Abstract

Dual-frequency microwave signals have potential applications in radar and communication systems to improve system integration and signal conversion convenience. Flexible frequency tunability and low phase noise are important factors for dual-frequency microwave signals. This research focuses on improving frequency tunability of dual-frequency microwave signals meanwhile maintaining low phase noise and high spectrum purity. The outputs of two optical injection-locked slave lasers as Brillouin pump signals are employed combining with an integrated polarization-multiplexing modulator to realize orthogonal polarization multiplexing. Stable dual-frequency microwave signals are obtained in an optoelectronic oscillation loop simultaneously. The obtained microwave signals inherit the flexible frequency tunability of Brillouin effect and low phase noise of the optoelectronic oscillator at the same time.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simple frequency-tunable optoelectronic oscillator using integrated multi-section distributed feedback semiconductor laser

Xin Zhang, Jilin Zheng, Tao Pu, Yunshan Zhang, Yuechun Shi, Jin Li, Yuandong Li, Huatao Zhu, and Xiangfei Chen
Opt. Express 27(5) 7036-7046 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. Kong, W. Li, and J. Yao, “Transverse load sensing based on a dual-frequency optoelectronic oscillator,” Opt. Lett. 38(14), 2611–2613 (2013).
    [Crossref] [PubMed]
  2. J. Yao, “Optoelectronic oscillators for high speed and high resolution optical sensing,” J. Lightwave Technol. 35(16), 3489–3497 (2017).
    [Crossref]
  3. V. Jain, F. Tzeng, L. Zhou, and P. Heyari, “A single-chip dual-band 22–29-GHz/77–81-GHz BiCMOS transceiver for automotive radars,” IEEE J. Solid-State Circuits 44(12), 3469–3485 (2009).
    [Crossref]
  4. H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers–theory, design, and applications,” IEEE Trans. Microw. Theory 50(1), 288–301 (2002).
    [Crossref]
  5. S. Dalmiar, A. Bavisi, S. Mukherjee, V. Govind, G. White, M. Swaminathan, and V. Sundaram, “A multiple frequency signal generator for 802.llalblg VoWLAN type applications using organic packaging technology”, in Proceedings of Electronic Components and Technology Conference (TCTC, 2004), pp. 1664–1670.
  6. X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic Oscillators (OEOs) to Sensing, Measurement, and Detection,” IEEE J. Quantum Electron. 52(1), 0601116 (2016).
    [Crossref]
  7. S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
    [Crossref]
  8. Y. Chen, S. Liu, and S. Pan, “Multi-format signal generation using a frequency-tunable optoelectronic oscillator,” Opt. Express 26(3), 3404–3420 (2018).
    [Crossref] [PubMed]
  9. T. Hao, J. Tang, N. Shi, W. Li, N. Zhu, and M. Li, “Dual-chirp fourier domain mode-locked optoelectronic oscillator,” Opt. Lett. 44(8), 1912–1915 (2019).
    [Crossref] [PubMed]
  10. Z. Xie, S. Li, H. Yan, X. Xiao, X. Zheng, and B. Zhou, “Tunable dual frequency optoelectronic oscillator with low intermodulation based on dual-parallel Mach-Zehnder modulator,” Opt. Express 24(26), 30282–30288 (2016).
    [Crossref] [PubMed]
  11. B. Gao, F. Zhang, P. Zhou, and S. Pan, “A frequency-tunable two-tone RF signal generator by polarization multiplexed optoelectronic oscillator,” IEEE Microw. Wirel. Compon. Lett. 27(2), 192–194 (2017).
    [Crossref]
  12. B. Yin, M. Wang, S. Wu, Y. Tang, S. Feng, and H. Zhang, “High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter,” Opt. Express 25(13), 14106–14113 (2017).
    [Crossref] [PubMed]
  13. S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55(3), 031110 (2015).
    [Crossref]
  14. F. Fan, J. Hu, W. Zhu, Y. Gu, and M. Zhao, “A multi-frequency optoelectronic oscillator based on a dual-output Mach-Zender modulator and stimulated Brillouin scattering” in Proceedings of IEEE Photonics Conference (IPC, 2017), pp. 667–668.
  15. Y. H. Hung, C. H. Tseng, and S. K. Hwang, “Conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation using optically injected semiconductor lasers,” Opt. Lett. 43(11), 2628–2631 (2018).
    [Crossref] [PubMed]
  16. A. L. Campillo, “Orthogonally polarized single sideband modulator,” Opt. Lett. 32(21), 3152–3154 (2007).
    [Crossref] [PubMed]
  17. H. Peng, Y. Xu, X. Peng, X. Zhu, R. Guo, F. Chen, H. Du, Y. Chen, C. Zhang, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering,” Opt. Express 25(9), 10287–10305 (2017).
    [Crossref] [PubMed]
  18. M. Shi, L. Yi, W. Wei, and W. Hu, “Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering,” Opt. Express 26(13), 16113–16124 (2018).
    [Crossref] [PubMed]
  19. Y. Tong, D. Han, R. Cheng, Z. Liu, W. Xie, J. Qin, and Y. Dong, “Photonics-based coherent wideband linear frequency modulation pulsed signal generation,” Opt. Lett. 43(5), 1023–1026 (2018).
    [Crossref] [PubMed]
  20. G. Gredat, D. Chatterjee, G. Baili, F. Gutty, I. Sagnes, F. Goldfarb, F. Bretenaker, and H. Liu, “Fully-correlated multi-mode pumping for low-noise dual-frequency VECSELs,” Opt. Express 26(20), 26217–26226 (2018).
    [Crossref] [PubMed]
  21. H. Peng, C. Zhang, X. Xie, T. Sun, P. Guo, X. Zhu, W. Hu, and Z. Chen, “Tunable DC-60GHz RF generation utilizing a dual-loop optoelectronic oscillator based on stimulated Brillouin scattering,” J. Lightwave Technol. 33(13), 2707–2715 (2015).
    [Crossref]
  22. M. Shi, L. Yi, and W. Hu, “Long-term ultra-stable Brillouin optoelectronic oscillator with a feedback loop,” in Asia Communications and Photonics Conference (ACP 2018), paper. 191.
    [Crossref]

