Abstract

This report introduces a novel time resolved Brillouin spectrometer, consisting of an opto-acoustic transducer which resides on the tip of a single-mode optical fiber of arbitrary length with 125 μm outer diameter and 5 μm sensing diameter. Demonstrated here are proof of concept spectroscopic measurements – shifts in Brillouin frequency – with sensitivities of 41±3MHz/%wt and 2.5±0.6 MHz/°C for changes in water-salinity and water-temperature, respectively, and an interpolated frequency resolution of 9±2 MHz. The technique benefits from low-cost raw materials, scalable fabrication, scalable pixel density, easy alignment, and data acquisition speeds down to 0.4 s: traits which make this compatible with in vivo applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering

Yair Antman, Alex Clain, Yosef London, and Avi Zadok
Optica 3(5) 510-516 (2016)

Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens

Stephan Reiß, Gerolf Burau, Oliver Stachs, Rudolf Guthoff, and Heinrich Stolz
Biomed. Opt. Express 2(8) 2144-2159 (2011)

References

  • View by:
  • |
  • |
  • |

  1. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2, 39–43 (2008).
    [Crossref]
  2. T. Dehoux and B. Audoin, “Non-invasive optoacoustic probing of the density and stiffness of single biological cells,” J. Appl. Phys. 112, 124702 (2012).
    [Crossref]
  3. G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20, 9197 (2012).
    [Crossref] [PubMed]
  4. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [Crossref]
  5. M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light. Sci. Appl. 6, e17103 (2017).
    [Crossref]
  6. I. V. Kabakova, Y. Xiang, C. Paterson, and P. Török, “Fiber-integrated Brillouin microspectroscopy: Towards Brillouin endoscopy,” J. Innov. Opt. Heal. Sci. 10, 1742002 (2017).
    [Crossref]
  7. G. Pakulski and F. Holuj, “Fiber-optics Brillouin scattering spectrometer,” Rev. Sci. Instrum. 61, 1390–1394 (1990).
    [Crossref]
  8. L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène: Influence de l’agitation thermique,” Ann. Phys. 9, 88–122 (1922).
    [Crossref]
  9. C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
    [Crossref]
  10. F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
    [Crossref] [PubMed]
  11. F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Rep. 6, 39326 (2016).
    [Crossref] [PubMed]
  12. R. Fuentes-Domínguez, F. Pérez-Cota, S. Naznin, R. J. Smith, and M. Clark, “Super-resolution imaging using nano-bells,” Sci. Rep. 8, 16373 (2018).
    [Crossref] [PubMed]
  13. P. A. Elzinga, F. E. Lytle, Y. Jian, G. B. King, and N. M. Laurendeau, “Pump/probe spectroscopy by asynchronous optical sampling,” Appl. Spectrosc. 41, 2–4 (1987).
    [Crossref]
  14. R. J. Smith, F. P. Cota, L. Marques, X. Chen, A. Arca, K. Webb, J. Aylott, M. G. Somekh, and M. Clark, “Optically excited nanoscale ultrasonic transducers,” J. Acoust. Soc. Am. 137, 219–227 (2015).
    [Crossref] [PubMed]
  15. F. Yang, T. Atay, C. H. Dang, T. J. Grimsley, S. Che, J. Ma, Q. Zhang, A. V. Nurmikko, and H. J. Maris, “Study of phonon propagation in water using picosecond ultrasonics,” J. Phys. Conf. Ser. 92, 012024 (2007).
    [Crossref]
  16. J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
    [Crossref]
  17. F. A. A. Fergusson, E. W. Guptill, and A. D. MacDonald, “Velocity of sound in glycerol,” J. Acoust. Soc. Am. 26, 67–69 (1954).
    [Crossref]
  18. X. Quan and E. S. Fry, “Empirical equation for the index of refraction of seawater,” Appl. Opt. 34, 3477–3480 (1995).
    [Crossref] [PubMed]
  19. K. V. Mackenzie, “Discussion of sea water sound-speed determinations,” J. Acoust. Soc. Am. 70, 801–806 (1981).
    [Crossref]
  20. A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” in Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, vol. 5068 (International Society for Optics and Photonics, 2003), pp. 393–395.
  21. F. Yang, T. J. Grimsley, S. Che, G. A. Antonelli, H. J. Maris, and A. V. Nurmikko, “Picosecond ultrasonic experiments with water and its application to the measurement of nanostructures,” J. Appl. Phys. 107, 103537 (2010).
    [Crossref]
  22. K. König, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,” Opt. Lett. 22, 135–136 (1997).
    [Crossref] [PubMed]
  23. C. Hill, D. Homa, Z. Yu, Y. Cheng, B. Liu, A. Wang, and G. Pickrell, “Single mode air-clad single crystal sapphire optical fiber,” Appl. Sci. 7, 473 (2017).
    [Crossref]
  24. J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H. C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.-P. Rieu, and T. Dehoux, “High-frequency mechanical properties of tumors measured by Brillouin light scattering,” Phys. Rev. Lett. 122, 018101 (2019).
    [Crossref] [PubMed]
  25. F. Pérez-Cota, R. J. Smith, H. M. Elsheikha, and M. Clark, “New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy,” Biomed. Opt. Express 10, 2399–2408 (2019).
    [Crossref]

