Abstract

Visible light communication (VLC) can provide a dedicated, secure, and high data rate wireless transmission link. It has gained considerable attentions recently, and is considered as one of the promising technologies for beyond 5G mobile and wireless communications. In this work, we demonstrate a VLC system with a recorded data rate of 40.665 Gbit/s using tricolor red, green and blue (RGB) laser diodes (LDs) and polarization multiplexing. 2 m free-space transmission distance is achieved. The implementation of bit-loading, power-loading, and polarization multiplexing are discussed. Experimental bit-error-ratio (BER) results show that each of the 6 polarization and wavelength de-multiplexed channels can achieve the forward-error-correction (FEC) requirement.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
20.231  Gbit/s tricolor red/green/blue laser diode based bidirectional signal remodulation visible-light communication system

Liang-Yu Wei, Chin-Wei Hsu, Chi-Wai Chow, and Chien-Hung Yeh
Photon. Res. 6(5) 422-426 (2018)

4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode

José Ramón Durán Retamal, Hassan Makine Oubei, Bilal Janjua, Yu-Chieh Chi, Huai-Yung Wang, Cheng-Ting Tsai, Tien Khee Ng, Dan-Hua Hsieh, Hao-Chung Kuo, Mohamed-Slim Alouini, Jr-Hau He, Gong-Ru Lin, and Boon S. Ooi
Opt. Express 23(26) 33656-33666 (2015)

0.52−11.86 Gbit/s OFDM modulation for power-sharing VLC transmission by using VCSEL laser

Chien-Hung Yeh and I-Cheng Lu
Opt. Express 24(18) 21113-21118 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Haas, “Visible light communication,” Proc. OFC2015, Paper Tu2G.5.
  2. K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
    [Crossref]
  3. J. Vučić and K. D. Langer, “High-speed visible light communications: state-of-the-art,” Proc. OFC 2012, Paper OTh3G.3.
  4. C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).
  5. H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
    [Crossref]
  6. N. Chi, Y. Zhou, J. Shi, Y. Wang, and X. Huang, “Enabling technologies for high speed visible light communication,” Proc. OFC2017, Paper Th1E.3.
    [Crossref]
  7. W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10m/500 Mbps WDM visible light communication systems,” Opt. Express 20(9), 9919–9924 (2012).
    [Crossref] [PubMed]
  8. C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
    [Crossref]
  9. H. Yang, C. Chen, W. D. Zhong, and A. Alphones, “Joint precoder and equalizer design for multi-user multi-cell MIMO VLC systems,” IEEE Trans. Vehicular Technol. 67(12), 11354–11364 (2018).
    [Crossref]
  10. C. H. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
    [Crossref]
  11. C. W. Hsu, S. Liu, F. Lu, C. W. Chow, C. H. Yeh, and G. K. Chang, “Accurate indoor visible light positioning system utilizing machine learning technique with height tolerance,” Proc. OFC2018, Paper M2K.2.
    [Crossref]
  12. H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
    [Crossref]
  13. C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
    [Crossref]
  14. C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
    [Crossref] [PubMed]
  15. K. Liang, C. W. Chow, and Y. Liu, “RGB visible light communication using mobile-phone camera and multi-input multi-output,” Opt. Express 24(9), 9383–9388 (2016).
    [Crossref] [PubMed]
  16. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
    [Crossref] [PubMed]
  17. I. C. Lu, C. H. Lai, C. H. Yeh, and J. Chen, “6.36 Gbit/s RGB LED-based WDM MIMO visible light communication system employing OFDM modulation,” Proc. OFC2017, Paper W2A39.
    [Crossref]
  18. R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
    [Crossref]
  19. S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38(19), 3792–3794 (2013).
    [Crossref] [PubMed]
  20. T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
    [Crossref] [PubMed]
  21. L. Y. Wei, C. H. Hsu, C. W. Chow, and C. H. Yeh, “40-Gbit/s visible light communication using polarization- multiplexed R/G/B laser diodes with 2-m free-space transmission,” Proc. OFC2019, paper M3I.3.
    [Crossref]
  22. C. H. Yeh, C. W. Chow, and L. Y. Wei, “1250 Mbit/s OOK wireless white-light VLC transmission based on phosphor laser diode,” IEEE Photonics J. 11(3), 7903205 (2019).
    [Crossref]
  23. C. H. Yeh, L. Y. Wei, and C. W. Chow, “Using a single VCSEL source employing OFDM downstream signal and remodulated OOK upstream signal for bi-directional visible light communications,” Sci. Rep. 7(1), 15846 (2017).
    [Crossref] [PubMed]
  24. M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” Proc. of TRIDENTCOM2006, 9075550.
  25. R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” Proc. of International Conference on Electrical and Computer Engineering, 2006, 408–411.
    [Crossref]

