Abstract

We demonstrated a high-peak-power orthogonally polarized multi-wavelength laser at 1.6-1.7 µm based on the intracavity cascaded nonlinear optical frequency conversion (CNOFC). This CNOFC can be characterized by a configuration of “series-parallel optical circuit”, where the OPO pumped Raman conversion operates in the “series-mode” and orthogonally-polarized waves are simultaneously converted in the “parallel-mode”. The fundamental wave at 1064 nm was first simultaneously converted to orthogonally-polarized 1534 and 1572 nm by the x-cut KTA and KTP optical parametric oscillation (OPO), respectively. Then the x-cut KTA and KTP acted as the Raman crystal to each other with the X(ZZ)X Raman configuration, converting the OPO signals to multi-order Raman emissions with the wavelengths at 1601, 1632, 1673, 1697, 1752 and 1767nm. A maximum total average output power of 1.2 W and a minimum pulse width of 10.5 ns were achieved from this CNOFC-based laser, corresponding to a pulse peak power of 28.5 kW and a pulse energy of 0.3 mJ.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Designable cascaded nonlinear optical frequency conversion integrating multiple nonlinear interactions in two KTiOAsO4 crystals

Haitao Huang, Hui Wang, Shiqiang Wang, and Deyuan Shen
Opt. Express 26(2) 642-650 (2018)

Dual-polarization balanced Yb:GAB crystal for an intracavity simultaneous orthogonally polarized multi-wavelength KGW Raman laser