2019 (1)

2018 (5)

2017 (5)

2016 (2)

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic Oscillators (OEOs) to Sensing, Measurement, and Detection,” IEEE J. Quantum Electron. 52(1), 0601116 (2016).
[Crossref]

Z. Xie, S. Li, H. Yan, X. Xiao, X. Zheng, and B. Zhou, “Tunable dual frequency optoelectronic oscillator with low intermodulation based on dual-parallel Mach-Zehnder modulator,” Opt. Express 24(26), 30282–30288 (2016).
[Crossref] [PubMed]

2015 (2)

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55(3), 031110 (2015).
[Crossref]

H. Peng, C. Zhang, X. Xie, T. Sun, P. Guo, X. Zhu, W. Hu, and Z. Chen, “Tunable DC-60GHz RF generation utilizing a dual-loop optoelectronic oscillator based on stimulated Brillouin scattering,” J. Lightwave Technol. 33(13), 2707–2715 (2015).
[Crossref]

2013 (1)

2009 (1)

V. Jain, F. Tzeng, L. Zhou, and P. Heyari, “A single-chip dual-band 22–29-GHz/77–81-GHz BiCMOS transceiver for automotive radars,” IEEE J. Solid-State Circuits 44(12), 3469–3485 (2009).
[Crossref]

2007 (1)

2002 (1)

H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers–theory, design, and applications,” IEEE Trans. Microw. Theory 50(1), 288–301 (2002).
[Crossref]

Baili, G.

Bretenaker, F.

Campillo, A. L.

Chatterjee, D.

Chen, F.

Chen, Y.

Chen, Z.

Cheng, R.

Dong, Y.

Du, H.

Feng, S.

Gao, B.

B. Gao, F. Zhang, P. Zhou, and S. Pan, “A frequency-tunable two-tone RF signal generator by polarization multiplexed optoelectronic oscillator,” IEEE Microw. Wirel. Compon. Lett. 27(2), 192–194 (2017).
[Crossref]

Goldfarb, F.

Gredat, G.

Guo, P.

Guo, R.

Gutty, F.

Hajimiri, A.

H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers–theory, design, and applications,” IEEE Trans. Microw. Theory 50(1), 288–301 (2002).
[Crossref]

Han, D.

Hao, T.

Hashemi, H.

H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers–theory, design, and applications,” IEEE Trans. Microw. Theory 50(1), 288–301 (2002).
[Crossref]

Heyari, P.

V. Jain, F. Tzeng, L. Zhou, and P. Heyari, “A single-chip dual-band 22–29-GHz/77–81-GHz BiCMOS transceiver for automotive radars,” IEEE J. Solid-State Circuits 44(12), 3469–3485 (2009).
[Crossref]

Hu, W.

Hung, Y. H.

Hwang, S. K.

Jain, V.

