Abstract

We demonstrate that the strong 4-level Yb emission in a fiber laser can be almost completely suppressed in an Yb all-solid double-clad photonic bandgap fiber, resulting in highly efficient high-power monolithic Yb fiber lasers operating at the 3-level system. We have achieved single-mode continuous wave laser output power of ~151W at ~978nm with an efficiency of 63% with respect to the launched pump power in a practical monolithic fiber laser configuration for the first time. The demonstrated power in this work are setting new records for diffraction-limited double-clad fiber lasers operating at ~978nm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient 240W single-mode 1018nm laser from an Ytterbium-doped 50/400µm all-solid photonic bandgap fiber

Fanting Kong, Guancheng Gu, Thomas W. Hawkins, Maxwell Jones, Joshua Parsons, Monica T. Kalichevsky-Dong, Stephen P. Palese, Eric Cheung, and Liang Dong
Opt. Express 26(3) 3138-3144 (2018)

High power Yb-doped photonic bandgap fiber oscillator at 1178 nm

Xinyan Fan, Meishin Chen, Akira Shirakawa, Ken-ichi Ueda, Christina B. Olausson, Jens K. Lyngsø, and Jes Broeng
Opt. Express 20(13) 14471-14476 (2012)

Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978 nm in a periodically-poled MgO:LiNbO3 waveguide

A. Bouchier, G. Lucas-Leclin, P. Georges, and J.M. Maillard
Opt. Express 13(18) 6974-6979 (2005)

References

  • View by:
  • |
  • |
  • |

  1. T. Matniyaz, W. Li, M. Kalichevsky-Dong, T. W. Hawkins, J. Parsons, G. Gu, and L. Dong, “Highly efficient cladding-pumped single-mode three-level Yb all-solid photonic bandgap fiber lasers,” Opt. Lett. 44(4), 807–810 (2019).
    [Crossref] [PubMed]
  2. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
    [Crossref] [PubMed]
  3. C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngsø, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express 18(16), 16345–16352 (2010).
    [Crossref] [PubMed]
  4. X. Fan, M. Chen, A. Shirakawa, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High power Yb-doped photonic bandgap fiber oscillator at 1178 nm,” Opt. Express 20(13), 14471–14476 (2012).
    [Crossref] [PubMed]
  5. F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, S. P. Palese, E. Cheung, and L. Dong, “Efficient 240W single-mode 1018nm laser from an Ytterbium-doped 50/400µm all-solid photonic bandgap fiber,” Opt. Express 26(3), 3138–3144 (2018).
    [Crossref] [PubMed]
  6. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
    [Crossref]
  7. J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23(5), 355–357 (1998).
    [Crossref] [PubMed]
  8. M. J. Dejneka, A. J. Ellison, D. V. Kuksenkov, J. D. Minelly, C. M. Truesdale, and L. A. Zenteno, “Cladding-pumped 3-level fiber laser/amplifier,” US patent US 6836607 B2 (2004).
  9. D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid State Lasers (2004), paper MA3.
  10. S. S. Aleshkina, M. E. Likhachev, D. S. Lipatov, O. I. Medvedkov, K. K. Bobkov, and A. N. Guryanov, “5.5W monolithic single-mode fiber laser and amplifier operating near 976 nm,” Proc. SPIE 9728, 97281C (2016).
    [Crossref]
  11. S. S. Aleshkina, A. E. Levchenko, O. I. Medvedkov, K. K. Bobkov, M. M. Bubnov, D. S. Lipatov, A. N. Guryanov, and M. E. Likhachev, “Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser,” IEEE Photonics Technol. Lett. 30(1), 127–130 (2018).
    [Crossref]
  12. J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High power ytterbium-doped rod-type three-level photonic crystal fiber laser,” Opt. Express 16(22), 17891–17902 (2008).
    [Crossref] [PubMed]
  13. F. Röser, C. Jauregui, J. Limpert, and A. Tünnermann, “94 W 980 nm high brightness Yb-doped fiber laser,” Opt. Express 16(22), 17310–17318 (2008).
    [Crossref] [PubMed]
  14. G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
    [Crossref] [PubMed]
  15. G. Gu, F. Kong, T. W. Hawkins, M. Jones, and L. Dong, “Extending mode areas of single-mode all-solid photonic bandgap fibers,” Opt. Express 23(7), 9147–9156 (2015).
    [Crossref] [PubMed]
  16. L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22(2), 316–322 (2016).
    [Crossref]
  17. S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17(12), 9924–9932 (2009).
    [Crossref] [PubMed]