Yijian Sun, Chaokuei Lee, Zhaojie Zhu, Yeqing Wang, Houping Xia, Xihu Wang, Jinlong Xu, Zhenyu You, and Chaoyang Tu
Opt. Mater. Express 6(11) 3550-3557 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Tanaka, M. Hirano, K. Murashima, H. Obi, R. Yamaguchi, and T. Hasegawa, “1.7-µm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel,” Opt. Express 23(5), 6645–6655 (2015).
    [Crossref]
  2. M. Muniyappa, “Glycosylation as a marker for inflammatory arthritis,” Cancer Biomar. 14(1), 17–28 (2014).
    [Crossref]
  3. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 µm forenhanced imaging depth,” Opt. Express 16(24), 19712–19723 (2008).
    [Crossref]
  4. M. QueiBer, D. Granieri, M. Burton, A. La Spina, G. Salerno, and R. Avino, “Intercomparing CO2 amounts from dispersion modeling, 1.6 µm differential absorption lidar and open path FTIR at a natural CO2 release at Caldara di Manziana, Italy,” Atmos. Meas. Tech. 8(4), 4325–4345 (2015).
    [Crossref]
  5. P. Prasad, S. Rastogi, R. Singh, and S. Panigrahy, “Spectral modelling near the 1.6µm window for satellite based estimation of CO2,” Spectrochim. Acta, Part A 117, 330–339 (2014).
    [Crossref]
  6. F. Morin, F. Druon, M. Hanna, and P. Georges, “Microjoule femtosecond fiber laser at 1.6 µm for corneal surgery applications,” Opt. Lett. 34(13), 1991–1993 (2009).
    [Crossref]
  7. S. Firstov, S. Alyshev, M. Melkumov, K. Riumkin, A. Shubin, and E. Dianov, “Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600-1800 nm,” Opt. Lett. 39(24), 6927–6930 (2014).
    [Crossref]
  8. V. Fromzel, N. Ter-Gabrielyan, and M. Dubinskii, “Acousto-optically Q-switched, resonantly pumped, Er:YVO4 laser,” Opt. Express 21(13), 15253–15258 (2013).
    [Crossref]
  9. N. W. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18(13), 13673–13678 (2010).
    [Crossref]
  10. A. Aubourg, J. Didierjean, N. Aubry, F. Balembois, and P. Georges, “Passively Q-switched diode-pumped Er:YAG solid-state laser,” Opt. Lett. 38(6), 938–940 (2013).
    [Crossref]
  11. B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 µm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
    [Crossref]
  12. Q. Gong, P. Chen, S. G. Li, Y. F. Lao, C. F. Cao, and C. F. Xu, “Quantum dot lasers grown by gas source molecular-beam epitaxy,” J. Cryst. Growth 323(1), 450–453 (2011).
    [Crossref]
  13. F. Bai, Q. P. Wang, Z. J. Liu, X. Y. Zhang, W. J. Sun, X. B. Wan, P. Li, G. F. Jin, and H. J. Zhang, “Efficient 1.8 µm KTiOPO4 optical parametric oscillator pumped within an Nd:YAG/SrWO4 Raman laser,” Opt. Lett. 36(6), 813–815 (2011).
    [Crossref]
  14. H. T. Huang, D. Y. Shen, and J. L. He, “Compact 1625-nm noncritically phase-matched KTiOPO4 optical parametric oscillator intracavity driven by the KTiOAsO4 Raman laser,” IEEE Photonics Technol. Lett. 25(4), 359–361 (2013).
    [Crossref]
  15. H. Y. Zhu, J. H. Guo, Y. M. Duan, J. Zhang, Y. C. Zhang, C. W. Xu, H. Y. Wang, and D. Y. Fan, “Efficient 1.7 µm light source based on KTA-OPO derived by Nd:YVO4 self-Raman laser,” Opt. Lett. 43(2), 345–348 (2018).
    [Crossref]
  16. H. Barry, L. Corner, and G. Hancock, “Cross sections in the 2ν5 band of formaldehyde studied by cavity enhanced absorption spectroscopy near 1.76 µm,” Phys. Chem. Chem. Phys. 4(3), 445–450 (2002).
    [Crossref]
  17. H. T. Huang, H. Wang, S. Q. Wang, and D. Y. Shen, “Designable cascaded nonlinear optical frequency conversion integrating multiple nonlinear interactions in two KTiOAsO4 crystals,” Opt. Express 26(2), 642–650 (2018).
    [Crossref]
  18. H. T. Huang and J. L. He, “A new view on the temperature insensitivity of intracavity SHG configuration,” Opt. Express 20(8), 9079–9089 (2012).
    [Crossref]
  19. M. Jelinek, O. Kitzler, H. Jelinkova, J. Sulc, and M. Nemec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9(1), 35–38 (2012).
    [Crossref]
  20. H. N. Zhang, X. H. Chen, Q. P. Wang, X. Y. Zhang, J. Chang, L. Gao, H. B. Shen, Z. H. Cong, Z. J. Liu, X. T. Tao, and P. Li, “High-efficiency diode-pumped actively Q-switched ceramic Nd:YAG/BaWO4 Raman laser operating at 1666 nm,” Opt. Lett. 39(9), 2649–2651 (2014).
    [Crossref]
  21. V. I. Dashkevich and V. A. Orlovich, “Raman laser based on a KGd(WO4)2 crystal: generation of stokes components in the 1.7–1.8 µm range,” J. Appl. Spectrosc. 79(6), 975–981 (2013).
    [Crossref]

2018 (2)

2015 (2)

M. Tanaka, M. Hirano, K. Murashima, H. Obi, R. Yamaguchi, and T. Hasegawa, “1.7-µm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel,” Opt. Express 23(5), 6645–6655 (2015).
[Crossref]

M. QueiBer, D. Granieri, M. Burton, A. La Spina, G. Salerno, and R. Avino, “Intercomparing CO2 amounts from dispersion modeling, 1.6 µm differential absorption lidar and open path FTIR at a natural CO2 release at Caldara di Manziana, Italy,” Atmos. Meas. Tech. 8(4), 4325–4345 (2015).
[Crossref]

2014 (4)

2013 (4)

V. I. Dashkevich and V. A. Orlovich, “Raman laser based on a KGd(WO4)2 crystal: generation of stokes components in the 1.7–1.8 µm range,” J. Appl. Spectrosc. 79(6), 975–981 (2013).
[Crossref]