2019 (1)

C. H. Yeh, C. W. Chow, and L. Y. Wei, “1250 Mbit/s OOK wireless white-light VLC transmission based on phosphor laser diode,” IEEE Photonics J. 11(3), 7903205 (2019).
[Crossref]

2018 (3)

C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
[Crossref] [PubMed]

H. Yang, C. Chen, W. D. Zhong, and A. Alphones, “Joint precoder and equalizer design for multi-user multi-cell MIMO VLC systems,” IEEE Trans. Vehicular Technol. 67(12), 11354–11364 (2018).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

2017 (2)

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

C. H. Yeh, L. Y. Wei, and C. W. Chow, “Using a single VCSEL source employing OFDM downstream signal and remodulated OOK upstream signal for bi-directional visible light communications,” Sci. Rep. 7(1), 15846 (2017).
[Crossref] [PubMed]

2016 (4)

K. Liang, C. W. Chow, and Y. Liu, “RGB visible light communication using mobile-phone camera and multi-input multi-output,” Opt. Express 24(9), 9383–9388 (2016).
[Crossref] [PubMed]

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

C. H. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

2015 (1)

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

2014 (1)

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

2013 (1)

2012 (3)

2009 (1)

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Afgani, M. Z.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” Proc. of TRIDENTCOM2006, 9075550.

Alphones, A.

H. Yang, C. Chen, W. D. Zhong, and A. Alphones, “Joint precoder and equalizer design for multi-user multi-cell MIMO VLC systems,” IEEE Trans. Vehicular Technol. 67(12), 11354–11364 (2018).
[Crossref]

Baxley, R. J.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

Chang, C. H.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10m/500 Mbps WDM visible light communication systems,” Opt. Express 20(9), 9919–9924 (2012).
[Crossref] [PubMed]

Chang, G. K.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

C. W. Hsu, S. Liu, F. Lu, C. W. Chow, C. H. Yeh, and G. K. Chang, “Accurate indoor visible light positioning system utilizing machine learning technique with height tolerance,” Proc. OFC2018, Paper M2K.2.
[Crossref]

Chen, B. R.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

Chen, C.

H. Yang, C. Chen, W. D. Zhong, and A. Alphones, “Joint precoder and equalizer design for multi-user multi-cell MIMO VLC systems,” IEEE Trans. Vehicular Technol. 67(12), 11354–11364 (2018).
[Crossref]

Chen, C. Y.

Chen, J.

I. C. Lu, C. H. Lai, C. H. Yeh, and J. Chen, “6.36 Gbit/s RGB LED-based WDM MIMO visible light communication system employing OFDM modulation,” Proc. OFC2017, Paper W2A39.
[Crossref]

Chen, J. H.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

Chen, Y. Y.

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
[Crossref] [PubMed]

Cheng, C. J.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

Chi, N.

N. Chi, Y. Zhou, J. Shi, Y. Wang, and X. Huang, “Enabling technologies for high speed visible light communication,” Proc. OFC2017, Paper Th1E.3.
[Crossref]

Chi, Y. C.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Choudhury, P.

Chow, C. W.

C. H. Yeh, C. W. Chow, and L. Y. Wei, “1250 Mbit/s OOK wireless white-light VLC transmission based on phosphor laser diode,” IEEE Photonics J. 11(3), 7903205 (2019).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
[Crossref] [PubMed]

C. H. Yeh, L. Y. Wei, and C. W. Chow, “Using a single VCSEL source employing OFDM downstream signal and remodulated OOK upstream signal for bi-directional visible light communications,” Sci. Rep. 7(1), 15846 (2017).
[Crossref] [PubMed]

C. H. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

K. Liang, C. W. Chow, and Y. Liu, “RGB visible light communication using mobile-phone camera and multi-input multi-output,” Opt. Express 24(9), 9383–9388 (2016).
[Crossref] [PubMed]

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).