2019 (2)

J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H. C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.-P. Rieu, and T. Dehoux, “High-frequency mechanical properties of tumors measured by Brillouin light scattering,” Phys. Rev. Lett. 122, 018101 (2019).
[Crossref] [PubMed]

F. Pérez-Cota, R. J. Smith, H. M. Elsheikha, and M. Clark, “New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy,” Biomed. Opt. Express 10, 2399–2408 (2019).
[Crossref]

2018 (1)

R. Fuentes-Domínguez, F. Pérez-Cota, S. Naznin, R. J. Smith, and M. Clark, “Super-resolution imaging using nano-bells,” Sci. Rep. 8, 16373 (2018).
[Crossref] [PubMed]

2017 (3)

C. Hill, D. Homa, Z. Yu, Y. Cheng, B. Liu, A. Wang, and G. Pickrell, “Single mode air-clad single crystal sapphire optical fiber,” Appl. Sci. 7, 473 (2017).
[Crossref]

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light. Sci. Appl. 6, e17103 (2017).
[Crossref]

I. V. Kabakova, Y. Xiang, C. Paterson, and P. Török, “Fiber-integrated Brillouin microspectroscopy: Towards Brillouin endoscopy,” J. Innov. Opt. Heal. Sci. 10, 1742002 (2017).
[Crossref]

2016 (1)

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Rep. 6, 39326 (2016).
[Crossref] [PubMed]

2015 (2)

R. J. Smith, F. P. Cota, L. Marques, X. Chen, A. Arca, K. Webb, J. Aylott, M. G. Somekh, and M. Clark, “Optically excited nanoscale ultrasonic transducers,” J. Acoust. Soc. Am. 137, 219–227 (2015).
[Crossref] [PubMed]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
[Crossref] [PubMed]

2012 (2)

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20, 9197 (2012).
[Crossref] [PubMed]

T. Dehoux and B. Audoin, “Non-invasive optoacoustic probing of the density and stiffness of single biological cells,” J. Appl. Phys. 112, 124702 (2012).
[Crossref]

2010 (1)

F. Yang, T. J. Grimsley, S. Che, G. A. Antonelli, H. J. Maris, and A. V. Nurmikko, “Picosecond ultrasonic experiments with water and its application to the measurement of nanostructures,” J. Appl. Phys. 107, 103537 (2010).
[Crossref]

2008 (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2, 39–43 (2008).
[Crossref]

2007 (1)

F. Yang, T. Atay, C. H. Dang, T. J. Grimsley, S. Che, J. Ma, Q. Zhang, A. V. Nurmikko, and H. J. Maris, “Study of phonon propagation in water using picosecond ultrasonics,” J. Phys. Conf. Ser. 92, 012024 (2007).
[Crossref]

1997 (2)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

K. König, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,” Opt. Lett. 22, 135–136 (1997).
[Crossref] [PubMed]

1995 (1)

1990 (2)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

G. Pakulski and F. Holuj, “Fiber-optics Brillouin scattering spectrometer,” Rev. Sci. Instrum. 61, 1390–1394 (1990).
[Crossref]

1987 (1)

1984 (1)

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

1981 (1)

K. V. Mackenzie, “Discussion of sea water sound-speed determinations,” J. Acoust. Soc. Am. 70, 801–806 (1981).
[Crossref]

1954 (1)

F. A. A. Fergusson, E. W. Guptill, and A. D. MacDonald, “Velocity of sound in glycerol,” J. Acoust. Soc. Am. 26, 67–69 (1954).
[Crossref]

1922 (1)

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène: Influence de l’agitation thermique,” Ann. Phys. 9, 88–122 (1922).
[Crossref]

Antonelli, G. A.