V. Fromzel, N. Ter-Gabrielyan, and M. Dubinskii, “Acousto-optically Q-switched, resonantly pumped, Er:YVO4 laser,” Opt. Express 21(13), 15253–15258 (2013).
[Crossref]

A. Aubourg, J. Didierjean, N. Aubry, F. Balembois, and P. Georges, “Passively Q-switched diode-pumped Er:YAG solid-state laser,” Opt. Lett. 38(6), 938–940 (2013).
[Crossref]

H. T. Huang, D. Y. Shen, and J. L. He, “Compact 1625-nm noncritically phase-matched KTiOPO4 optical parametric oscillator intracavity driven by the KTiOAsO4 Raman laser,” IEEE Photonics Technol. Lett. 25(4), 359–361 (2013).
[Crossref]

2012 (2)

H. T. Huang and J. L. He, “A new view on the temperature insensitivity of intracavity SHG configuration,” Opt. Express 20(8), 9079–9089 (2012).
[Crossref]

M. Jelinek, O. Kitzler, H. Jelinkova, J. Sulc, and M. Nemec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9(1), 35–38 (2012).
[Crossref]

2011 (2)

Q. Gong, P. Chen, S. G. Li, Y. F. Lao, C. F. Cao, and C. F. Xu, “Quantum dot lasers grown by gas source molecular-beam epitaxy,” J. Cryst. Growth 323(1), 450–453 (2011).
[Crossref]

F. Bai, Q. P. Wang, Z. J. Liu, X. Y. Zhang, W. J. Sun, X. B. Wan, P. Li, G. F. Jin, and H. J. Zhang, “Efficient 1.8 µm KTiOPO4 optical parametric oscillator pumped within an Nd:YAG/SrWO4 Raman laser,” Opt. Lett. 36(6), 813–815 (2011).
[Crossref]

2010 (1)

2009 (2)

B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 µm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
[Crossref]

F. Morin, F. Druon, M. Hanna, and P. Georges, “Microjoule femtosecond fiber laser at 1.6 µm for corneal surgery applications,” Opt. Lett. 34(13), 1991–1993 (2009).
[Crossref]

2008 (1)

2002 (1)

H. Barry, L. Corner, and G. Hancock, “Cross sections in the 2ν5 band of formaldehyde studied by cavity enhanced absorption spectroscopy near 1.76 µm,” Phys. Chem. Chem. Phys. 4(3), 445–450 (2002).
[Crossref]

Alyshev, S.

Aubourg, A.

Aubry, N.

Avino, R.

M. QueiBer, D. Granieri, M. Burton, A. La Spina, G. Salerno, and R. Avino, “Intercomparing CO2 amounts from dispersion modeling, 1.6 µm differential absorption lidar and open path FTIR at a natural CO2 release at Caldara di Manziana, Italy,” Atmos. Meas. Tech. 8(4), 4325–4345 (2015).
[Crossref]

Bai, F.

Balembois, F.

Barry, H.

H. Barry, L. Corner, and G. Hancock, “Cross sections in the 2ν5 band of formaldehyde studied by cavity enhanced absorption spectroscopy near 1.76 µm,” Phys. Chem. Chem. Phys. 4(3), 445–450 (2002).
[Crossref]

Bente, E. A. J. M.

B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 µm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
[Crossref]

Burton, M.

M. QueiBer, D. Granieri, M. Burton, A. La Spina, G. Salerno, and R. Avino, “Intercomparing CO2 amounts from dispersion modeling, 1.6 µm differential absorption lidar and open path FTIR at a natural CO2 release at Caldara di Manziana, Italy,” Atmos. Meas. Tech. 8(4), 4325–4345 (2015).
[Crossref]

Cao, C. F.

Q. Gong, P. Chen, S. G. Li, Y. F. Lao, C. F. Cao, and C. F. Xu, “Quantum dot lasers grown by gas source molecular-beam epitaxy,” J. Cryst. Growth 323(1), 450–453 (2011).
[Crossref]

Chang, E. W.

Chang, J.

Chang, N. W.