C. W. Hsu, S. Liu, F. Lu, C. W. Chow, C. H. Yeh, and G. K. Chang, “Accurate indoor visible light positioning system utilizing machine learning technique with height tolerance,” Proc. OFC2018, Paper M2K.2.
[Crossref]

L. Y. Wei, C. H. Hsu, C. W. Chow, and C. H. Yeh, “40-Gbit/s visible light communication using polarization- multiplexed R/G/B laser diodes with 2-m free-space transmission,” Proc. OFC2019, paper M3I.3.
[Crossref]

Chu, C. A.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

Chun, H.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Ciaramella, E.

Corsini, R.

Cossu, G.

Dawson, M. D.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Elgala, H.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” Proc. of TRIDENTCOM2006, 9075550.

Faulkner, G.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Ferreira, R. X. G.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Grzanka, S.

Gu, E.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Haas, H.

H. Haas, “Visible light communication,” Proc. OFC2015, Paper Tu2G.5.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” Proc. of TRIDENTCOM2006, 9075550.

Hsu, C. H.

C. H. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

L. Y. Wei, C. H. Hsu, C. W. Chow, and C. H. Yeh, “40-Gbit/s visible light communication using polarization- multiplexed R/G/B laser diodes with 2-m free-space transmission,” Proc. OFC2019, paper M3I.3.
[Crossref]

Hsu, C. W.

C. W. Hsu, S. Liu, F. Lu, C. W. Chow, C. H. Yeh, and G. K. Chang, “Accurate indoor visible light positioning system utilizing machine learning technique with height tolerance,” Proc. OFC2018, Paper M2K.2.
[Crossref]

Huang, X.

N. Chi, Y. Zhou, J. Shi, Y. Wang, and X. Huang, “Enabling technologies for high speed visible light communication,” Proc. OFC2017, Paper Th1E.3.
[Crossref]

Huang, Y. F.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Islam, A. R.

R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” Proc. of International Conference on Electrical and Computer Engineering, 2006, 408–411.
[Crossref]

Jung, D.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Kelly, A. E.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38(19), 3792–3794 (2013).
[Crossref] [PubMed]

Khalid, A. M.

Knipp, D.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” Proc. of TRIDENTCOM2006, 9075550.

Lai, C. H.

I. C. Lu, C. H. Lai, C. H. Yeh, and J. Chen, “6.36 Gbit/s RGB LED-based WDM MIMO visible light communication system employing OFDM modulation,” Proc. OFC2017, Paper W2A39.
[Crossref]

Lee, K.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Leszczynski, M.

Li, C. Y.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

Liang, K.

Liao, X. L.

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
[Crossref] [PubMed]

Lin, C. Y.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

Lin, G. R.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Lin, H. C.

Lin, H. H.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

Lin, K. H.

C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
[Crossref] [PubMed]

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

Lin, W. Y.

Lin, Y. P.

Liu, S.

C. W. Hsu, S. Liu, F. Lu, C. W. Chow, C. H. Yeh, and G. K. Chang, “Accurate indoor visible light positioning system utilizing machine learning technique with height tolerance,” Proc. OFC2018, Paper M2K.2.
[Crossref]

Liu, Y.

K. Liang, C. W. Chow, and Y. Liu, “RGB visible light communication using mobile-phone camera and multi-input multi-output,” Opt. Express 24(9), 9383–9388 (2016).
[Crossref] [PubMed]

C. H. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).

Liu, Y. C.

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
[Crossref] [PubMed]

Liu, Y. F.

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).

Liu, Y. L.

C. H. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

Lu, F.

C. W. Hsu, S. Liu, F. Lu, C. W. Chow, C. H. Yeh, and G. K. Chang, “Accurate indoor visible light positioning system utilizing machine learning technique with height tolerance,” Proc. OFC2018, Paper M2K.2.
[Crossref]

Lu, H. H.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10m/500 Mbps WDM visible light communication systems,” Opt. Express 20(9), 9919–9924 (2012).
[Crossref] [PubMed]

Lu, I. C.