F. Yang, T. J. Grimsley, S. Che, G. A. Antonelli, H. J. Maris, and A. V. Nurmikko, “Picosecond ultrasonic experiments with water and its application to the measurement of nanostructures,” J. Appl. Phys. 107, 103537 (2010).
[Crossref]

Arca, A.

R. J. Smith, F. P. Cota, L. Marques, X. Chen, A. Arca, K. Webb, J. Aylott, M. G. Somekh, and M. Clark, “Optically excited nanoscale ultrasonic transducers,” J. Acoust. Soc. Am. 137, 219–227 (2015).
[Crossref] [PubMed]

Atay, T.

F. Yang, T. Atay, C. H. Dang, T. J. Grimsley, S. Che, J. Ma, Q. Zhang, A. V. Nurmikko, and H. J. Maris, “Study of phonon propagation in water using picosecond ultrasonics,” J. Phys. Conf. Ser. 92, 012024 (2007).
[Crossref]

Audoin, B.

T. Dehoux and B. Audoin, “Non-invasive optoacoustic probing of the density and stiffness of single biological cells,” J. Appl. Phys. 112, 124702 (2012).
[Crossref]

Aylott, J.

R. J. Smith, F. P. Cota, L. Marques, X. Chen, A. Arca, K. Webb, J. Aylott, M. G. Somekh, and M. Clark, “Optically excited nanoscale ultrasonic transducers,” J. Acoust. Soc. Am. 137, 219–227 (2015).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” in Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, vol. 5068 (International Society for Optics and Photonics, 2003), pp. 393–395.

Beard, P. C.

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light. Sci. Appl. 6, e17103 (2017).
[Crossref]

Berthelot, A.

J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H. C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.-P. Rieu, and T. Dehoux, “High-frequency mechanical properties of tumors measured by Brillouin light scattering,” Phys. Rev. Lett. 122, 018101 (2019).
[Crossref] [PubMed]

Brillouin, L.

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène: Influence de l’agitation thermique,” Ann. Phys. 9, 88–122 (1922).
[Crossref]

Che, S.

F. Yang, T. J. Grimsley, S. Che, G. A. Antonelli, H. J. Maris, and A. V. Nurmikko, “Picosecond ultrasonic experiments with water and its application to the measurement of nanostructures,” J. Appl. Phys. 107, 103537 (2010).
[Crossref]

F. Yang, T. Atay, C. H. Dang, T. J. Grimsley, S. Che, J. Ma, Q. Zhang, A. V. Nurmikko, and H. J. Maris, “Study of phonon propagation in water using picosecond ultrasonics,” J. Phys. Conf. Ser. 92, 012024 (2007).
[Crossref]

Chen, X.

R. J. Smith, F. P. Cota, L. Marques, X. Chen, A. Arca, K. Webb, J. Aylott, M. G. Somekh, and M. Clark, “Optically excited nanoscale ultrasonic transducers,” J. Acoust. Soc. Am. 137, 219–227 (2015).
[Crossref] [PubMed]

Cheng, Y.

C. Hill, D. Homa, Z. Yu, Y. Cheng, B. Liu, A. Wang, and G. Pickrell, “Single mode air-clad single crystal sapphire optical fiber,” Appl. Sci. 7, 473 (2017).
[Crossref]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Clark, M.

F. Pérez-Cota, R. J. Smith, H. M. Elsheikha, and M. Clark, “New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy,” Biomed. Opt. Express 10, 2399–2408 (2019).
[Crossref]

R. Fuentes-Domínguez, F. Pérez-Cota, S. Naznin, R. J. Smith, and M. Clark, “Super-resolution imaging using nano-bells,” Sci. Rep. 8, 16373 (2018).
[Crossref] [PubMed]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Rep. 6, 39326 (2016).
[Crossref] [PubMed]

R. J. Smith, F. P. Cota, L. Marques, X. Chen, A. Arca, K. Webb, J. Aylott, M. G. Somekh, and M. Clark, “Optically excited nanoscale ultrasonic transducers,” J. Acoust. Soc. Am. 137, 219–227 (2015).
[Crossref] [PubMed]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
[Crossref] [PubMed]

Colchester, R. J.

