Moiety,” Asian J. Org. Chem. 4(9), 929–935 (2015).
[Crossref]

R. Nazir, F. Bourquard, E. Balčiūnas, S. Smoleń, D. Gray, N. V. Tkachenko, M. Farsari, and D. T. Gryko, “π-Expanded α,β-Unsaturated Ketones: Synthesis, Optical Properties, and Two-Photon-Induced Polymerization,” ChemPhysChem 16(3), 682–690 (2015).
[Crossref] [PubMed]

Guina, M.

Haverich, A.

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[Crossref] [PubMed]

He, C.

S. Shen, P. Jiang, C. He, J. Zhang, P. Shen, Y. Zhang, Y. Yi, Z. Zhang, Z. Li, and Y. Li, “Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups,” Chem. Mater. 25(11), 2274–2281 (2013).
[Crossref]

Hinze, U.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “MultiphotonFabrication,” Light Sci. Appl. 2, e116 (2013).
[Crossref]

Hofmann, A.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Hohmuth, R.

Hoose, T.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Houbertz, R.

Hsueh, Y. H.

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

Husinsky, W.

Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Jiang, P.

S. Shen, P. Jiang, C. He, J. Zhang, P. Shen, Y. Zhang, Y. Yi, Z. Zhang, Z. Li, and Y. Li, “Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups,” Chem. Mater. 25(11), 2274–2281 (2013).
[Crossref]

Jonušauskas, L.

Juodkazis, S.

Kawata, S.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Kim, Y.-J.

H. Lee, C. H. J. Lim, M. J. Low, N. Tham, V. M. Murukeshan, and Y.-J. Kim, “Lasers in Additive Manufacturing: A Review,” Int. J. Pr. Eng. Man-GT. 4, 307–322 (2017).

Koch, L.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “MultiphotonFabrication,” Light Sci. Appl. 2, e116 (2013).
[Crossref]

Koos, C.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

LaFratta, C. N.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton Fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

Lavalée, J.

M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J.-P. Fouassier, and J. Lavalée, “Blue-to-Red Light Sensitive Push–Pull Structured Photoinitiators: Indanedione Derivatives for Radical and Cationic Photopolymerization Reactions,” Macromolecules 46(9), 3332–3341 (2013).
[Crossref]

Lee, H.

H. Lee, C. H. J. Lim, M. J. Low, N. Tham, V. M. Murukeshan, and Y.-J. Kim, “Lasers in Additive Manufacturing: A Review,” Int. J. Pr. Eng. Man-GT. 4, 307–322 (2017).

Lee, Y.-H.

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

Lemercier, G.

C. Martineau, G. Lemercier, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “New initiator for two-photon absorption induced polymerization with a microlaser at 1.06 µm,” Synth. Met. 138(1-2), 353–356 (2003).
[Crossref]

Li, Y.

S. Shen, P. Jiang, C. He, J. Zhang, P. Shen, Y. Zhang, Y. Yi, Z. Zhang, Z. Li, and Y. Li, “Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups,” Chem. Mater. 25(11), 2274–2281 (2013).
[Crossref]

Li, Z.

S. Shen, P. Jiang, C. He, J. Zhang, P. Shen, Y. Zhang, Y. Yi, Z. Zhang, Z. Li, and Y. Li, “Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups,” Chem. Mater. 25(11), 2274–2281 (2013).
[Crossref]

Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Ligon, S. C.

Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Lim, C. H. J.

H. Lee, C. H. J. Lim, M. J. Low, N. Tham, V. M. Murukeshan, and Y.-J. Kim, “Lasers in Additive Manufacturing: A Review,” Int. J. Pr. Eng. Man-GT. 4, 307–322 (2017).

Limpert, J.

Lin, C. L.

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

Lin, C.-T.

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

Liska, R.

Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Liu, C. Y.

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

Low, M. J.

H. Lee, C. H. J. Lim, M. J. Low, N. Tham, V. M. Murukeshan, and Y.-J. Kim, “Lasers in Additive Manufacturing: A Review,” Int. J. Pr. Eng. Man-GT. 4, 307–322 (2017).

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Malinauskas, M.

Malval, J.-P.

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

Martineau, C.

C. Martineau, G. Lemercier, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “New initiator for two-photon absorption induced polymerization with a microlaser at 1.06 µm,” Synth. Met. 138(1-2), 353–356 (2003).
[Crossref]

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
[Crossref] [PubMed]

Meiling, T. T.

