Abstract

Edge states in photonic heterostructures composed of metal layers and all-dielectric one-dimensional photonic crystals (1DPCs) will shift toward short wavelengths (blueshift) with the increase in the incident angle for both transverses magnetic (TM) and transverse electric (TE) polarizations. However, we achieve redshift edge states for TM polarization and blueshift edge states for TE polarization in heterostructures composed of metal layers and 1DPCs containing layered hyperbolic metamaterials. Owing to the opposite wavelength shift of the edge states for two orthogonal polarizations, the ellipsometric phase will change dramatically around the edge state wavelength in a broad angle range. Based on this wide-angle phase singularity property, we propose a biosensor which can work with high refractive index resolution in a broad angle range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials

Guang Lu, Feng Wu, Minjia Zheng, Chaoxin Chen, Xiachen Zhou, Chao Diao, Fen Liu, Guiqiang Du, Chunhua Xue, Haitao Jiang, and Hong Chen
Opt. Express 27(4) 5326-5336 (2019)

Effect of incident angle and polarization on electrically-tunable defect mode in anisotropic photonic crystals

Kazem Jamshidi-Ghaleh and Behnam Kazempour
Appl. Opt. 55(16) 4350-4356 (2016)

Tunable defect modes of one-dimensional photonic crystals containing a Dirac semimetal-based metamaterial defect layer

Qin Wang, Xinliang Wang, Liwei Zhang, Yongqiang Wang, Wentao Qiao, Xu Han, Xiaolin Cai, and Weiyang Yu
Appl. Opt. 58(1) 94-101 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and exceptional points in photonics,” Nat. Mater. 18(8), 783–798 (2019).
    [Crossref] [PubMed]
  2. T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91(1), 015006 (2019).
    [Crossref]
  3. H. Jia, R. Zhang, W. Gao, Q. Guo, B. Yang, J. Hu, Y. Bi, Y. Xiang, C. Liu, and S. Zhang, “Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials,” Science 363(6423), 148–151 (2019).
    [Crossref] [PubMed]
  4. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
    [Crossref] [PubMed]
  5. A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
    [Crossref] [PubMed]
  6. S. Liu, W. Gao, Q. Zhang, S. Ma, L. Zhang, C. Liu, Y. Xiang, T. J. Cui, and S. Zhang, “Topologically protected Edge State in Two-Dimensional Su-Schrieffer-Heeger Circuit,” Reserch 2019, 8609875 (2019).
  7. L. H. Wu and X. Hu, “Scheme for achieving a topological photonic crystal by using dielectric material,” Phys. Rev. Lett. 114(22), 223901 (2015).
    [Crossref] [PubMed]
  8. M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
    [Crossref]
  9. K. H. Choi, C. W. Ling, K. F. Lee, Y. H. Tsang, and K. H. Fung, “Simultaneous multi-frequency topological edge modes between one-dimensional photonic crystals,” Opt. Lett. 41(7), 1644–1647 (2016).
    [Crossref] [PubMed]
  10. L. M. Zhao, Y. S. Zhou, and A. H. Wang, “Facile way to obtain multiple interface modes in a photonic crystal heterostructure,” Opt. Lett. 43(14), 3216–3219 (2018).
    [Crossref] [PubMed]
  11. Q. Huang, Z. Guo, J. Feng, C. Yu, H. Jiang, Z. Zhang, Z. Wang, and H. Chen, “Observation of a topological edge states in the X-ray band,” Laser Photonics Rev. 1, 1800339 (2019).
    [Crossref]
  12. M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97(15), 155422 (2018).
    [Crossref]
  13. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B. 76(16), 165415 (2007).
    [Crossref]
  14. Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. T. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
    [Crossref]
  15. X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
    [Crossref]
  16. C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm Plasmon Lasers,” Nano Lett. 13(7), 3179–3184 (2013).
    [Crossref] [PubMed]
  17. H. Da, Q. Bao, R. Sanaei, J. Teng, K. P. Loh, F. J. Garcia-Vidal, and C. W. Qiu, “Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission,” Phys. Rev. B. 88(20), 205405 (2013).
    [Crossref]
  18. X. Wang, Y. Liang, L. Wu, J. Guo, X. Dai, and Y. Xiang, “Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene,” Opt. Lett. 43(17), 4256–4259 (2018).
    [Crossref] [PubMed]
  19. X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
    [Crossref]
  20. G. Q. Du, H. T. Jiang, Z. S. Wang, and H. Chen, “Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals,” Opt. Lett. 34(5), 578–580 (2009).
    [Crossref] [PubMed]
  21. L. Jiang, J. Tang, J. Xu, Z. Zheng, J. Dong, J. Guo, S. Qian, X. Dai, and Y. Xiang, “Graphene Tamm plasmon-induced low-threshould optical bistability at terahertz frequencies,” Opt. Mater. Express 9(1), 139–150 (2019).
    [Crossref]
  22. Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
    [Crossref]
  23. S. Huang, K. Chen, and S. Jeng, “Phase sensitive sensor on Tamm plasmon devices,” Opt. Mater. Express 7(4), 1267–1273 (2017).
    [Crossref]
  24. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A Dielectric Omnidirectional Reflector,” Science 282(5394), 1679–1682 (1998).
    [Crossref] [PubMed]
  25. J. Dostálek, J. Čtyroky, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem. 76(1-3), 8–12 (2001).
    [Crossref]
  26. P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interferece couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
    [Crossref]
  27. M. S. Klimov, V. A. Sychugov, A. V. Tishchenko, and O. Parriaux, “Optimization of optical waveguide grating couplers,” Fiber Integr. Opt. 11(1), 85–90 (1992).
    [Crossref]
  28. J. Hong, K. H. Kim, J. H. Shin, C. Huh, and G. Y. Sung, “Prediction of the limit of detection of an optical resonant reflection biosensor,” Opt. Express 15(14), 8972–8978 (2007).
    [Crossref] [PubMed]
  29. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref] [PubMed]
  30. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
    [Crossref] [PubMed]
  31. E. Shkondin, T. Repän, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing,” ACS Appl. Nano Mater. 1(3), 1212–1218 (2018).
    [Crossref]
  32. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a threedimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
    [Crossref]
  33. X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
    [Crossref]
  34. S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
    [Crossref] [PubMed]
  35. C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
    [Crossref]
  36. F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
    [Crossref]
  37. E. E. Narimanov, “Photonic Hypercrystals,” Phys. Rev. X 4(4), 041014 (2014).
    [Crossref]
  38. S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polarizations in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
    [Crossref]
  39. F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, and H. Chen, “Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials,” Phys. Rev. Appl. 10(6), 064022 (2018).
    [Crossref]
  40. E. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  41. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  42. M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J. Maria, “Conductive oxide thin films: Model systems for understanding better plasmonic materials,” J. Appl. Phys. 106(2), 024903 (2009).
    [Crossref]
  43. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 958–967 (2013).
    [Crossref]
  44. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  45. L. Dominici, F. Michelotti, T. M. Brown, A. Reale, and A. Di Carlo, “Plasmon polaritons in the near infrared on fluorine doped tin oxide films,” Opt. Express 17(12), 10155–10167 (2009).
    [Crossref] [PubMed]
  46. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [Crossref] [PubMed]
  47. Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22(18), 21403–21410 (2014).
    [Crossref] [PubMed]
  48. X. Cheng, S. Dong, S. Zhi, S. Paschel, I. Balasa, D. Ristau, and Z. Wang, “Waterproof coatings for high-power laser cavities,” Light Sci. Appl. 8(1), 12 (2019).
    [Crossref] [PubMed]
  49. J. J. Raftery, Jr., Ph. D. thesis, University of Illinois at Urbana-Champaign, p10 (2005).
  50. A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94(19), 191105 (2009).
    [Crossref]
  51. T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
    [Crossref] [PubMed]
  52. Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. (Berlin) 524(11), 637–662 (2012).
    [Crossref]