C. H. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

I. C. Lu, C. H. Lai, C. H. Yeh, and J. Chen, “6.36 Gbit/s RGB LED-based WDM MIMO visible light communication system employing OFDM modulation,” Proc. OFC2017, Paper W2A39.
[Crossref]

McKendry, J. J. D.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Minh, H. L.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Najda, S. P.

O’Brien, D.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

O’Brien, D. C.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Oh, Y. J.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Penty, R. V.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Perlin, P.

Qian, H.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

Rahman, M. S.

R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” Proc. of International Conference on Electrical and Computer Engineering, 2006, 408–411.
[Crossref]

Rajbhandari, S.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Shafik, R. A.

R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” Proc. of International Conference on Electrical and Computer Engineering, 2006, 408–411.
[Crossref]

Shi, J.

N. Chi, Y. Zhou, J. Shi, Y. Wang, and X. Huang, “Enabling technologies for high speed visible light communication,” Proc. OFC2017, Paper Th1E.3.
[Crossref]

Shiu, R. J.

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
[Crossref] [PubMed]

Tan, M.

Targowski, G.

Tsai, C. T.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Tsai, W. S.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

Wan, Z. W.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

Wang, H. Y.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Wang, Y.

N. Chi, Y. Zhou, J. Shi, Y. Wang, and X. Huang, “Enabling technologies for high speed visible light communication,” Proc. OFC2017, Paper Th1E.3.
[Crossref]

Wang, Y. C.

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication,” Opt. Express 26(10), 12530–12535 (2018).
[Crossref] [PubMed]

Watson, S.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38(19), 3792–3794 (2013).
[Crossref] [PubMed]

Wei, L. Y.

C. H. Yeh, C. W. Chow, and L. Y. Wei, “1250 Mbit/s OOK wireless white-light VLC transmission based on phosphor laser diode,” IEEE Photonics J. 11(3), 7903205 (2019).
[Crossref]

C. H. Yeh, L. Y. Wei, and C. W. Chow, “Using a single VCSEL source employing OFDM downstream signal and remodulated OOK upstream signal for bi-directional visible light communications,” Sci. Rep. 7(1), 15846 (2017).
[Crossref] [PubMed]

L. Y. Wei, C. H. Hsu, C. W. Chow, and C. H. Yeh, “40-Gbit/s visible light communication using polarization- multiplexed R/G/B laser diodes with 2-m free-space transmission,” Proc. OFC2019, paper M3I.3.
[Crossref]

White, I. H.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Won, E. T.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Wu, C. J.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

Wu, H. W.

Wu, T. C.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Xie, E.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Yang, H.

H. Yang, C. Chen, W. D. Zhong, and A. Alphones, “Joint precoder and equalizer design for multi-user multi-cell MIMO VLC systems,” IEEE Trans. Vehicular Technol. 67(12), 11354–11364 (2018).
[Crossref]

Yeh, C. H.

C. H. Yeh, C. W. Chow, and L. Y. Wei, “1250 Mbit/s OOK wireless white-light VLC transmission based on phosphor laser diode,” IEEE Photonics J. 11(3), 7903205 (2019).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

C. H. Yeh, L. Y. Wei, and C. W. Chow, “Using a single VCSEL source employing OFDM downstream signal and remodulated OOK upstream signal for bi-directional visible light communications,” Sci. Rep. 7(1), 15846 (2017).
[Crossref] [PubMed]

C. H. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).

C. W. Hsu, S. Liu, F. Lu, C. W. Chow, C. H. Yeh, and G. K. Chang, “Accurate indoor visible light positioning system utilizing machine learning technique with height tolerance,” Proc. OFC2018, Paper M2K.2.
[Crossref]

I. C. Lu, C. H. Lai, C. H. Yeh, and J. Chen, “6.36 Gbit/s RGB LED-based WDM MIMO visible light communication system employing OFDM modulation,” Proc. OFC2017, Paper W2A39.
[Crossref]

L. Y. Wei, C. H. Hsu, C. W. Chow, and C. H. Yeh, “40-Gbit/s visible light communication using polarization- multiplexed R/G/B laser diodes with 2-m free-space transmission,” Proc. OFC2019, paper M3I.3.
[Crossref]

Ying, K.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

Yu, Z.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

Zeng, L.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Zhong, W. D.