R. Nazir, T. T. Meiling, P. J. Cywiński, and D. T. Gryko, “Synthesis and Optical Properties of α,β-Unsaturated Ketones Bearing a Benzofuran Moiety,” Asian J. Org. Chem. 4(9), 929–935 (2015).
[Crossref]

Mente, P.

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro-Riviere, A. Doraiswamy, and R. Narayan, “Two Photon Polymerization of Polymer–Ceramic Hybrid Materials for Transdermal Drug Delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[Crossref]

Moehrle, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Monteiro-Riviere, N.

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro-Riviere, A. Doraiswamy, and R. Narayan, “Two Photon Polymerization of Polymer–Ceramic Hybrid Materials for Transdermal Drug Delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[Crossref]

Morgner, U.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Mueller, P.

Murukeshan, V. M.

H. Lee, C. H. J. Lim, M. J. Low, N. Tham, V. M. Murukeshan, and Y.-J. Kim, “Lasers in Additive Manufacturing: A Review,” Int. J. Pr. Eng. Man-GT. 4, 307–322 (2017).

Narayan, R.

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro-Riviere, A. Doraiswamy, and R. Narayan, “Two Photon Polymerization of Polymer–Ceramic Hybrid Materials for Transdermal Drug Delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[Crossref]

Naumov, S.

Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Nazir, R.

R. Nazir, T. T. Meiling, P. J. Cywiński, and D. T. Gryko, “Synthesis and Optical Properties of α,β-Unsaturated Ketones Bearing a Benzofuran Moiety,” Asian J. Org. Chem. 4(9), 929–935 (2015).
[Crossref]

R. Nazir, F. Bourquard, E. Balčiūnas, S. Smoleń, D. Gray, N. V. Tkachenko, M. Farsari, and D. T. Gryko, “π-Expanded α,β-Unsaturated Ketones: Synthesis, Optical Properties, and Two-Photon-Induced Polymerization,” ChemPhysChem 16(3), 682–690 (2015).
[Crossref] [PubMed]

Ngezahayo, A.

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[Crossref] [PubMed]

Nodop, D.

Obata, K.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “MultiphotonFabrication,” Light Sci. Appl. 2, e116 (2013).
[Crossref]

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Offrein, B.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Osten, W.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Ostendorf, A.

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Ovsianikov, A.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro-Riviere, A. Doraiswamy, and R. Narayan, “Two Photon Polymerization of Polymer–Ceramic Hybrid Materials for Transdermal Drug Delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[Crossref]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[Crossref] [PubMed]

Paz, V. F.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Peterhänsel, S.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Popall, M.

Prabakharana, P.

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

Pucher, N.

Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Reinhardt, C.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

Rekštyte, S.

Reuter, I.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Richter, W.

Ritschdorff, E. T.

E. T. Ritschdorff and J. B. Shear, “Multiphoton Lithography Using a High-Repetition Rate Microchip Laser,” Anal. Chem. 82(20), 8733–8737 (2010).
[Crossref] [PubMed]

Rosspeintner, A.

Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Sakellari, I.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Scherzer, T.

Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Schlie, S.

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[Crossref] [PubMed]

Schulz, J.

Serbin, J.

Shear, J. B.

E. T. Ritschdorff and J. B. Shear, “Multiphoton Lithography Using a High-Repetition Rate Microchip Laser,” Anal. Chem. 82(20), 8733–8737 (2010).
[Crossref] [PubMed]

Shen, P.

S. Shen, P. Jiang, C. He, J. Zhang, P. Shen, Y. Zhang, Y. Yi, Z. Zhang, Z. Li, and Y. Li, “Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups,” Chem. Mater. 25(11), 2274–2281 (2013).
[Crossref]

Shen, S.

S. Shen, P. Jiang, C. He, J. Zhang, P. Shen, Y. Zhang, Y. Yi, Z. Zhang, Z. Li, and Y. Li, “Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups,” Chem. Mater. 25(11), 2274–2281 (2013).
[Crossref]

Smolen, S.

R. Nazir, F. Bourquard, E. Balčiūnas, S. Smoleń, D. Gray, N. V. Tkachenko, M. Farsari, and D. T. Gryko, “π-Expanded α,β-Unsaturated Ketones: Synthesis, Optical Properties, and Two-Photon-Induced Polymerization,” ChemPhysChem 16(3), 682–690 (2015).
[Crossref] [PubMed]

Snider, S.

Stampfl, J.

Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Stephana, O.

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

Sun, H.-B.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Takada, K.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Tanaka, T.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Tehfe, M. A.

M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J.-P. Fouassier, and J. Lavalée, “Blue-to-Red Light Sensitive Push–Pull Structured Photoinitiators: Indanedione Derivatives for Radical and Cationic Photopolymerization Reactions,” Macromolecules 46(9), 3332–3341 (2013).
[Crossref]

Tham, N.

H. Lee, C. H. J. Lim, M. J. Low, N. Tham, V. M. Murukeshan, and Y.-J. Kim, “Lasers in Additive Manufacturing: A Review,” Int. J. Pr. Eng. Man-GT. 4, 307–322 (2017).

Thiel, M.

P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405 nm diode laser,” Opt. Lett. 39(24), 6847–6850 (2014).
[Crossref] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Tkachenko, N. V.

R. Nazir, F. Bourquard, E. Balčiūnas, S. Smoleń, D. Gray, N. V. Tkachenko, M. Farsari, and D. T. Gryko, “π-Expanded α,β-Unsaturated Ketones: Synthesis, Optical Properties, and Two-Photon-Induced Polymerization,” ChemPhysChem 16(3), 682–690 (2015).
[Crossref] [PubMed]

Torgensen, J.

Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Troppenz, U.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Tünnermann, A.

Vamvakaki, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Vauthey, E.

Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Vergote, T.

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

von Freymann, G.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Wang, I.

C. Martineau, G. Lemercier, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “New initiator for two-photon absorption induced polymerization with a microlaser at 1.06 µm,” Synth. Met. 138(1-2), 353–356 (2003).
[Crossref]

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
[Crossref] [PubMed]

Wegener, M.

P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405 nm diode laser,” Opt. Lett. 39(24), 6847–6850 (2014).
[Crossref] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Yi, Y.

S. Shen, P. Jiang, C. He, J. Zhang, P. Shen, Y. Zhang, Y. Yi, Z. Zhang, Z. Li, and Y. Li, “Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups,” Chem. Mater. 25(11), 2274–2281 (2013).
[Crossref]

Zadoyan, R.

Zayhowski, J. J.

J. J. Zayhowski, “Passively Q-Switched Microchip Lasers and Applications,” Rev. Laser Eng. 26(12), 841–846 (1998).
[Crossref]

J. J. Zayhowski and C. Dill Iii, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
[Crossref] [PubMed]

Zhang, J.

S. Shen, P. Jiang, C. He, J. Zhang, P. Shen, Y. Zhang, Y. Yi, Z. Zhang, Z. Li, and Y. Li, “Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups,” Chem. Mater. 25(11), 2274–2281 (2013).
[Crossref]

Zhang, Y.

S. Shen, P. Jiang, C. He, J. Zhang, P. Shen, Y. Zhang, Y. Yi, Z. Zhang, Z. Li, and Y. Li, “Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups,” Chem. Mater. 25(11), 2274–2281 (2013).
[Crossref]

Zhang, Z.

S. Shen, P. Jiang, C. He, J. Zhang, P. Shen, Y. Zhang, Y. Yi, Z. Zhang, Z. Li, and Y. Li, “Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups,” Chem. Mater. 25(11), 2274–2281 (2013).
[Crossref]

ACS Nano (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Anal. Chem. (1)

E. T. Ritschdorff and J. B. Shear, “Multiphoton Lithography Using a High-Repetition Rate Microchip Laser,” Anal. Chem. 82(20), 8733–8737 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton Fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Asian J. Org. Chem. (1)

R. Nazir, T. T. Meiling, P. J. Cywiński, and D. T. Gryko, “Synthesis and Optical Properties of α,β-Unsaturated Ketones Bearing a Benzofuran Moiety,” Asian J. Org. Chem. 4(9), 929–935 (2015).
[Crossref]

Chem. Mater. (1)

S. Shen, P. Jiang, C. He, J. Zhang, P. Shen, Y. Zhang, Y. Yi, Z. Zhang, Z. Li, and Y. Li, “Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups,” Chem. Mater. 25(11), 2274–2281 (2013).
[Crossref]

ChemPhysChem (1)

R. Nazir, F. Bourquard, E. Balčiūnas, S. Smoleń, D. Gray, N. V. Tkachenko, M. Farsari, and D. T. Gryko, “π-Expanded α,β-Unsaturated Ketones: Synthesis, Optical Properties, and Two-Photon-Induced Polymerization,” ChemPhysChem 16(3), 682–690 (2015).
[Crossref] [PubMed]