Chen, P.

Q. Gong, P. Chen, S. G. Li, Y. F. Lao, C. F. Cao, and C. F. Xu, “Quantum dot lasers grown by gas source molecular-beam epitaxy,” J. Cryst. Growth 323(1), 450–453 (2011).
[Crossref]

Chen, X. H.

Cong, Z. H.

Corner, L.

H. Barry, L. Corner, and G. Hancock, “Cross sections in the 2ν5 band of formaldehyde studied by cavity enhanced absorption spectroscopy near 1.76 µm,” Phys. Chem. Chem. Phys. 4(3), 445–450 (2002).
[Crossref]

Dashkevich, V. I.

V. I. Dashkevich and V. A. Orlovich, “Raman laser based on a KGd(WO4)2 crystal: generation of stokes components in the 1.7–1.8 µm range,” J. Appl. Spectrosc. 79(6), 975–981 (2013).
[Crossref]

Dianov, E.

Didierjean, J.

Druon, F.

Duan, Y. M.

Dubinskii, M.

Fan, D. Y.

Firstov, S.

Fromzel, V.

Gao, L.

Georges, P.

Gong, Q.

Q. Gong, P. Chen, S. G. Li, Y. F. Lao, C. F. Cao, and C. F. Xu, “Quantum dot lasers grown by gas source molecular-beam epitaxy,” J. Cryst. Growth 323(1), 450–453 (2011).
[Crossref]

Granieri, D.

M. QueiBer, D. Granieri, M. Burton, A. La Spina, G. Salerno, and R. Avino, “Intercomparing CO2 amounts from dispersion modeling, 1.6 µm differential absorption lidar and open path FTIR at a natural CO2 release at Caldara di Manziana, Italy,” Atmos. Meas. Tech. 8(4), 4325–4345 (2015).
[Crossref]

Guo, J. H.

Hancock, G.

H. Barry, L. Corner, and G. Hancock, “Cross sections in the 2ν5 band of formaldehyde studied by cavity enhanced absorption spectroscopy near 1.76 µm,” Phys. Chem. Chem. Phys. 4(3), 445–450 (2002).
[Crossref]

Hanna, M.

Hasegawa, T.

He, J. L.

H. T. Huang, D. Y. Shen, and J. L. He, “Compact 1625-nm noncritically phase-matched KTiOPO4 optical parametric oscillator intracavity driven by the KTiOAsO4 Raman laser,” IEEE Photonics Technol. Lett. 25(4), 359–361 (2013).
[Crossref]

H. T. Huang and J. L. He, “A new view on the temperature insensitivity of intracavity SHG configuration,” Opt. Express 20(8), 9079–9089 (2012).
[Crossref]

Hirano, M.

Hosken, D. J.

Huang, H. T.

Jelinek, M.

M. Jelinek, O. Kitzler, H. Jelinkova, J. Sulc, and M. Nemec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9(1), 35–38 (2012).
[Crossref]

Jelinkova, H.

M. Jelinek, O. Kitzler, H. Jelinkova, J. Sulc, and M. Nemec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9(1), 35–38 (2012).
[Crossref]

Jin, G. F.

Kitzler, O.

M. Jelinek, O. Kitzler, H. Jelinkova, J. Sulc, and M. Nemec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9(1), 35–38 (2012).
[Crossref]

Kotani, J.

B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 µm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
[Crossref]

La Spina, A.

M. QueiBer, D. Granieri, M. Burton, A. La Spina, G. Salerno, and R. Avino, “Intercomparing CO2 amounts from dispersion modeling, 1.6 µm differential absorption lidar and open path FTIR at a natural CO2 release at Caldara di Manziana, Italy,” Atmos. Meas. Tech. 8(4), 4325–4345 (2015).
[Crossref]

Lao, Y. F.

Q. Gong, P. Chen, S. G. Li, Y. F. Lao, C. F. Cao, and C. F. Xu, “Quantum dot lasers grown by gas source molecular-beam epitaxy,” J. Cryst. Growth 323(1), 450–453 (2011).
[Crossref]

Li, P.