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light. Sci. Appl. 6, e17103 (2017).
[Crossref]

Cota, F. P.

R. J. Smith, F. P. Cota, L. Marques, X. Chen, A. Arca, K. Webb, J. Aylott, M. G. Somekh, and M. Clark, “Optically excited nanoscale ultrasonic transducers,” J. Acoust. Soc. Am. 137, 219–227 (2015).
[Crossref] [PubMed]

Dagany, X.

J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H. C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.-P. Rieu, and T. Dehoux, “High-frequency mechanical properties of tumors measured by Brillouin light scattering,” Phys. Rev. Lett. 122, 018101 (2019).
[Crossref] [PubMed]

Dang, C. H.

F. Yang, T. Atay, C. H. Dang, T. J. Grimsley, S. Che, J. Ma, Q. Zhang, A. V. Nurmikko, and H. J. Maris, “Study of phonon propagation in water using picosecond ultrasonics,” J. Phys. Conf. Ser. 92, 012024 (2007).
[Crossref]

Dehoux, T.

J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H. C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.-P. Rieu, and T. Dehoux, “High-frequency mechanical properties of tumors measured by Brillouin light scattering,” Phys. Rev. Lett. 122, 018101 (2019).
[Crossref] [PubMed]

T. Dehoux and B. Audoin, “Non-invasive optoacoustic probing of the density and stiffness of single biological cells,” J. Appl. Phys. 112, 124702 (2012).
[Crossref]

Delanoë-Ayari, H.

J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H. C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.-P. Rieu, and T. Dehoux, “High-frequency mechanical properties of tumors measured by Brillouin light scattering,” Phys. Rev. Lett. 122, 018101 (2019).
[Crossref] [PubMed]

Desjardins, A. E.

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light. Sci. Appl. 6, e17103 (2017).
[Crossref]

Elsheikha, H. M.

Elzinga, P. A.

Fergusson, F. A. A.

F. A. A. Fergusson, E. W. Guptill, and A. D. MacDonald, “Velocity of sound in glycerol,” J. Acoust. Soc. Am. 26, 67–69 (1954).
[Crossref]

Finlay, M. C.

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light. Sci. Appl. 6, e17103 (2017).
[Crossref]

Fry, E. S.

Fuentes-Domínguez, R.

R. Fuentes-Domínguez, F. Pérez-Cota, S. Naznin, R. J. Smith, and M. Clark, “Super-resolution imaging using nano-bells,” Sci. Rep. 8, 16373 (2018).
[Crossref] [PubMed]

Genina, E. A.

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” in Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, vol. 5068 (International Society for Optics and Photonics, 2003), pp. 393–395.

Gratton, E.

Grimsley, T. J.

F. Yang, T. J. Grimsley, S. Che, G. A. Antonelli, H. J. Maris, and A. V. Nurmikko, “Picosecond ultrasonic experiments with water and its application to the measurement of nanostructures,” J. Appl. Phys. 107, 103537 (2010).
[Crossref]

F. Yang, T. Atay, C. H. Dang, T. J. Grimsley, S. Che, J. Ma, Q. Zhang, A. V. Nurmikko, and H. J. Maris, “Study of phonon propagation in water using picosecond ultrasonics,” J. Phys. Conf. Ser. 92, 012024 (2007).
[Crossref]

Guptill, E. W.

F. A. A. Fergusson, E. W. Guptill, and A. D. MacDonald, “Velocity of sound in glycerol,” J. Acoust. Soc. Am. 26, 67–69 (1954).
[Crossref]

Hauser, J. J.

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Hill, C.

C. Hill, D. Homa, Z. Yu, Y. Cheng, B. Liu, A. Wang, and G. Pickrell, “Single mode air-clad single crystal sapphire optical fiber,” Appl. Sci. 7, 473 (2017).
[Crossref]

Holuj, F.

G. Pakulski and F. Holuj, “Fiber-optics Brillouin scattering spectrometer,” Rev. Sci. Instrum. 61, 1390–1394 (1990).
[Crossref]

Homa, D.

C. Hill, D. Homa, Z. Yu, Y. Cheng, B. Liu, A. Wang, and G. Pickrell, “Single mode air-clad single crystal sapphire optical fiber,” Appl. Sci. 7, 473 (2017).
[Crossref]

Jian, Y.