2019 (9)

S. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and exceptional points in photonics,” Nat. Mater. 18(8), 783–798 (2019).
[Crossref] [PubMed]

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91(1), 015006 (2019).
[Crossref]

H. Jia, R. Zhang, W. Gao, Q. Guo, B. Yang, J. Hu, Y. Bi, Y. Xiang, C. Liu, and S. Zhang, “Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials,” Science 363(6423), 148–151 (2019).
[Crossref] [PubMed]

S. Liu, W. Gao, Q. Zhang, S. Ma, L. Zhang, C. Liu, Y. Xiang, T. J. Cui, and S. Zhang, “Topologically protected Edge State in Two-Dimensional Su-Schrieffer-Heeger Circuit,” Reserch 2019, 8609875 (2019).

Q. Huang, Z. Guo, J. Feng, C. Yu, H. Jiang, Z. Zhang, Z. Wang, and H. Chen, “Observation of a topological edge states in the X-ray band,” Laser Photonics Rev. 1, 1800339 (2019).
[Crossref]

L. Jiang, J. Tang, J. Xu, Z. Zheng, J. Dong, J. Guo, S. Qian, X. Dai, and Y. Xiang, “Graphene Tamm plasmon-induced low-threshould optical bistability at terahertz frequencies,” Opt. Mater. Express 9(1), 139–150 (2019).
[Crossref]

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
[Crossref]

X. Cheng, S. Dong, S. Zhi, S. Paschel, I. Balasa, D. Ristau, and Z. Wang, “Waterproof coatings for high-power laser cavities,” Light Sci. Appl. 8(1), 12 (2019).
[Crossref] [PubMed]

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

2018 (7)

F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, and H. Chen, “Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials,” Phys. Rev. Appl. 10(6), 064022 (2018).
[Crossref]

E. Shkondin, T. Repän, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing,” ACS Appl. Nano Mater. 1(3), 1212–1218 (2018).
[Crossref]

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97(15), 155422 (2018).
[Crossref]

X. Wang, Y. Liang, L. Wu, J. Guo, X. Dai, and Y. Xiang, “Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene,” Opt. Lett. 43(17), 4256–4259 (2018).
[Crossref] [PubMed]

L. M. Zhao, Y. S. Zhou, and A. H. Wang, “Facile way to obtain multiple interface modes in a photonic crystal heterostructure,” Opt. Lett. 43(14), 3216–3219 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (4)

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. T. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
[Crossref]

K. H. Choi, C. W. Ling, K. F. Lee, Y. H. Tsang, and K. H. Fung, “Simultaneous multi-frequency topological edge modes between one-dimensional photonic crystals,” Opt. Lett. 41(7), 1644–1647 (2016).
[Crossref] [PubMed]

2015 (1)

L. H. Wu and X. Hu, “Scheme for achieving a topological photonic crystal by using dielectric material,” Phys. Rev. Lett. 114(22), 223901 (2015).
[Crossref] [PubMed]

2014 (5)

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

E. E. Narimanov, “Photonic Hypercrystals,” Phys. Rev. X 4(4), 041014 (2014).
[Crossref]

S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polarizations in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
[Crossref] [PubMed]

Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22(18), 21403–21410 (2014).
[Crossref] [PubMed]

2013 (5)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 958–967 (2013).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref] [PubMed]

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm Plasmon Lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

H. Da, Q. Bao, R. Sanaei, J. Teng, K. P. Loh, F. J. Garcia-Vidal, and C. W. Qiu, “Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission,” Phys. Rev. B. 88(20), 205405 (2013).
[Crossref]

2012 (2)

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. (Berlin) 524(11), 637–662 (2012).
[Crossref]

2010 (2)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a threedimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