Int. J. Appl. Ceram. Technol. (1)

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro-Riviere, A. Doraiswamy, and R. Narayan, “Two Photon Polymerization of Polymer–Ceramic Hybrid Materials for Transdermal Drug Delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[Crossref]

Int. J. Pr. Eng. Man-GT. (1)

H. Lee, C. H. J. Lim, M. J. Low, N. Tham, V. M. Murukeshan, and Y.-J. Kim, “Lasers in Additive Manufacturing: A Review,” Int. J. Pr. Eng. Man-GT. 4, 307–322 (2017).

J. Laser Appl. (1)

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[Crossref]

J. Tissue Eng. Regen. Med. (1)

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[Crossref] [PubMed]

Light Sci. Appl. (1)

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “MultiphotonFabrication,” Light Sci. Appl. 2, e116 (2013).
[Crossref]

Macromolecules (2)

Z. Li, N. Pucher, K. Cicha, J. Torgensen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J.-P. Fouassier, and J. Lavalée, “Blue-to-Red Light Sensitive Push–Pull Structured Photoinitiators: Indanedione Derivatives for Radical and Cationic Photopolymerization Reactions,” Macromolecules 46(9), 3332–3341 (2013).
[Crossref]

Nat. Photonics (2)

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

Nature (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Proc. SPIE (1)

P. L. Baldeck, P. Prabakharana, C. Y. Liu, M. Bouriau, L. Gredy, O. Stephana, T. Vergote, H. Chaumeil, J.-P. Malval, Y.-H. Lee, C. L. Lin, C.-T. Lin, Y. H. Hsueh, and T.-T. Chung, “Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers,” Proc. SPIE 8827, 88270E (2013).
[Crossref]

Rev. Laser Eng. (1)

J. J. Zayhowski, “Passively Q-Switched Microchip Lasers and Applications,” Rev. Laser Eng. 26(12), 841–846 (1998).
[Crossref]

RSC Advances (1)

A. I. Ciuciu and P. J. Cywinski, “Two-photon polymerization of hydrogels – versatile solutions to fabricate well-defined 3D structures,” RSC Advances 4(85), 45504–45516 (2014).
[Crossref]

Synth. Met. (1)

C. Martineau, G. Lemercier, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “New initiator for two-photon absorption induced polymerization with a microlaser at 1.06 µm,” Synth. Met. 138(1-2), 353–356 (2003).
[Crossref]

Other (3)

J.-P. Fouassier and J. Lavalée, Photoinitiators for Polymer Synthesis: Scope, Reactivity, and Efficiency (Wiley, 2012).

M. Brandt, Laser Additive Manufacturing (Materials, Design, Technologies, and Applications) (Elsevier Ltd 2017).

P. J. Bártolo, Stereolithography: Materials, Processes and Applications (Springer Science & Business Media 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The structure of the photoinitiator (a). Single photon absorption spectrum of the photoinitiator (in dichloromethane) (b). Absorption spectrum in the vicinity of laser wavelength is shown in the inset (in acetone).
Fig. 2
Fig. 2 Experimental setup for two-photon polymerization with the Q-switched microchip laser.
Fig. 3
Fig. 3 SEM images of 3D woodpile structures fabricated by the SESAM Q-switched microchip laser: (a) - average laser power of 17 mW and scanning speed of 0.6 mm/s; (b) - average laser power of 27 mW and scanning speed of 19 mm/s.
Fig. 4
Fig. 4 SEM images of 3D woodpile structures demonstrating the ultimate achieved feature size and fabrication speed: (a), (b) - woodpile structure fabricated with average laser power of 14 mW and scanning speed of 5 mm/s; (c), (d) - woodpile structure fabricated with average laser power of 27 mW and scanning speed of 20 mm/s.
Fig. 5
Fig. 5 Experimental dependencies of the width of the polymeric rods produced by 2PP with a microchip SESAM Q-switched laser on average laser power (a) and laser spot scanning speed (b). Fitting curves obtained with [Eq. (1)] are shown by continuous lines.
Fig. 6
Fig. 6 The fit parameter r0 for the polymeric rods width dependencies on average laser power (a), corresponding to Fig. 5(a), and scan speed (b), corresponding to Fig. 5(b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d( N 0 ,t )= r 0 ln( σ 2 N 0 2 nτ/C )

Metrics