2019 (1)

2018 (2)

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, S. P. Palese, E. Cheung, and L. Dong, “Efficient 240W single-mode 1018nm laser from an Ytterbium-doped 50/400µm all-solid photonic bandgap fiber,” Opt. Express 26(3), 3138–3144 (2018).
[Crossref] [PubMed]

S. S. Aleshkina, A. E. Levchenko, O. I. Medvedkov, K. K. Bobkov, M. M. Bubnov, D. S. Lipatov, A. N. Guryanov, and M. E. Likhachev, “Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser,” IEEE Photonics Technol. Lett. 30(1), 127–130 (2018).
[Crossref]

2016 (2)

S. S. Aleshkina, M. E. Likhachev, D. S. Lipatov, O. I. Medvedkov, K. K. Bobkov, and A. N. Guryanov, “5.5W monolithic single-mode fiber laser and amplifier operating near 976 nm,” Proc. SPIE 9728, 97281C (2016).
[Crossref]

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22(2), 316–322 (2016).
[Crossref]

2015 (1)

2014 (1)

2012 (1)

2010 (1)

2009 (2)

2008 (3)

1998 (1)

Alegria, C.

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid State Lasers (2004), paper MA3.

Aleshkina, S. S.

S. S. Aleshkina, A. E. Levchenko, O. I. Medvedkov, K. K. Bobkov, M. M. Bubnov, D. S. Lipatov, A. N. Guryanov, and M. E. Likhachev, “Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser,” IEEE Photonics Technol. Lett. 30(1), 127–130 (2018).
[Crossref]

S. S. Aleshkina, M. E. Likhachev, D. S. Lipatov, O. I. Medvedkov, K. K. Bobkov, and A. N. Guryanov, “5.5W monolithic single-mode fiber laser and amplifier operating near 976 nm,” Proc. SPIE 9728, 97281C (2016).
[Crossref]

Bello-Doua, R.

Bigot, L.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[Crossref]

Bjarklev, A.

Bobkov, K. K.

S. S. Aleshkina, A. E. Levchenko, O. I. Medvedkov, K. K. Bobkov, M. M. Bubnov, D. S. Lipatov, A. N. Guryanov, and M. E. Likhachev, “Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser,” IEEE Photonics Technol. Lett. 30(1), 127–130 (2018).
[Crossref]

S. S. Aleshkina, M. E. Likhachev, D. S. Lipatov, O. I. Medvedkov, K. K. Bobkov, and A. N. Guryanov, “5.5W monolithic single-mode fiber laser and amplifier operating near 976 nm,” Proc. SPIE 9728, 97281C (2016).
[Crossref]

Boullet, J.

Bouwmans, G.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[Crossref]

Broeng, J.

Bubnov, M. M.

S. S. Aleshkina, A. E. Levchenko, O. I. Medvedkov, K. K. Bobkov, M. M. Bubnov, D. S. Lipatov, A. N. Guryanov, and M. E. Likhachev, “Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser,” IEEE Photonics Technol. Lett. 30(1), 127–130 (2018).
[Crossref]

Cazaux, M.

Chen, M.

Cheung, E.

Codemard, C.

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid State Lasers (2004), paper MA3.

Cormier, E.

Dajani, I.

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22(2), 316–322 (2016).
[Crossref]

Desmarchelier, R.