2009 (5)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

G. Q. Du, H. T. Jiang, Z. S. Wang, and H. Chen, “Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals,” Opt. Lett. 34(5), 578–580 (2009).
[Crossref] [PubMed]

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J. Maria, “Conductive oxide thin films: Model systems for understanding better plasmonic materials,” J. Appl. Phys. 106(2), 024903 (2009).
[Crossref]

L. Dominici, F. Michelotti, T. M. Brown, A. Reale, and A. Di Carlo, “Plasmon polaritons in the near infrared on fluorine doped tin oxide films,” Opt. Express 17(12), 10155–10167 (2009).
[Crossref] [PubMed]

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94(19), 191105 (2009).
[Crossref]

2007 (2)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B. 76(16), 165415 (2007).
[Crossref]

J. Hong, K. H. Kim, J. H. Shin, C. Huh, and G. Y. Sung, “Prediction of the limit of detection of an optical resonant reflection biosensor,” Opt. Express 15(14), 8972–8978 (2007).
[Crossref] [PubMed]

2001 (1)

J. Dostálek, J. Čtyroky, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem. 76(1-3), 8–12 (2001).
[Crossref]

1998 (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A Dielectric Omnidirectional Reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

1994 (1)

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interferece couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[Crossref]

1992 (1)

M. S. Klimov, V. A. Sychugov, A. V. Tishchenko, and O. Parriaux, “Optimization of optical waveguide grating couplers,” Fiber Integr. Opt. 11(1), 85–90 (1992).
[Crossref]

1985 (1)

Abram, R. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B. 76(16), 165415 (2007).
[Crossref]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Alexander, R. W.

Amo, A.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91(1), 015006 (2019).
[Crossref]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Ayzatsky, M. I.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Babicheva, V. E.

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
[Crossref] [PubMed]

S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polarizations in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

Bachmann, M.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interferece couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[Crossref]

Balasa, I.

X. Cheng, S. Dong, S. Zhi, S. Paschel, I. Balasa, D. Ristau, and Z. Wang, “Waterproof coatings for high-power laser cavities,” Light Sci. Appl. 8(1), 12 (2019).
[Crossref] [PubMed]

Bao, Q.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

H. Da, Q. Bao, R. Sanaei, J. Teng, K. P. Loh, F. J. Garcia-Vidal, and C. W. Qiu, “Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission,” Phys. Rev. B. 88(20), 205405 (2013).
[Crossref]

Bell, R. J.

Bellessa, J.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm Plasmon Lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 958–967 (2013).
[Crossref]

Besse, P. A.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interferece couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[Crossref]

Bi, Y.

H. Jia, R. Zhang, W. Gao, Q. Guo, B. Yang, J. Hu, Y. Bi, Y. Xiang, C. Liu, and S. Zhang, “Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials,” Science 363(6423), 148–151 (2019).
[Crossref] [PubMed]

Boltasseva, A.

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Boriskin, V. N.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Boriskina, S. V.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Brand, S.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B. 76(16), 165415 (2007).
[Crossref]

Brown, T. M.

Brucoli, G.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm Plasmon Lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Brynda, E.

J. Dostálek, J. Čtyroky, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem. 76(1-3), 8–12 (2001).
[Crossref]

Carusotto, I.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91(1), 015006 (2019).
[Crossref]

Casse, B. D. F.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a threedimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

Cerruti, M. G.

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J. Maria, “Conductive oxide thin films: Model systems for understanding better plasmonic materials,” J. Appl. Phys. 106(2), 024903 (2009).
[Crossref]

Chamberlain, J. M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B. 76(16), 165415 (2007).
[Crossref]

Chan, C. T.

Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. T. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
[Crossref]

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

Chen, C.

F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, and H. Chen, “Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials,” Phys. Rev. Appl. 10(6), 064022 (2018).
[Crossref]

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A Dielectric Omnidirectional Reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Chen, G.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Chen, H.

Q. Huang, Z. Guo, J. Feng, C. Yu, H. Jiang, Z. Zhang, Z. Wang, and H. Chen, “Observation of a topological edge states in the X-ray band,” Laser Photonics Rev. 1, 1800339 (2019).
[Crossref]

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, and H. Chen, “Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials,” Phys. Rev. Appl. 10(6), 064022 (2018).
[Crossref]

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

G. Q. Du, H. T. Jiang, Z. S. Wang, and H. Chen, “Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals,” Opt. Lett. 34(5), 578–580 (2009).
[Crossref] [PubMed]

Chen, K.

Chen, L.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
[Crossref]

Chen, S.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
[Crossref]

Chen, W.

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94(19), 191105 (2009).
[Crossref]

Cheng, X.

X. Cheng, S. Dong, S. Zhi, S. Paschel, I. Balasa, D. Ristau, and Z. Wang, “Waterproof coatings for high-power laser cavities,” Light Sci. Appl. 8(1), 12 (2019).
[Crossref] [PubMed]

Choi, K. H.

Ctyroky, J.

J. Dostálek, J. Čtyroky, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem. 76(1-3), 8–12 (2001).
[Crossref]

Cui, T. J.

S. Liu, W. Gao, Q. Zhang, S. Ma, L. Zhang, C. Liu, Y. Xiang, T. J. Cui, and S. Zhang, “Topologically protected Edge State in Two-Dimensional Su-Schrieffer-Heeger Circuit,” Reserch 2019, 8609875 (2019).

Cui, X.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

Da, H.

H. Da, Q. Bao, R. Sanaei, J. Teng, K. P. Loh, F. J. Garcia-Vidal, and C. W. Qiu, “Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission,” Phys. Rev. B. 88(20), 205405 (2013).
[Crossref]

Dai, X.

Dai, Z.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Deng, M.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
[Crossref]

Di Carlo, A.

Ding, Y.

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

Dominici, L.

Dong, J.

Dong, S.