Li, S. G.

Q. Gong, P. Chen, S. G. Li, Y. F. Lao, C. F. Cao, and C. F. Xu, “Quantum dot lasers grown by gas source molecular-beam epitaxy,” J. Cryst. Growth 323(1), 450–453 (2011).
[Crossref]

Liu, Z. J.

Melkumov, M.

Morin, F.

Munch, J.

Muniyappa, M.

M. Muniyappa, “Glycosylation as a marker for inflammatory arthritis,” Cancer Biomar. 14(1), 17–28 (2014).
[Crossref]

Murashima, K.

Nemec, M.

M. Jelinek, O. Kitzler, H. Jelinkova, J. Sulc, and M. Nemec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9(1), 35–38 (2012).
[Crossref]

Notzel, R.

B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 µm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
[Crossref]

Obi, H.

Orlovich, V. A.

V. I. Dashkevich and V. A. Orlovich, “Raman laser based on a KGd(WO4)2 crystal: generation of stokes components in the 1.7–1.8 µm range,” J. Appl. Spectrosc. 79(6), 975–981 (2013).
[Crossref]

Ottaway, D. J.

Panigrahy, S.

P. Prasad, S. Rastogi, R. Singh, and S. Panigrahy, “Spectral modelling near the 1.6µm window for satellite based estimation of CO2,” Spectrochim. Acta, Part A 117, 330–339 (2014).
[Crossref]

Prasad, P.

P. Prasad, S. Rastogi, R. Singh, and S. Panigrahy, “Spectral modelling near the 1.6µm window for satellite based estimation of CO2,” Spectrochim. Acta, Part A 117, 330–339 (2014).
[Crossref]

QueiBer, M.

M. QueiBer, D. Granieri, M. Burton, A. La Spina, G. Salerno, and R. Avino, “Intercomparing CO2 amounts from dispersion modeling, 1.6 µm differential absorption lidar and open path FTIR at a natural CO2 release at Caldara di Manziana, Italy,” Atmos. Meas. Tech. 8(4), 4325–4345 (2015).
[Crossref]

Rastogi, S.

P. Prasad, S. Rastogi, R. Singh, and S. Panigrahy, “Spectral modelling near the 1.6µm window for satellite based estimation of CO2,” Spectrochim. Acta, Part A 117, 330–339 (2014).
[Crossref]

Riumkin, K.

Salerno, G.

M. QueiBer, D. Granieri, M. Burton, A. La Spina, G. Salerno, and R. Avino, “Intercomparing CO2 amounts from dispersion modeling, 1.6 µm differential absorption lidar and open path FTIR at a natural CO2 release at Caldara di Manziana, Italy,” Atmos. Meas. Tech. 8(4), 4325–4345 (2015).
[Crossref]

Sharma, U.

Shen, D. Y.

H. T. Huang, H. Wang, S. Q. Wang, and D. Y. Shen, “Designable cascaded nonlinear optical frequency conversion integrating multiple nonlinear interactions in two KTiOAsO4 crystals,” Opt. Express 26(2), 642–650 (2018).
[Crossref]

H. T. Huang, D. Y. Shen, and J. L. He, “Compact 1625-nm noncritically phase-matched KTiOPO4 optical parametric oscillator intracavity driven by the KTiOAsO4 Raman laser,” IEEE Photonics Technol. Lett. 25(4), 359–361 (2013).
[Crossref]

Shen, H. B.

Shubin, A.

Simakov, N.

Singh, R.

P. Prasad, S. Rastogi, R. Singh, and S. Panigrahy, “Spectral modelling near the 1.6µm window for satellite based estimation of CO2,” Spectrochim. Acta, Part A 117, 330–339 (2014).
[Crossref]

Sulc, J.

M. Jelinek, O. Kitzler, H. Jelinkova, J. Sulc, and M. Nemec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9(1), 35–38 (2012).
[Crossref]

Sun, W. J.