Dong, L.

Douay, M.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[Crossref]

Dunn, C.

Fan, X.

Fu, L.

Gu, G.

Guryanov, A. N.

S. S. Aleshkina, A. E. Levchenko, O. I. Medvedkov, K. K. Bobkov, M. M. Bubnov, D. S. Lipatov, A. N. Guryanov, and M. E. Likhachev, “Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser,” IEEE Photonics Technol. Lett. 30(1), 127–130 (2018).
[Crossref]

S. S. Aleshkina, M. E. Likhachev, D. S. Lipatov, O. I. Medvedkov, K. K. Bobkov, and A. N. Guryanov, “5.5W monolithic single-mode fiber laser and amplifier operating near 976 nm,” Proc. SPIE 9728, 97281C (2016).
[Crossref]

Hanna, D. C.

Hansen, K. P.

Hawkins, T.

Hawkins, T. W.

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[Crossref]

Jauregui, C.

Jeong, Y.

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid State Lasers (2004), paper MA3.

Jones, M.

Kalichevsky-Dong, M.

Kalichevsky-Dong, M. T.

Kong, F.

Levchenko, A. E.

S. S. Aleshkina, A. E. Levchenko, O. I. Medvedkov, K. K. Bobkov, M. M. Bubnov, D. S. Lipatov, A. N. Guryanov, and M. E. Likhachev, “Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser,” IEEE Photonics Technol. Lett. 30(1), 127–130 (2018).
[Crossref]

Li, W.

Likhachev, M. E.

S. S. Aleshkina, A. E. Levchenko, O. I. Medvedkov, K. K. Bobkov, M. M. Bubnov, D. S. Lipatov, A. N. Guryanov, and M. E. Likhachev, “Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser,” IEEE Photonics Technol. Lett. 30(1), 127–130 (2018).
[Crossref]

S. S. Aleshkina, M. E. Likhachev, D. S. Lipatov, O. I. Medvedkov, K. K. Bobkov, and A. N. Guryanov, “5.5W monolithic single-mode fiber laser and amplifier operating near 976 nm,” Proc. SPIE 9728, 97281C (2016).
[Crossref]

Limpert, J.

Lipatov, D. S.

S. S. Aleshkina, A. E. Levchenko, O. I. Medvedkov, K. K. Bobkov, M. M. Bubnov, D. S. Lipatov, A. N. Guryanov, and M. E. Likhachev, “Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser,” IEEE Photonics Technol. Lett. 30(1), 127–130 (2018).
[Crossref]

S. S. Aleshkina, M. E. Likhachev, D. S. Lipatov, O. I. Medvedkov, K. K. Bobkov, and A. N. Guryanov, “5.5W monolithic single-mode fiber laser and amplifier operating near 976 nm,” Proc. SPIE 9728, 97281C (2016).
[Crossref]

Lyngsø, J. K.

Maruyama, H.

Matniyaz, T.

McKay, H. A.

Medvedkov, O. I.

S. S. Aleshkina, A. E. Levchenko, O. I. Medvedkov, K. K. Bobkov, M. M. Bubnov, D. S. Lipatov, A. N. Guryanov, and M. E. Likhachev, “Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser,” IEEE Photonics Technol. Lett. 30(1), 127–130 (2018).
[Crossref]

S. S. Aleshkina, M. E. Likhachev, D. S. Lipatov, O. I. Medvedkov, K. K. Bobkov, and A. N. Guryanov, “5.5W monolithic single-mode fiber laser and amplifier operating near 976 nm,” Proc. SPIE 9728, 97281C (2016).
[Crossref]

Minelly, J. D.

Nilsson, J.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23(5), 355–357 (1998).
[Crossref] [PubMed]

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid State Lasers (2004), paper MA3.

Olausson, C. B.

Palese, S. P.

Parsons, J.

Paschotta, R.

Peng, X.

Philippov, V.

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid State Lasers (2004), paper MA3.