X. Cheng, S. Dong, S. Zhi, S. Paschel, I. Balasa, D. Ristau, and Z. Wang, “Waterproof coatings for high-power laser cavities,” Light Sci. Appl. 8(1), 12 (2019).
[Crossref] [PubMed]

Dostálek, J.

J. Dostálek, J. Čtyroky, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem. 76(1-3), 8–12 (2001).
[Crossref]

Dreisow, F.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Du, G.

F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, and H. Chen, “Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials,” Phys. Rev. Appl. 10(6), 064022 (2018).
[Crossref]

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22(18), 21403–21410 (2014).
[Crossref] [PubMed]

Du, G. Q.

Duo, Y.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

Efremenko, A. Y.

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J. Maria, “Conductive oxide thin films: Model systems for understanding better plasmonic materials,” J. Appl. Phys. 106(2), 024903 (2009).
[Crossref]

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Esmann, M.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97(15), 155422 (2018).
[Crossref]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A Dielectric Omnidirectional Reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Favero, I.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97(15), 155422 (2018).
[Crossref]

Feng, J.

Q. Huang, Z. Guo, J. Feng, C. Yu, H. Jiang, Z. Zhang, Z. Wang, and H. Chen, “Observation of a topological edge states in the X-ray band,” Laser Photonics Rev. 1, 1800339 (2019).
[Crossref]

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A Dielectric Omnidirectional Reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Franzen, S.

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J. Maria, “Conductive oxide thin films: Model systems for understanding better plasmonic materials,” J. Appl. Phys. 106(2), 024903 (2009).
[Crossref]

Fung, K. H.

Gao, W.

S. Liu, W. Gao, Q. Zhang, S. Ma, L. Zhang, C. Liu, Y. Xiang, T. J. Cui, and S. Zhang, “Topologically protected Edge State in Two-Dimensional Su-Schrieffer-Heeger Circuit,” Reserch 2019, 8609875 (2019).

H. Jia, R. Zhang, W. Gao, Q. Guo, B. Yang, J. Hu, Y. Bi, Y. Xiang, C. Liu, and S. Zhang, “Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials,” Science 363(6423), 148–151 (2019).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

H. Da, Q. Bao, R. Sanaei, J. Teng, K. P. Loh, F. J. Garcia-Vidal, and C. W. Qiu, “Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission,” Phys. Rev. B. 88(20), 205405 (2013).
[Crossref]

Goldman, N.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91(1), 015006 (2019).
[Crossref]

Gomez Carbonell, C.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97(15), 155422 (2018).
[Crossref]

Gong, Z.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
[Crossref]

Greffet, J. J.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm Plasmon Lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Gultepe, E.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a threedimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

Guo, H.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
[Crossref]

Guo, J.

Guo, Q.

H. Jia, R. Zhang, W. Gao, Q. Guo, B. Yang, J. Hu, Y. Bi, Y. Xiang, C. Liu, and S. Zhang, “Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials,” Science 363(6423), 148–151 (2019).
[Crossref] [PubMed]

Guo, Z.

Q. Huang, Z. Guo, J. Feng, C. Yu, H. Jiang, Z. Zhang, Z. Wang, and H. Chen, “Observation of a topological edge states in the X-ray band,” Laser Photonics Rev. 1, 1800339 (2019).
[Crossref]

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, and H. Chen, “Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials,” Phys. Rev. Appl. 10(6), 064022 (2018).
[Crossref]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Hafezi, M.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91(1), 015006 (2019).
[Crossref]

Han, S.

Hang, Z. H.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
[Crossref]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Ho, H. P.

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. (Berlin) 524(11), 637–662 (2012).
[Crossref]

Homola, J.

J. Dostálek, J. Čtyroky, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem. 76(1-3), 8–12 (2001).
[Crossref]

Hong, J.

Hu, J.

H. Jia, R. Zhang, W. Gao, Q. Guo, B. Yang, J. Hu, Y. Bi, Y. Xiang, C. Liu, and S. Zhang, “Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials,” Science 363(6423), 148–151 (2019).
[Crossref] [PubMed]

Hu, X.

L. H. Wu and X. Hu, “Scheme for achieving a topological photonic crystal by using dielectric material,” Phys. Rev. Lett. 114(22), 223901 (2015).
[Crossref] [PubMed]

Huang, Q.

Q. Huang, Z. Guo, J. Feng, C. Yu, H. Jiang, Z. Zhang, Z. Wang, and H. Chen, “Observation of a topological edge states in the X-ray band,” Laser Photonics Rev. 1, 1800339 (2019).
[Crossref]

Huang, S.

Huang, Y.

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. (Berlin) 524(11), 637–662 (2012).
[Crossref]

Huang, Y. J.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a threedimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

Hugonin, J. P.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm Plasmon Lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Huh, C.

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 958–967 (2013).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B. 76(16), 165415 (2007).
[Crossref]

Ishii, S.

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jeng, S.

Jia, H.

H. Jia, R. Zhang, W. Gao, Q. Guo, B. Yang, J. Hu, Y. Bi, Y. Xiang, C. Liu, and S. Zhang, “Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials,” Science 363(6423), 148–151 (2019).
[Crossref] [PubMed]

Jiang, H.

Q. Huang, Z. Guo, J. Feng, C. Yu, H. Jiang, Z. Zhang, Z. Wang, and H. Chen, “Observation of a topological edge states in the X-ray band,” Laser Photonics Rev. 1, 1800339 (2019).
[Crossref]

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, and H. Chen, “Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials,” Phys. Rev. Appl. 10(6), 064022 (2018).
[Crossref]

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

Jiang, H. T.

Jiang, L.

Jiang, X.

Joannopoulos, J. D.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A Dielectric Omnidirectional Reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Kabashin, A. V.