V. Jain, F. Tzeng, L. Zhou, and P. Heyari, “A single-chip dual-band 22–29-GHz/77–81-GHz BiCMOS transceiver for automotive radars,” IEEE J. Solid-State Circuits 44(12), 3469–3485 (2009).
[Crossref]

Kong, F.

Li, M.

Li, P.

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic Oscillators (OEOs) to Sensing, Measurement, and Detection,” IEEE J. Quantum Electron. 52(1), 0601116 (2016).
[Crossref]

Li, S.

Li, W.

Liu, H.

Liu, S.

Liu, X.

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic Oscillators (OEOs) to Sensing, Measurement, and Detection,” IEEE J. Quantum Electron. 52(1), 0601116 (2016).
[Crossref]

Liu, Z.

Pan, S.

Pan, W.

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic Oscillators (OEOs) to Sensing, Measurement, and Detection,” IEEE J. Quantum Electron. 52(1), 0601116 (2016).
[Crossref]

Peng, H.

Peng, X.

Preussler, S.

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55(3), 031110 (2015).
[Crossref]

Qin, J.

Sagnes, I.

Schneider, T.

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55(3), 031110 (2015).
[Crossref]

Shao, L.

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic Oscillators (OEOs) to Sensing, Measurement, and Detection,” IEEE J. Quantum Electron. 52(1), 0601116 (2016).
[Crossref]

Shi, M.

M. Shi, L. Yi, W. Wei, and W. Hu, “Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering,” Opt. Express 26(13), 16113–16124 (2018).
[Crossref] [PubMed]

M. Shi, L. Yi, and W. Hu, “Long-term ultra-stable Brillouin optoelectronic oscillator with a feedback loop,” in Asia Communications and Photonics Conference (ACP 2018), paper. 191.
[Crossref]

Shi, N.

Sun, T.

Tang, J.

Tang, Y.

Tong, Y.

Tseng, C. H.

Tzeng, F.

V. Jain, F. Tzeng, L. Zhou, and P. Heyari, “A single-chip dual-band 22–29-GHz/77–81-GHz BiCMOS transceiver for automotive radars,” IEEE J. Solid-State Circuits 44(12), 3469–3485 (2009).
[Crossref]

Wang, M.

Wei, W.

Wu, S.

Xiao, X.

Xie, W.

Xie, X.

Xie, Z.

Xu, Y.

Yan, H.

Yan, L.

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic Oscillators (OEOs) to Sensing, Measurement, and Detection,” IEEE J. Quantum Electron. 52(1), 0601116 (2016).
[Crossref]

Yao, J.

Yi, L.

M. Shi, L. Yi, W. Wei, and W. Hu, “Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering,” Opt. Express 26(13), 16113–16124 (2018).
[Crossref] [PubMed]

M. Shi, L. Yi, and W. Hu, “Long-term ultra-stable Brillouin optoelectronic oscillator with a feedback loop,” in Asia Communications and Photonics Conference (ACP 2018), paper. 191.
[Crossref]

Yin, B.

Zhang, C.

Zhang, F.

B. Gao, F. Zhang, P. Zhou, and S. Pan, “A frequency-tunable two-tone RF signal generator by polarization multiplexed optoelectronic oscillator,” IEEE Microw. Wirel. Compon. Lett. 27(2), 192–194 (2017).
[Crossref]

Zhang, H.

Zheng, X.

Zhou, B.

Zhou, L.

V. Jain, F. Tzeng, L. Zhou, and P. Heyari, “A single-chip dual-band 22–29-GHz/77–81-GHz BiCMOS transceiver for automotive radars,” IEEE J. Solid-State Circuits 44(12), 3469–3485 (2009).
[Crossref]

Zhou, P.

B. Gao, F. Zhang, P. Zhou, and S. Pan, “A frequency-tunable two-tone RF signal generator by polarization multiplexed optoelectronic oscillator,” IEEE Microw. Wirel. Compon. Lett. 27(2), 192–194 (2017).
[Crossref]

Zhu, L.

Zhu, N.

Zhu, X.

Zou, X.