Tahvili, M. S.

B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 µm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
[Crossref]

Tanaka, M.

Tao, X. T.

Ter-Gabrielyan, N.

Tilma, B. W.

B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 µm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
[Crossref]

Veitch, P. J.

Wan, X. B.

Wang, H.

Wang, H. Y.

Wang, Q. P.

Wang, S. Q.

Xu, C. F.

Q. Gong, P. Chen, S. G. Li, Y. F. Lao, C. F. Cao, and C. F. Xu, “Quantum dot lasers grown by gas source molecular-beam epitaxy,” J. Cryst. Growth 323(1), 450–453 (2011).
[Crossref]

Xu, C. W.

Yamaguchi, R.

Yun, S. H.

Zhang, H. J.

Zhang, H. N.

Zhang, J.

Zhang, X. Y.

Zhang, Y. C.

Zhu, H. Y.

Atmos. Meas. Tech. (1)

M. QueiBer, D. Granieri, M. Burton, A. La Spina, G. Salerno, and R. Avino, “Intercomparing CO2 amounts from dispersion modeling, 1.6 µm differential absorption lidar and open path FTIR at a natural CO2 release at Caldara di Manziana, Italy,” Atmos. Meas. Tech. 8(4), 4325–4345 (2015).
[Crossref]

Cancer Biomar. (1)

M. Muniyappa, “Glycosylation as a marker for inflammatory arthritis,” Cancer Biomar. 14(1), 17–28 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. T. Huang, D. Y. Shen, and J. L. He, “Compact 1625-nm noncritically phase-matched KTiOPO4 optical parametric oscillator intracavity driven by the KTiOAsO4 Raman laser,” IEEE Photonics Technol. Lett. 25(4), 359–361 (2013).
[Crossref]

J. Appl. Spectrosc. (1)

V. I. Dashkevich and V. A. Orlovich, “Raman laser based on a KGd(WO4)2 crystal: generation of stokes components in the 1.7–1.8 µm range,” J. Appl. Spectrosc. 79(6), 975–981 (2013).
[Crossref]

J. Cryst. Growth (1)

Q. Gong, P. Chen, S. G. Li, Y. F. Lao, C. F. Cao, and C. F. Xu, “Quantum dot lasers grown by gas source molecular-beam epitaxy,” J. Cryst. Growth 323(1), 450–453 (2011).
[Crossref]

Laser Phys. Lett. (1)

M. Jelinek, O. Kitzler, H. Jelinkova, J. Sulc, and M. Nemec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9(1), 35–38 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Opt. Quantum Electron. (1)

B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 µm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
[Crossref]

Phys. Chem. Chem. Phys. (1)

H. Barry, L. Corner, and G. Hancock, “Cross sections in the 2ν5 band of formaldehyde studied by cavity enhanced absorption spectroscopy near 1.76 µm,” Phys. Chem. Chem. Phys. 4(3), 445–450 (2002).
[Crossref]

Spectrochim. Acta, Part A (1)

P. Prasad, S. Rastogi, R. Singh, and S. Panigrahy, “Spectral modelling near the 1.6µm window for satellite based estimation of CO2,” Spectrochim. Acta, Part A 117, 330–339 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The diagrammatic sketch for the experimental setup.
Fig. 2.
Fig. 2. The transmittance curves for IM and OC.
Fig. 3.
Fig. 3. The emission spectrum of different LD pump power at an average output power of 0.3 W (a), 0.7 W (b) and 1.2 W (c).
Fig. 4.
Fig. 4. The dependence of the average output power of two different length crystals on the LD pump power. Inset was average output power versus PRF at the LD pump power of 229 W.
Fig. 5.
Fig. 5. The dependences of the pulse width and peak power on the LD pump power.
Fig. 6.
Fig. 6. Average output power versus temperature at different pump powers.
Fig. 7.
Fig. 7. Typical single pulse and the corresponding pulse trains at different average output powers. (a), (c) average output power of 0.3 W; (b), (d) average output power of 1.2 W.

Metrics