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. (Berlin) 524(11), 637–662 (2012).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B. 76(16), 165415 (2007).
[Crossref]

Kargarian, M.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref] [PubMed]

Kavokin, A. V.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B. 76(16), 165415 (2007).
[Crossref]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref] [PubMed]

Kildishev, A. V.

Kim, K. H.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 958–967 (2013).
[Crossref]

Klimov, M. S.

M. S. Klimov, V. A. Sychugov, A. V. Tishchenko, and O. Parriaux, “Optimization of optical waveguide grating couplers,” Fiber Integr. Opt. 11(1), 85–90 (1992).
[Crossref]

Kong, S. K.

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. (Berlin) 524(11), 637–662 (2012).
[Crossref]

Krebs, O.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97(15), 155422 (2018).
[Crossref]

Lamberti, F. R.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97(15), 155422 (2018).
[Crossref]

Lanco, L.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97(15), 155422 (2018).
[Crossref]

Lanzillotti-Kimura, N. D.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97(15), 155422 (2018).
[Crossref]

Laverdant, J.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm Plasmon Lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Lavrinenko, A. V.

E. Shkondin, T. Repän, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing,” ACS Appl. Nano Mater. 1(3), 1212–1218 (2018).
[Crossref]

S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polarizations in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

Lee, K. F.

Lemaitre, A.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm Plasmon Lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Lemaître, A.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97(15), 155422 (2018).
[Crossref]

Lheureux, G.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm Plasmon Lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Li, H.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
[Crossref]

Li, X.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
[Crossref]

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Li, Y.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22(18), 21403–21410 (2014).
[Crossref] [PubMed]

Liang, W.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

Liang, Y.

Ling, C. W.

Liu, A.

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94(19), 191105 (2009).
[Crossref]

Liu, C.

S. Liu, W. Gao, Q. Zhang, S. Ma, L. Zhang, C. Liu, Y. Xiang, T. J. Cui, and S. Zhang, “Topologically protected Edge State in Two-Dimensional Su-Schrieffer-Heeger Circuit,” Reserch 2019, 8609875 (2019).

H. Jia, R. Zhang, W. Gao, Q. Guo, B. Yang, J. Hu, Y. Bi, Y. Xiang, C. Liu, and S. Zhang, “Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials,” Science 363(6423), 148–151 (2019).
[Crossref] [PubMed]

Liu, H.

Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. T. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
[Crossref]

Liu, S.

S. Liu, W. Gao, Q. Zhang, S. Ma, L. Zhang, C. Liu, Y. Xiang, T. J. Cui, and S. Zhang, “Topologically protected Edge State in Two-Dimensional Su-Schrieffer-Heeger Circuit,” Reserch 2019, 8609875 (2019).

Loh, K. P.

H. Da, Q. Bao, R. Sanaei, J. Teng, K. P. Loh, F. J. Garcia-Vidal, and C. W. Qiu, “Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission,” Phys. Rev. B. 88(20), 205405 (2013).
[Crossref]

Long, L. L.

Losego, M. D.

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J. Maria, “Conductive oxide thin films: Model systems for understanding better plasmonic materials,” J. Appl. Phys. 106(2), 024903 (2009).
[Crossref]

Lu, G.

F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, and H. Chen, “Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials,” Phys. Rev. Appl. 10(6), 064022 (2018).
[Crossref]

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

Lu, L.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91(1), 015006 (2019).
[Crossref]

Lu, W. T.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a threedimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

Lumer, Y.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Ma, S.

S. Liu, W. Gao, Q. Zhang, S. Ma, L. Zhang, C. Liu, Y. Xiang, T. J. Cui, and S. Zhang, “Topologically protected Edge State in Two-Dimensional Su-Schrieffer-Heeger Circuit,” Reserch 2019, 8609875 (2019).

MacDonald, A. H.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref] [PubMed]

Machekhin, Y. P.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Maria, J.

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J. Maria, “Conductive oxide thin films: Model systems for understanding better plasmonic materials,” J. Appl. Phys. 106(2), 024903 (2009).
[Crossref]

Melchior, H.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interferece couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[Crossref]

Menon, L.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a threedimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A Dielectric Omnidirectional Reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Michelotti, F.

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref] [PubMed]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Narimanov, E. E.

E. E. Narimanov, “Photonic Hypercrystals,” Phys. Rev. X 4(4), 041014 (2014).
[Crossref]

Nekvindová, P.

J. Dostálek, J. Čtyroky, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem. 76(1-3), 8–12 (2001).
[Crossref]

Nolte, S.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Nori, F.

S. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and exceptional points in photonics,” Nat. Mater. 18(8), 783–798 (2019).
[Crossref] [PubMed]

Ordal, M. A.

Orlov, A. A.

S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polarizations in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

Ozawa, T.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91(1), 015006 (2019).
[Crossref]

Özdemir, S. K.

S. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and exceptional points in photonics,” Nat. Mater. 18(8), 783–798 (2019).
[Crossref] [PubMed]

Panah, M. E. A.

E. Shkondin, T. Repän, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing,” ACS Appl. Nano Mater. 1(3), 1212–1218 (2018).
[Crossref]

Pang, Z.

Parriaux, O.

M. S. Klimov, V. A. Sychugov, A. V. Tishchenko, and O. Parriaux, “Optimization of optical waveguide grating couplers,” Fiber Integr. Opt. 11(1), 85–90 (1992).
[Crossref]

Paschel, S.

X. Cheng, S. Dong, S. Zhi, S. Paschel, I. Balasa, D. Ristau, and Z. Wang, “Waterproof coatings for high-power laser cavities,” Light Sci. Appl. 8(1), 12 (2019).
[Crossref] [PubMed]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Plotnik, Y.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 958–967 (2013).
[Crossref]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Podolsky, D.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Price, H. M.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91(1), 015006 (2019).
[Crossref]

Qi, K.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

Qian, S.

Qiu, C. W.