Kabakova, I. V.

I. V. Kabakova, Y. Xiang, C. Paterson, and P. Török, “Fiber-integrated Brillouin microspectroscopy: Towards Brillouin endoscopy,” J. Innov. Opt. Heal. Sci. 10, 1742002 (2017).
[Crossref]

King, G. B.

König, K.

Köser, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Laurendeau, N. M.

Liu, B.

C. Hill, D. Homa, Z. Yu, Y. Cheng, B. Liu, A. Wang, and G. Pickrell, “Single mode air-clad single crystal sapphire optical fiber,” Appl. Sci. 7, 473 (2017).
[Crossref]

Lytle, F. E.

Ma, J.

F. Yang, T. Atay, C. H. Dang, T. J. Grimsley, S. Che, J. Ma, Q. Zhang, A. V. Nurmikko, and H. J. Maris, “Study of phonon propagation in water using picosecond ultrasonics,” J. Phys. Conf. Ser. 92, 012024 (2007).
[Crossref]

MacDonald, A. D.

F. A. A. Fergusson, E. W. Guptill, and A. D. MacDonald, “Velocity of sound in glycerol,” J. Acoust. Soc. Am. 26, 67–69 (1954).
[Crossref]

Mackenzie, K. V.

K. V. Mackenzie, “Discussion of sea water sound-speed determinations,” J. Acoust. Soc. Am. 70, 801–806 (1981).
[Crossref]

Mantulin, W. W.

Margueritat, J.

J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H. C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.-P. Rieu, and T. Dehoux, “High-frequency mechanical properties of tumors measured by Brillouin light scattering,” Phys. Rev. Lett. 122, 018101 (2019).
[Crossref] [PubMed]

Maris, H. J.

F. Yang, T. J. Grimsley, S. Che, G. A. Antonelli, H. J. Maris, and A. V. Nurmikko, “Picosecond ultrasonic experiments with water and its application to the measurement of nanostructures,” J. Appl. Phys. 107, 103537 (2010).
[Crossref]

F. Yang, T. Atay, C. H. Dang, T. J. Grimsley, S. Che, J. Ma, Q. Zhang, A. V. Nurmikko, and H. J. Maris, “Study of phonon propagation in water using picosecond ultrasonics,” J. Phys. Conf. Ser. 92, 012024 (2007).
[Crossref]

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Marques, L.

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Rep. 6, 39326 (2016).
[Crossref] [PubMed]

R. J. Smith, F. P. Cota, L. Marques, X. Chen, A. Arca, K. Webb, J. Aylott, M. G. Somekh, and M. Clark, “Optically excited nanoscale ultrasonic transducers,” J. Acoust. Soc. Am. 137, 219–227 (2015).
[Crossref] [PubMed]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
[Crossref] [PubMed]

Martinet, Q.

J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H. C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.-P. Rieu, and T. Dehoux, “High-frequency mechanical properties of tumors measured by Brillouin light scattering,” Phys. Rev. Lett. 122, 018101 (2019).
[Crossref] [PubMed]

Mertani, H. C.

J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H. C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.-P. Rieu, and T. Dehoux, “High-frequency mechanical properties of tumors measured by Brillouin light scattering,” Phys. Rev. Lett. 122, 018101 (2019).
[Crossref] [PubMed]

Monnier, S.

J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H. C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.-P. Rieu, and T. Dehoux, “High-frequency mechanical properties of tumors measured by Brillouin light scattering,” Phys. Rev. Lett. 122, 018101 (2019).
[Crossref] [PubMed]

Moradi, E.

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Rep. 6, 39326 (2016).
[Crossref] [PubMed]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
[Crossref] [PubMed]

Mosse, C. A.

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light. Sci. Appl. 6, e17103 (2017).
[Crossref]

Naznin, S.

R. Fuentes-Domínguez, F. Pérez-Cota, S. Naznin, R. J. Smith, and M. Clark, “Super-resolution imaging using nano-bells,” Sci. Rep. 8, 16373 (2018).
[Crossref] [PubMed]

Noimark, S.

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light. Sci. Appl. 6, e17103 (2017).
[Crossref]

Nurmikko, A. V.