H. Yang, C. Chen, W. D. Zhong, and A. Alphones, “Joint precoder and equalizer design for multi-user multi-cell MIMO VLC systems,” IEEE Trans. Vehicular Technol. 67(12), 11354–11364 (2018).
[Crossref]

Zhou, G. T.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

Zhou, Y.

N. Chi, Y. Zhou, J. Shi, Y. Wang, and X. Huang, “Enabling technologies for high speed visible light communication,” Proc. OFC2017, Paper Th1E.3.
[Crossref]

IEEE Photon. Soc. Newslett. (1)

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).

IEEE Photonics J. (4)

C. H. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 7902806 (2018).
[Crossref]

C. H. Yeh, C. W. Chow, and L. Y. Wei, “1250 Mbit/s OOK wireless white-light VLC transmission based on phosphor laser diode,” IEEE Photonics J. 11(3), 7903205 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (2)

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

IEEE Trans. Vehicular Technol. (1)

H. Yang, C. Chen, W. D. Zhong, and A. Alphones, “Joint precoder and equalizer design for multi-user multi-cell MIMO VLC systems,” IEEE Trans. Vehicular Technol. 67(12), 11354–11364 (2018).
[Crossref]

IEEE Wirel. Commun. (1)

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

J. Lightwave Technol. (1)

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Sci. Rep. (2)

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

C. H. Yeh, L. Y. Wei, and C. W. Chow, “Using a single VCSEL source employing OFDM downstream signal and remodulated OOK upstream signal for bi-directional visible light communications,” Sci. Rep. 7(1), 15846 (2017).
[Crossref] [PubMed]

Other (8)

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” Proc. of TRIDENTCOM2006, 9075550.

R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” Proc. of International Conference on Electrical and Computer Engineering, 2006, 408–411.
[Crossref]

L. Y. Wei, C. H. Hsu, C. W. Chow, and C. H. Yeh, “40-Gbit/s visible light communication using polarization- multiplexed R/G/B laser diodes with 2-m free-space transmission,” Proc. OFC2019, paper M3I.3.
[Crossref]

I. C. Lu, C. H. Lai, C. H. Yeh, and J. Chen, “6.36 Gbit/s RGB LED-based WDM MIMO visible light communication system employing OFDM modulation,” Proc. OFC2017, Paper W2A39.
[Crossref]

H. Haas, “Visible light communication,” Proc. OFC2015, Paper Tu2G.5.

C. W. Hsu, S. Liu, F. Lu, C. W. Chow, C. H. Yeh, and G. K. Chang, “Accurate indoor visible light positioning system utilizing machine learning technique with height tolerance,” Proc. OFC2018, Paper M2K.2.
[Crossref]

J. Vučić and K. D. Langer, “High-speed visible light communications: state-of-the-art,” Proc. OFC 2012, Paper OTh3G.3.

N. Chi, Y. Zhou, J. Shi, Y. Wang, and X. Huang, “Enabling technologies for high speed visible light communication,” Proc. OFC2017, Paper Th1E.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Architecture of the tricolor RGB LD VLC experiment. AWG: arbitrary waveform generator; LD: laser diode; DM: dichroic mirrors; PBS: polarization beam splitter; PD: photodiode; RTO: real-time oscilloscope. (b) Encoding and decoding processes of OFDM in Matlab.
Fig. 2
Fig. 2 Photographs of (a) top-view and (b) side-view of the polarization multiplexed tricolor RGB VLC Tx. (b) Measured RGB optical spectra at the output of Tx.
Fig. 3
Fig. 3 (a) Measured RGB optical spectra at the output of Tx. (b) Measured optical output powers of the R, G, B LDs at different biased currents.
Fig. 4
Fig. 4 (a) Measured SNRs, bit-loaded and (b) power-loaded of the p-polarization and (c), (d) the corresponding s-polarization R channel. (e) Measured SNRs, bit-loaded and (f) power-loaded of the p-polarization and (g), (h) the corresponding s-polarization G channel. Measured (i) SNRs, bit-loaded and (j) power-loaded of the p-polarization, (k), (l) the corresponding s-polarization B channel.
Fig. 5
Fig. 5 Measured BER curves of color and polarization de-multiplexed (a) R, (b) G and (c) B color channels.

Metrics