H. Da, Q. Bao, R. Sanaei, J. Teng, K. P. Loh, F. J. Garcia-Vidal, and C. W. Qiu, “Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission,” Phys. Rev. B. 88(20), 205405 (2013).
[Crossref]

Qu, H.

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94(19), 191105 (2009).
[Crossref]

Querry, M. R.

Reale, A.

Rechtsman, M. C.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91(1), 015006 (2019).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Repän, T.

E. Shkondin, T. Repän, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing,” ACS Appl. Nano Mater. 1(3), 1212–1218 (2018).
[Crossref]

Rhodes, C. L.

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J. Maria, “Conductive oxide thin films: Model systems for understanding better plasmonic materials,” J. Appl. Phys. 106(2), 024903 (2009).
[Crossref]

Ristau, D.

X. Cheng, S. Dong, S. Zhi, S. Paschel, I. Balasa, D. Ristau, and Z. Wang, “Waterproof coatings for high-power laser cavities,” Light Sci. Appl. 8(1), 12 (2019).
[Crossref] [PubMed]

Rotter, S.

S. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and exceptional points in photonics,” Nat. Mater. 18(8), 783–798 (2019).
[Crossref] [PubMed]

Sanaei, R.

H. Da, Q. Bao, R. Sanaei, J. Teng, K. P. Loh, F. J. Garcia-Vidal, and C. W. Qiu, “Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission,” Phys. Rev. B. 88(20), 205405 (2013).
[Crossref]

Schröfel, J.

J. Dostálek, J. Čtyroky, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem. 76(1-3), 8–12 (2001).
[Crossref]

Schuster, D.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91(1), 015006 (2019).
[Crossref]

Segev, M.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Semenov, A.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Senellart, P.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97(15), 155422 (2018).
[Crossref]

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm Plasmon Lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shalaginov, M. Y.

Shelykh, I. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B. 76(16), 165415 (2007).
[Crossref]

Shin, J. H.

Shivananju, B. N.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

Shkondin, E.

E. Shkondin, T. Repän, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing,” ACS Appl. Nano Mater. 1(3), 1212–1218 (2018).
[Crossref]

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref] [PubMed]

Simon, J.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91(1), 015006 (2019).
[Crossref]

Sipe, J. E.

S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polarizations in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

Skalský, M.

J. Dostálek, J. Čtyroky, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem. 76(1-3), 8–12 (2001).
[Crossref]

Škvor, J.

J. Dostálek, J. Čtyroky, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem. 76(1-3), 8–12 (2001).
[Crossref]

Smit, M. K.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interferece couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[Crossref]

Soldano, L. B.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interferece couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[Crossref]

Song, J.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Song, S.

Špirková, J.

J. Dostálek, J. Čtyroky, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem. 76(1-3), 8–12 (2001).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Sridhar, S.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a threedimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Sun, H.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Sun, Y.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

Sung, G. Y.

Sychugov, V. A.

M. S. Klimov, V. A. Sychugov, A. V. Tishchenko, and O. Parriaux, “Optimization of optical waveguide grating couplers,” Fiber Integr. Opt. 11(1), 85–90 (1992).
[Crossref]

Symonds, C.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm Plasmon Lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Szameit, A.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Takayama, O.

E. Shkondin, T. Repän, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing,” ACS Appl. Nano Mater. 1(3), 1212–1218 (2018).
[Crossref]

Tang, J.

Teng, J.

H. Da, Q. Bao, R. Sanaei, J. Teng, K. P. Loh, F. J. Garcia-Vidal, and C. W. Qiu, “Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission,” Phys. Rev. B. 88(20), 205405 (2013).
[Crossref]

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A Dielectric Omnidirectional Reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Tishchenko, A. V.

M. S. Klimov, V. A. Sychugov, A. V. Tishchenko, and O. Parriaux, “Optimization of optical waveguide grating couplers,” Fiber Integr. Opt. 11(1), 85–90 (1992).
[Crossref]

Tong, J. K.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Tsang, Y. H.

Tse, W. K.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref] [PubMed]

Tsurimaki, Y.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Wang, A. H.

Wang, Q.

Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. T. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
[Crossref]

Wang, X.

Wang, Z.

Q. Huang, Z. Guo, J. Feng, C. Yu, H. Jiang, Z. Zhang, Z. Wang, and H. Chen, “Observation of a topological edge states in the X-ray band,” Laser Photonics Rev. 1, 1800339 (2019).
[Crossref]

X. Cheng, S. Dong, S. Zhi, S. Paschel, I. Balasa, D. Ristau, and Z. Wang, “Waterproof coatings for high-power laser cavities,” Light Sci. Appl. 8(1), 12 (2019).
[Crossref] [PubMed]

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

Wang, Z. S.

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A Dielectric Omnidirectional Reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Wu, C.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
[Crossref]

Wu, F.

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, and H. Chen, “Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials,” Phys. Rev. Appl. 10(6), 064022 (2018).
[Crossref]

Wu, L.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

X. Wang, Y. Liang, L. Wu, J. Guo, X. Dai, and Y. Xiang, “Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene,” Opt. Lett. 43(17), 4256–4259 (2018).
[Crossref] [PubMed]

Wu, L. H.

L. H. Wu and X. Hu, “Scheme for achieving a topological photonic crystal by using dielectric material,” Phys. Rev. Lett. 114(22), 223901 (2015).
[Crossref] [PubMed]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Xiang, Y.

S. Liu, W. Gao, Q. Zhang, S. Ma, L. Zhang, C. Liu, Y. Xiang, T. J. Cui, and S. Zhang, “Topologically protected Edge State in Two-Dimensional Su-Schrieffer-Heeger Circuit,” Reserch 2019, 8609875 (2019).