F. Yang, T. J. Grimsley, S. Che, G. A. Antonelli, H. J. Maris, and A. V. Nurmikko, “Picosecond ultrasonic experiments with water and its application to the measurement of nanostructures,” J. Appl. Phys. 107, 103537 (2010).
[Crossref]

F. Yang, T. Atay, C. H. Dang, T. J. Grimsley, S. Che, J. Ma, Q. Zhang, A. V. Nurmikko, and H. J. Maris, “Study of phonon propagation in water using picosecond ultrasonics,” J. Phys. Conf. Ser. 92, 012024 (2007).
[Crossref]

Ourselin, S.

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light. Sci. Appl. 6, e17103 (2017).
[Crossref]

Pakulski, G.

G. Pakulski and F. Holuj, “Fiber-optics Brillouin scattering spectrometer,” Rev. Sci. Instrum. 61, 1390–1394 (1990).
[Crossref]

Papakonstantinou, I.

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light. Sci. Appl. 6, e17103 (2017).
[Crossref]

Parkin, I. P.

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light. Sci. Appl. 6, e17103 (2017).
[Crossref]

Paterson, C.

I. V. Kabakova, Y. Xiang, C. Paterson, and P. Török, “Fiber-integrated Brillouin microspectroscopy: Towards Brillouin endoscopy,” J. Innov. Opt. Heal. Sci. 10, 1742002 (2017).
[Crossref]

Pérez-Cota, F.

F. Pérez-Cota, R. J. Smith, H. M. Elsheikha, and M. Clark, “New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy,” Biomed. Opt. Express 10, 2399–2408 (2019).
[Crossref]

R. Fuentes-Domínguez, F. Pérez-Cota, S. Naznin, R. J. Smith, and M. Clark, “Super-resolution imaging using nano-bells,” Sci. Rep. 8, 16373 (2018).
[Crossref] [PubMed]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Rep. 6, 39326 (2016).
[Crossref] [PubMed]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
[Crossref] [PubMed]

Pickrell, G.

C. Hill, D. Homa, Z. Yu, Y. Cheng, B. Liu, A. Wang, and G. Pickrell, “Single mode air-clad single crystal sapphire optical fiber,” Appl. Sci. 7, 473 (2017).
[Crossref]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Quan, X.

Rheims, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Rieu, J.-P.

J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H. C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.-P. Rieu, and T. Dehoux, “High-frequency mechanical properties of tumors measured by Brillouin light scattering,” Phys. Rev. Lett. 122, 018101 (2019).
[Crossref] [PubMed]

Rivière, C.

J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H. C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.-P. Rieu, and T. Dehoux, “High-frequency mechanical properties of tumors measured by Brillouin light scattering,” Phys. Rev. Lett. 122, 018101 (2019).
[Crossref] [PubMed]

Scarcelli, G.

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20, 9197 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2, 39–43 (2008).
[Crossref]

Schilling, R. J.

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light. Sci. Appl. 6, e17103 (2017).
[Crossref]

Smith, R. J.

F. Pérez-Cota, R. J. Smith, H. M. Elsheikha, and M. Clark, “New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy,” Biomed. Opt. Express 10, 2399–2408 (2019).
[Crossref]

R. Fuentes-Domínguez, F. Pérez-Cota, S. Naznin, R. J. Smith, and M. Clark, “Super-resolution imaging using nano-bells,” Sci. Rep. 8, 16373 (2018).
[Crossref] [PubMed]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Rep. 6, 39326 (2016).
[Crossref] [PubMed]

R. J. Smith, F. P. Cota, L. Marques, X. Chen, A. Arca, K. Webb, J. Aylott, M. G. Somekh, and M. Clark, “Optically excited nanoscale ultrasonic transducers,” J. Acoust. Soc. Am. 137, 219–227 (2015).
[Crossref] [PubMed]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
[Crossref] [PubMed]

So, P. T. C.

Somekh, M. G.

R. J. Smith, F. P. Cota, L. Marques, X. Chen, A. Arca, K. Webb, J. Aylott, M. G. Somekh, and M. Clark, “Optically excited nanoscale ultrasonic transducers,” J. Acoust. Soc. Am. 137, 219–227 (2015).
[Crossref] [PubMed]

Strait, J.

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Tauc, J.

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Thomsen, C.

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Török, P.

I. V. Kabakova, Y. Xiang, C. Paterson, and P. Török, “Fiber-integrated Brillouin microspectroscopy: Towards Brillouin endoscopy,” J. Innov. Opt. Heal. Sci. 10, 1742002 (2017).
[Crossref]

Vardeny, Z.