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic Oscillators (OEOs) to Sensing, Measurement, and Detection,” IEEE J. Quantum Electron. 52(1), 0601116 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic Oscillators (OEOs) to Sensing, Measurement, and Detection,” IEEE J. Quantum Electron. 52(1), 0601116 (2016).
[Crossref]

IEEE J. Solid-State Circuits (1)

V. Jain, F. Tzeng, L. Zhou, and P. Heyari, “A single-chip dual-band 22–29-GHz/77–81-GHz BiCMOS transceiver for automotive radars,” IEEE J. Solid-State Circuits 44(12), 3469–3485 (2009).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

B. Gao, F. Zhang, P. Zhou, and S. Pan, “A frequency-tunable two-tone RF signal generator by polarization multiplexed optoelectronic oscillator,” IEEE Microw. Wirel. Compon. Lett. 27(2), 192–194 (2017).
[Crossref]

IEEE Trans. Microw. Theory (1)

H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers–theory, design, and applications,” IEEE Trans. Microw. Theory 50(1), 288–301 (2002).
[Crossref]

J. Lightwave Technol. (3)

Opt. Eng. (1)

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55(3), 031110 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Other (3)

F. Fan, J. Hu, W. Zhu, Y. Gu, and M. Zhao, “A multi-frequency optoelectronic oscillator based on a dual-output Mach-Zender modulator and stimulated Brillouin scattering” in Proceedings of IEEE Photonics Conference (IPC, 2017), pp. 667–668.

S. Dalmiar, A. Bavisi, S. Mukherjee, V. Govind, G. White, M. Swaminathan, and V. Sundaram, “A multiple frequency signal generator for 802.llalblg VoWLAN type applications using organic packaging technology”, in Proceedings of Electronic Components and Technology Conference (TCTC, 2004), pp. 1664–1670.

M. Shi, L. Yi, and W. Hu, “Long-term ultra-stable Brillouin optoelectronic oscillator with a feedback loop,” in Asia Communications and Photonics Conference (ACP 2018), paper. 191.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of dual-frequency microwave signals generation based on polarization multiplexing. OFC, optical frequency comb, OIL, optical injection locking, OEO, optoelectronic oscillator.
Fig. 2
Fig. 2 Experimental setup of the SBS based dual-frequency OEO. ML, master laser, OFC, optical frequency comb, CIR, circulator, SL, slave laser, PBC, polarization beam combiner, PC, polarization controller, DPMZM, dual-polarization Mach-Zehnder modulator, ISO, isolator, HNLF, high nonlinear fiber, SMF, single-mode fiber, PD, photodiode, EC, electrical coupler, PS, power splitter, LNA, low noise amplifier, BPF, bandpass filter, ESA, electrical spectrum analyzer.
Fig. 3
Fig. 3 (a) The optical spectrum of OFC with a 5 GHz electrical drive signal. (b) The optical spectrum of two injection-locked SBS pumps.
Fig. 4
Fig. 4 Optical spectrums of injection-locked SBS pumps and corresponding Stocks lights. (a) Two SBS pumps have non-orthogonal polarization states. (b) Two SBS pumps have orthogonal polarization states.
Fig. 5
Fig. 5 The electrical spectrums of OEO generated dual-frequency microwave signals at the frequency of (a) 4.2 GHz, and (b) 29.2 GHz.
Fig. 6
Fig. 6 Fine frequency tuning of the obtained dual-frequency microwave signals with the step of 10 MHz around the frequency of (a) 4.2 GHz, and (b) 29.2 GHz.
Fig. 7
Fig. 7 (a) Electrical spectrum of OEO generated dual-frequency microwave signals with frequency tuning rang up to 40 GHz. (b) SSB phase noise of OEO generated dual-frequency signals with frequencies of 4.2 GHz and 29.2 GHz, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E p =exp{j[( ω c +m ω RF )t+m φ RF +Δ φ p (t)]} E s =exp{j[( ω c +n ω RF )t+n φ RF +Δ φ s (t)]},
Δ φ p (t)=( ω c +m ω RF )× τ p (t), Δ φ s (t)=( ω c +n ω RF )× τ s (t)
Δ S p (f)=2 f 2 τ τ [Δ φ p (t)×Δ φ p (tτ)] dτ Δ S s (f)=2 f 2 τ τ [Δ φ s (t)×Δ φ s (tτ)] dτ
S SBS_p (f)=[ exp( g B I p L) 1exp( g B I p L) g B I p L Δ ν B ]×[ S c (f)+ S p (f)], S SBS_s (f)=[ exp( g B I s L) 1exp( g B I s L) g B I s L Δ ν B ]×[ S c (f)+ S s (f)]
S p (f)= S c (f)+m S RF (f)+Δ S p (f), S s (f)= S c (f)+n S RF (f)+Δ S s (f)
S SBS_p (f)=[ exp( g B I p L) 1exp( g B I p L) g B I p L Δ ν B ]×[2 S c (f)+Δ S p (f)] S SBS_s (f)=[ exp( g B I s L) 1exp( g B I s L) g B I s L Δ ν B ]×[2 S c (f)+Δ S s (f)]

Metrics