H. Jia, R. Zhang, W. Gao, Q. Guo, B. Yang, J. Hu, Y. Bi, Y. Xiang, C. Liu, and S. Zhang, “Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials,” Science 363(6423), 148–151 (2019).
[Crossref] [PubMed]

L. Jiang, J. Tang, J. Xu, Z. Zheng, J. Dong, J. Guo, S. Qian, X. Dai, and Y. Xiang, “Graphene Tamm plasmon-induced low-threshould optical bistability at terahertz frequencies,” Opt. Mater. Express 9(1), 139–150 (2019).
[Crossref]

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

X. Wang, Y. Liang, L. Wu, J. Guo, X. Dai, and Y. Xiang, “Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene,” Opt. Lett. 43(17), 4256–4259 (2018).
[Crossref] [PubMed]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

Xiao, M.

Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. T. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
[Crossref]

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

Xing, M.

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94(19), 191105 (2009).
[Crossref]

Xu, J.

Xu, T.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
[Crossref]

Xue, C.

F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, and H. Chen, “Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials,” Phys. Rev. Appl. 10(6), 064022 (2018).
[Crossref]

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

Xue, T.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

Yang, B.

H. Jia, R. Zhang, W. Gao, Q. Guo, B. Yang, J. Hu, Y. Bi, Y. Xiang, C. Liu, and S. Zhang, “Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials,” Science 363(6423), 148–151 (2019).
[Crossref] [PubMed]

Yang, L.

S. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and exceptional points in photonics,” Nat. Mater. 18(8), 783–798 (2019).
[Crossref] [PubMed]

Yang, T.

Yin, X.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
[Crossref]

You, Q.

Yu, C.

Q. Huang, Z. Guo, J. Feng, C. Yu, H. Jiang, Z. Zhang, Z. Wang, and H. Chen, “Observation of a topological edge states in the X-ray band,” Laser Photonics Rev. 1, 1800339 (2019).
[Crossref]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Zeuner, J. M.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Zhang, H.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

Zhang, L.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

S. Liu, W. Gao, Q. Zhang, S. Ma, L. Zhang, C. Liu, Y. Xiang, T. J. Cui, and S. Zhang, “Topologically protected Edge State in Two-Dimensional Su-Schrieffer-Heeger Circuit,” Reserch 2019, 8609875 (2019).

Zhang, Q.

S. Liu, W. Gao, Q. Zhang, S. Ma, L. Zhang, C. Liu, Y. Xiang, T. J. Cui, and S. Zhang, “Topologically protected Edge State in Two-Dimensional Su-Schrieffer-Heeger Circuit,” Reserch 2019, 8609875 (2019).

Zhang, R.

H. Jia, R. Zhang, W. Gao, Q. Guo, B. Yang, J. Hu, Y. Bi, Y. Xiang, C. Liu, and S. Zhang, “Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials,” Science 363(6423), 148–151 (2019).
[Crossref] [PubMed]

Zhang, S.

H. Jia, R. Zhang, W. Gao, Q. Guo, B. Yang, J. Hu, Y. Bi, Y. Xiang, C. Liu, and S. Zhang, “Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials,” Science 363(6423), 148–151 (2019).
[Crossref] [PubMed]

S. Liu, W. Gao, Q. Zhang, S. Ma, L. Zhang, C. Liu, Y. Xiang, T. J. Cui, and S. Zhang, “Topologically protected Edge State in Two-Dimensional Su-Schrieffer-Heeger Circuit,” Reserch 2019, 8609875 (2019).

Zhang, X.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Zhang, Y.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

Zhang, Z.

Q. Huang, Z. Guo, J. Feng, C. Yu, H. Jiang, Z. Zhang, Z. Wang, and H. Chen, “Observation of a topological edge states in the X-ray band,” Laser Photonics Rev. 1, 1800339 (2019).
[Crossref]

Zhang, Z. Q.

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

Zhao, L. M.

Zheng, M.

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, and H. Chen, “Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials,” Phys. Rev. Appl. 10(6), 064022 (2018).
[Crossref]

Zheng, W.

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94(19), 191105 (2009).
[Crossref]

Zheng, Z.

Zhi, S.

X. Cheng, S. Dong, S. Zhi, S. Paschel, I. Balasa, D. Ristau, and Z. Wang, “Waterproof coatings for high-power laser cavities,” Light Sci. Appl. 8(1), 12 (2019).
[Crossref] [PubMed]

Zhou, L.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
[Crossref]

Zhou, W.

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94(19), 191105 (2009).
[Crossref]

Zhou, Y. S.

Zhu, H.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
[Crossref]

Zhu, S.

Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. T. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
[Crossref]

Zhukovsky, S. V.

S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polarizations in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

Zilberberg, O.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91(1), 015006 (2019).
[Crossref]

ACS Appl. Nano Mater. (1)

E. Shkondin, T. Repän, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing,” ACS Appl. Nano Mater. 1(3), 1212–1218 (2018).
[Crossref]

ACS Photonics (1)

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Ann. Phys. (Berlin) (1)

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. (Berlin) 524(11), 637–662 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94(19), 191105 (2009).
[Crossref]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a threedimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Fiber Integr. Opt. (1)

M. S. Klimov, V. A. Sychugov, A. V. Tishchenko, and O. Parriaux, “Optimization of optical waveguide grating couplers,” Fiber Integr. Opt. 11(1), 85–90 (1992).
[Crossref]

J. Appl. Phys. (1)

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J. Maria, “Conductive oxide thin films: Model systems for understanding better plasmonic materials,” J. Appl. Phys. 106(2), 024903 (2009).
[Crossref]

J. Lightwave Technol. (1)

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interferece couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[Crossref]

Laser Photonics Rev. (3)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic Metamaterial Devices for Wavefront Manipulation,” Laser Photonics Rev. 13(1), 1800081 (2019).
[Crossref]