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Virgone-Carlotta, A.

J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H. C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.-P. Rieu, and T. Dehoux, “High-frequency mechanical properties of tumors measured by Brillouin light scattering,” Phys. Rev. Lett. 122, 018101 (2019).
[Crossref] [PubMed]

Wang, A.

C. Hill, D. Homa, Z. Yu, Y. Cheng, B. Liu, A. Wang, and G. Pickrell, “Single mode air-clad single crystal sapphire optical fiber,” Appl. Sci. 7, 473 (2017).
[Crossref]

Webb, K.

R. J. Smith, F. P. Cota, L. Marques, X. Chen, A. Arca, K. Webb, J. Aylott, M. G. Somekh, and M. Clark, “Optically excited nanoscale ultrasonic transducers,” J. Acoust. Soc. Am. 137, 219–227 (2015).
[Crossref] [PubMed]

Webb, K. F.

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Rep. 6, 39326 (2016).
[Crossref] [PubMed]

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells,” Appl. Opt. 54, 8388 (2015).
[Crossref] [PubMed]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Wriedt, T.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Xiang, Y.

I. V. Kabakova, Y. Xiang, C. Paterson, and P. Török, “Fiber-integrated Brillouin microspectroscopy: Towards Brillouin endoscopy,” J. Innov. Opt. Heal. Sci. 10, 1742002 (2017).
[Crossref]

Yang, F.

F. Yang, T. J. Grimsley, S. Che, G. A. Antonelli, H. J. Maris, and A. V. Nurmikko, “Picosecond ultrasonic experiments with water and its application to the measurement of nanostructures,” J. Appl. Phys. 107, 103537 (2010).
[Crossref]

F. Yang, T. Atay, C. H. Dang, T. J. Grimsley, S. Che, J. Ma, Q. Zhang, A. V. Nurmikko, and H. J. Maris, “Study of phonon propagation in water using picosecond ultrasonics,” J. Phys. Conf. Ser. 92, 012024 (2007).
[Crossref]

Yu, Z.

C. Hill, D. Homa, Z. Yu, Y. Cheng, B. Liu, A. Wang, and G. Pickrell, “Single mode air-clad single crystal sapphire optical fiber,” Appl. Sci. 7, 473 (2017).
[Crossref]

Yun, S. H.

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20, 9197 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2, 39–43 (2008).
[Crossref]

Zhang, E. Z.

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light. Sci. Appl. 6, e17103 (2017).
[Crossref]

Zhang, Q.

F. Yang, T. Atay, C. H. Dang, T. J. Grimsley, S. Che, J. Ma, Q. Zhang, A. V. Nurmikko, and H. J. Maris, “Study of phonon propagation in water using picosecond ultrasonics,” J. Phys. Conf. Ser. 92, 012024 (2007).
[Crossref]

Ann. Phys. (1)

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène: Influence de l’agitation thermique,” Ann. Phys. 9, 88–122 (1922).
[Crossref]

Appl. Opt. (2)

Appl. Sci. (1)

C. Hill, D. Homa, Z. Yu, Y. Cheng, B. Liu, A. Wang, and G. Pickrell, “Single mode air-clad single crystal sapphire optical fiber,” Appl. Sci. 7, 473 (2017).
[Crossref]

Appl. Spectrosc. (1)

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

J. Acoust. Soc. Am. (3)

R. J. Smith, F. P. Cota, L. Marques, X. Chen, A. Arca, K. Webb, J. Aylott, M. G. Somekh, and M. Clark, “Optically excited nanoscale ultrasonic transducers,” J. Acoust. Soc. Am. 137, 219–227 (2015).
[Crossref] [PubMed]

F. A. A. Fergusson, E. W. Guptill, and A. D. MacDonald, “Velocity of sound in glycerol,” J. Acoust. Soc. Am. 26, 67–69 (1954).
[Crossref]

K. V. Mackenzie, “Discussion of sea water sound-speed determinations,” J. Acoust. Soc. Am. 70, 801–806 (1981).
[Crossref]

J. Appl. Phys. (2)

F. Yang, T. J. Grimsley, S. Che, G. A. Antonelli, H. J. Maris, and A. V. Nurmikko, “Picosecond ultrasonic experiments with water and its application to the measurement of nanostructures,” J. Appl. Phys. 107, 103537 (2010).
[Crossref]