Pulford, B.

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22(2), 316–322 (2016).
[Crossref]

Pureur, V.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[Crossref]

Quiquempois, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[Crossref]

Röser, F.

Saby, J.

Sahu, J. K.

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid State Lasers (2004), paper MA3.

Saitoh, K.

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22(2), 316–322 (2016).
[Crossref]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

Salin, F.

Shirakawa, A.

Soh, D. B. S.

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid State Lasers (2004), paper MA3.

Suzuki, S.

Tropper, A. C.

Tünnermann, A.

Ueda, K.

Zaouter, Y.

Appl. Phys. Lett. (1)

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22(2), 316–322 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. S. Aleshkina, A. E. Levchenko, O. I. Medvedkov, K. K. Bobkov, M. M. Bubnov, D. S. Lipatov, A. N. Guryanov, and M. E. Likhachev, “Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser,” IEEE Photonics Technol. Lett. 30(1), 127–130 (2018).
[Crossref]

Opt. Express (9)

J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High power ytterbium-doped rod-type three-level photonic crystal fiber laser,” Opt. Express 16(22), 17891–17902 (2008).
[Crossref] [PubMed]

F. Röser, C. Jauregui, J. Limpert, and A. Tünnermann, “94 W 980 nm high brightness Yb-doped fiber laser,” Opt. Express 16(22), 17310–17318 (2008).
[Crossref] [PubMed]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

G. Gu, F. Kong, T. W. Hawkins, M. Jones, and L. Dong, “Extending mode areas of single-mode all-solid photonic bandgap fibers,” Opt. Express 23(7), 9147–9156 (2015).
[Crossref] [PubMed]

S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17(12), 9924–9932 (2009).
[Crossref] [PubMed]

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
[Crossref] [PubMed]

C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngsø, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express 18(16), 16345–16352 (2010).
[Crossref] [PubMed]

X. Fan, M. Chen, A. Shirakawa, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High power Yb-doped photonic bandgap fiber oscillator at 1178 nm,” Opt. Express 20(13), 14471–14476 (2012).
[Crossref] [PubMed]

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, S. P. Palese, E. Cheung, and L. Dong, “Efficient 240W single-mode 1018nm laser from an Ytterbium-doped 50/400µm all-solid photonic bandgap fiber,” Opt. Express 26(3), 3138–3144 (2018).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (1)

S. S. Aleshkina, M. E. Likhachev, D. S. Lipatov, O. I. Medvedkov, K. K. Bobkov, and A. N. Guryanov, “5.5W monolithic single-mode fiber laser and amplifier operating near 976 nm,” Proc. SPIE 9728, 97281C (2016).
[Crossref]

Other (2)

M. J. Dejneka, A. J. Ellison, D. V. Kuksenkov, J. D. Minelly, C. M. Truesdale, and L. A. Zenteno, “Cladding-pumped 3-level fiber laser/amplifier,” US patent US 6836607 B2 (2004).

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid State Lasers (2004), paper MA3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The 2D all-solid photonic bandgap fiber cross section and measured bend loss at 20cm, 30cm and 40 cm coil diameters in a passive fiber which has the same bandgap structure as the active fiber.
Fig. 2
Fig. 2 Configuration of the Yb 3-level-system monolithic fiber laser.
Fig. 3
Fig. 3 Laser performance versus active fiber length. Laser efficiency: accounting for just output power from the pump combiner with respect to the launched pump, total efficiency: accounting for both laser output powers with respect to the launched pump, residual pump: with respect to the launched pump power, and laser 2: with respect to the launched pump.
Fig. 4
Fig. 4 Left: measured output versus pump power for both with respect to the launched pump power and absorbed pump power; Right: measured output spectrum for double pump case under various output power.
Fig. 5
Fig. 5 M2 measurement at output of 3W and 150W.
Fig. 6
Fig. 6 Laser stability test at 75W. Laser was turned off at t = 60.8hrs.

Metrics