Q. Huang, Z. Guo, J. Feng, C. Yu, H. Jiang, Z. Zhang, Z. Wang, and H. Chen, “Observation of a topological edge states in the X-ray band,” Laser Photonics Rev. 1, 1800339 (2019).
[Crossref]

Light Sci. Appl. (1)

X. Cheng, S. Dong, S. Zhi, S. Paschel, I. Balasa, D. Ristau, and Z. Wang, “Waterproof coatings for high-power laser cavities,” Light Sci. Appl. 8(1), 12 (2019).
[Crossref] [PubMed]

Nano Lett. (1)

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm Plasmon Lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, and Q. Bao, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref] [PubMed]

Nat. Mater. (4)

S. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and exceptional points in photonics,” Nat. Mater. 18(8), 783–798 (2019).
[Crossref] [PubMed]

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 958–967 (2013).
[Crossref]

Nature (1)

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (5)

Opt. Mater. Express (2)

Photon. Res. (1)

Phys. Rev. A (1)

S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polarizations in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

Phys. Rev. Appl. (1)

F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, and H. Chen, “Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials,” Phys. Rev. Appl. 10(6), 064022 (2018).
[Crossref]

Phys. Rev. B (3)

Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. T. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
[Crossref]

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97(15), 155422 (2018).
[Crossref]

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

Phys. Rev. B. (2)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B. 76(16), 165415 (2007).
[Crossref]

H. Da, Q. Bao, R. Sanaei, J. Teng, K. P. Loh, F. J. Garcia-Vidal, and C. W. Qiu, “Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission,” Phys. Rev. B. 88(20), 205405 (2013).
[Crossref]

Phys. Rev. Lett. (1)

L. H. Wu and X. Hu, “Scheme for achieving a topological photonic crystal by using dielectric material,” Phys. Rev. Lett. 114(22), 223901 (2015).
[Crossref] [PubMed]

Phys. Rev. X (2)

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

E. E. Narimanov, “Photonic Hypercrystals,” Phys. Rev. X 4(4), 041014 (2014).
[Crossref]

Reserch (1)

S. Liu, W. Gao, Q. Zhang, S. Ma, L. Zhang, C. Liu, Y. Xiang, T. J. Cui, and S. Zhang, “Topologically protected Edge State in Two-Dimensional Su-Schrieffer-Heeger Circuit,” Reserch 2019, 8609875 (2019).

Rev. Mod. Phys. (1)

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91(1), 015006 (2019).
[Crossref]

Science (2)

H. Jia, R. Zhang, W. Gao, Q. Guo, B. Yang, J. Hu, Y. Bi, Y. Xiang, C. Liu, and S. Zhang, “Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials,” Science 363(6423), 148–151 (2019).
[Crossref] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A Dielectric Omnidirectional Reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

J. Dostálek, J. Čtyroky, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem. 76(1-3), 8–12 (2001).
[Crossref]

Other (3)

E. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

J. J. Raftery, Jr., Ph. D. thesis, University of Illinois at Urbana-Champaign, p10 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Reflectance spectra of [(CD)2B]9 versus incident angle for TM and TE polarizations. Blue dashed lines represent the gap-edges.
Fig. 2
Fig. 2 (a) Schematic of the heterostructure M[(CD)2B]9. (b) Reflectance spectra of M[(CD)2B]9 versus incident angle for TM and TE polarizations. Red dotted and blue dashed lines represent the edge state wavelength and the gap-edge wavelength, respectively.
Fig. 3
Fig. 3 (a) Reflectance, (c) reflection phase and (e) ellipsometric phase spectra of M[(CD)2B]9 at θ=20°. (b) Reflectance, (d) reflection phase and (f) ellipsometric phase spectra of M[(CD)2B]9 at θ=40°. Red and blue solid lines represent TM and TE polarizations, respectively. (g)-(j) Normalized magnetic or electric field intensity distributions of M[(CD)2B]9 for edge states P1-P4. The thickness of the metal layer is ten times of its real thickness for better visibility. Black solid line represents the boundary of the structure. Green solid line represents the interface between the metal layer and the 1DPC.
Fig. 4
Fig. 4 Absolute value of the derivative of the ellipsometric phase to the wavelength K=| dΔ/dλ | at the edge state wavelength for TE polarization as a function of incident angle. Blue and green five-pointed stars represent the cases of the proposed structure M[(CD)2B]9 and the conventional structure M(AB)9, respectively. Black dashed line represents K=30.
Fig. 5
Fig. 5 (a) Schematic of the proposed biosensor. (b) Ellipsometric phase spectra for n Bio =1.33 and n Bio =1.34 at θ=20°. (c) Ellipometric phase as a function of refractive index at θ=20° and λ=1438nm. (d) Sensitivity as a function of refractive index at θ=20° and λ=1438nm.
Fig. 6
Fig. 6 Minimal refractive index resolution as a function of the incident angle. Black dashed line represents the resolution 10 4 RIU.
Fig. 7
Fig. 7 Reflection phase of the metal layer (multiple by minus one) and the 1DPC [(CD)2B]9 at different incident angles for (a) TM and (b) TE polarizations. Black, green and red solid (dashed) lines represent the reflection phase of the metal layer (the 1DPC) at the incident angles θ=0°, 20° and 40°, respectively. Crossing point between solid and dashed lines represents the reflection phase canceling point.
Fig. 8
Fig. 8 Dependences of the edge state wavelength on the incident angle for TM and TE polarizations with different metal layer thickness d M .
Fig. 9
Fig. 9 Dependences of the gap-edge and the edge state wavelengths on the incident angle for TM and TE polarizations with different layer thicknesses d C , d D and d B . Solid and dashed lines in Figs. 9 (a), (c) and (e) represent the upper and bottom gap-edges, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d A > λ Bragg 2 1 ε Ax (1 ε B / ε Az ) = d Amin =109nm,
d B = ( λ Bragg /2) ε Ax d A ε B ,

Metrics