T. Dehoux and B. Audoin, “Non-invasive optoacoustic probing of the density and stiffness of single biological cells,” J. Appl. Phys. 112, 124702 (2012).
[Crossref]

J. Innov. Opt. Heal. Sci. (1)

I. V. Kabakova, Y. Xiang, C. Paterson, and P. Török, “Fiber-integrated Brillouin microspectroscopy: Towards Brillouin endoscopy,” J. Innov. Opt. Heal. Sci. 10, 1742002 (2017).
[Crossref]

J. Phys. Conf. Ser. (1)

F. Yang, T. Atay, C. H. Dang, T. J. Grimsley, S. Che, J. Ma, Q. Zhang, A. V. Nurmikko, and H. J. Maris, “Study of phonon propagation in water using picosecond ultrasonics,” J. Phys. Conf. Ser. 92, 012024 (2007).
[Crossref]

Light. Sci. Appl. (1)

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light. Sci. Appl. 6, e17103 (2017).
[Crossref]

Meas. Sci. Technol. (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Nat. Photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2, 39–43 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H. C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.-P. Rieu, and T. Dehoux, “High-frequency mechanical properties of tumors measured by Brillouin light scattering,” Phys. Rev. Lett. 122, 018101 (2019).
[Crossref] [PubMed]

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Rev. Sci. Instrum. (1)

G. Pakulski and F. Holuj, “Fiber-optics Brillouin scattering spectrometer,” Rev. Sci. Instrum. 61, 1390–1394 (1990).
[Crossref]

Sci. Rep. (2)

F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons,” Sci. Rep. 6, 39326 (2016).
[Crossref] [PubMed]

R. Fuentes-Domínguez, F. Pérez-Cota, S. Naznin, R. J. Smith, and M. Clark, “Super-resolution imaging using nano-bells,” Sci. Rep. 8, 16373 (2018).
[Crossref] [PubMed]

Other (1)

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” in Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, vol. 5068 (International Society for Optics and Photonics, 2003), pp. 393–395.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Diagram of the optical system designed and used for the single-fiber Brillouin spectrometer. (b) The device architecture consists of a 125 μm outer diameter (cladding), 5 μm sensing diameter (core), and adhesion (ITO), generation (Au), and hydrophobic (C) layers. Visualization of Brillouin scattering: light reflected by the fiber-transducer interface interferes with the light scattered by periodic changes in the refractive index of the external medium (water).
Fig. 2
Fig. 2 (a) Time resolved signal (blue line) from Brillouin scattering (in water). The dark red line represents the acoustic attenuation in water taken from literature [15], which matches the decay of the signal. Light red shading shows the divergence of the probe spot (wpr). (b) Fast Fourier transform (FFT) of the time trace reveals Brillouin frequencies of 5.235±0.004 GHz (water) and 22.00±0.07 GHz (glass). (c) FFT magnitude color map, overlaid by the frequency at which the maximum magnitude occurs, as functions of experiment time. Probe-dipping in and out of water occurred every ≈ 10 s, as shown by the sharp transitions between 5.24±0.02 GHz (water) and 22.1±0.2 GHz (glass of fiber-core when tip is in air).
Fig. 3
Fig. 3 (a) Spectroscopy in air, water, glycerol, water, and air. (b) Shifts in Brillouin frequency and spectral broadening as the probe-tip slowly approached glycerol. (c) Example TRBS signals averaged from the air, glycerol, and water layers. (d) Corresponding frequency spectra for traces in (c), revealing maxima at 5.24±0.08, 7.20±0.28, and 21.80±0.04 GHz for water, glycerol, and glass respectively.
Fig. 4
Fig. 4 (a) Brillouin frequency shifts as water-salinity increases (fB). Salinity measurements made by the probe (CfB) agree with the approximate experimental concentration added (Cexp). Stars represent post-processing averaging in each step. (b) Decreasing salt concentrations were added to quantify the effective frequency resolution of the probe given the optical system.
Fig. 5
Fig. 5 (a) Brillouin frequency shifts caused by fluctuations in water temperature, which follow the trend in thermocouple data (TTC). Overlaid is the reconstruction of the experimental frequency data into temperature readings (TfB). (b) FEM modeled (axially symmetric) temperature rise in the 5× 5 × 5 μm volume of water surrounding the tip of the fiber-core (pink outlined region).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f B = 2 n v λ probe

Metrics