Abstract

Integrated phase-change photonic memory devices offer a novel route to non-volatile storage and computing that can be carried out entirely in the optical domain, obviating the necessity for time and energy consuming opto-electrical conversions. Such memory devices generally consist of integrated waveguide structures onto which are fabricated small phase-change memory cells. Switching these cells between their amorphous and crystalline states modifies significantly the optical transmission through the waveguide, so providing memory, and computing, functionality. To carry out such switching, optical pulses are sent down the waveguide, coupling to the phase-change cell, heating it up, and so switching it between states. While great strides have been made in the development of integrated phase-change photonic devices in recent years, there is always a pressing need for faster switching times, lower energy consumption and a smaller device footprint. In this work, therefore, we propose the use of plasmonic enhancement of the light-matter interaction between the propagating waveguide mode and the phase-change cell as a means to faster, smaller and more energy-efficient devices. In particular, we propose a form of plasmonic dimer nanoantenna of significantly sub-micron size that, in simulations, offers significant improvements in switching speeds and energies. Write/erase speeds in the range 2 to 20 ns and write/erase energies in the range 2 to 15 pJ were predicted, representing improvements of one to two orders of magnitude when compared to conventional device architectures.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited]

Carlos Rios, Matthias Stegmaier, Zengguang Cheng, Nathan Youngblood, C. David Wright, Wolfram H. P. Pernice, and Harish Bhaskaran
Opt. Mater. Express 8(9) 2455-2470 (2018)

Optical phase change materials in integrated silicon photonic devices: review

Kevin J. Miller, Richard F. Haglund, and Sharon M. Weiss
Opt. Mater. Express 8(8) 2415-2429 (2018)

Fast and reliable storage using a 5  bit, nonvolatile photonic memory cell

Xuan Li, Nathan Youngblood, Carlos Ríos, Zengguang Cheng, C. David Wright, Wolfram HP Pernice, and Harish Bhaskaran
Optica 6(1) 1-6 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
    [Crossref] [PubMed]
  2. A. Alduino and M. Paniccia, “Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
    [Crossref]
  3. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
    [Crossref]
  4. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
    [Crossref]
  5. E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
    [Crossref]
  6. T. Alexoudi, D. Fitsios, A. Bazin, P. Monnier, R. Raj, A. Miliou, G. T. Kanellos, N. Pleros, and F. Raineri, “III-V-on-Si Photonic Crystal Nanocavity Laser Technology for Optical Static Random Access Memories,” IEEE J. Sel. Top. Quantum Electron. 22(6), 295–304 (2016).
    [Crossref]
  7. W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
    [Crossref]
  8. C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
    [Crossref] [PubMed]
  9. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
    [Crossref]
  10. X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell,” Optica 6(1), 1–6 (2019).
    [Crossref]
  11. J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, J. Doylend, N. Boechler, and A. Majumdar, “GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform,” Opt. Mater. Express 8(6), 1551–1561 (2018).
    [Crossref]
  12. J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
    [Crossref] [PubMed]
  13. Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
    [Crossref] [PubMed]
  14. C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), u5759 (2019).
    [PubMed]
  15. J. Von Keitz, J. Feldmann, N. Gruhler, C. Ríos, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Reconfigurable Nanophotonic Cavities with Nonvolatile Response,” ACS Photonics 5(11), 4644–4649 (2018).
    [Crossref]
  16. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [Crossref] [PubMed]
  17. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
    [Crossref]
  18. J.-C. Weeber, J. Arocas, O. Heintz, L. Markey, S. Viarbitskaya, G. Colas-des-Francs, K. Hammani, A. Dereux, C. Hoessbacher, U. Koch, J. Leuthold, K. Rohracher, A. L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, N. Pleros, and D. Tsiokos, “Characterization of CMOS metal based dielectric loaded surface plasmon waveguides at telecom wavelengths,” Opt. Express 25(1), 394–408 (2017).
    [Crossref] [PubMed]
  19. Y. Fang and M. Sun, “Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4(6), 1–11 (2015).
    [Crossref]
  20. F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
    [Crossref]
  21. M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J.-M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express 20(16), 17402–17410 (2012).
    [Crossref] [PubMed]
  22. D. A. Mohr, D. Yoo, C. Chen, M. Li, and S.-H. Oh, “Waveguide-integrated mid-infrared plasmonics with high-efficiency coupling for ultracompact surface-enhanced infrared absorption spectroscopy,” Opt. Express 26(18), 23540–23549 (2018).
    [Crossref] [PubMed]
  23. J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8(4), 317–320 (2014).
    [Crossref]
  24. R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller, “Quantum interference in plasmonic circuits,” Nat. Nanotechnol. 8(10), 719–722 (2013).
    [Crossref] [PubMed]
  25. N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, D. C. Wright, W. H. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase change devices with dual electrical-optical functionality,” arXiv preprint arXiv:1811.07651 (2018).
  26. M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
    [Crossref]
  27. G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
    [Crossref]
  28. L. Lu, W. Dong, J. K. Behera, L. Chew, and R. E. Simpson, “Inter-diffusion of plasmonic metals and phase change materials,” J. Mater. Sci. 54(4), 2814–2823 (2019).
    [Crossref]
  29. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
    [Crossref] [PubMed]
  30. W. Frei, “Using Perfectly Matched Layers and Scattering Boundary Conditions for Wave Electromagnetics Problems,” https://uk.comsol.com/blogs/using-perfectly-matched-layers-and-scattering-boundary-conditions-for-wave-electromagnetics-problems/ .
  31. E. Yalon, S. Deshmukh, M. Muñoz Rojo, F. Lian, C. M. Neumann, F. Xiong, and E. Pop, “Spatially Resolved Thermometry of Resistive Memory Devices,” Sci. Rep. 7(1), 15360 (2017).
    [Crossref] [PubMed]
  32. E. Bozorg-Grayeli, J. P. Reifenberg, M. A. Panzer, J. A. Rowlette, and K. E. Goodson, “Temperature-dependent thermal properties of phase-change memory electrode materials,” IEEE Electron Device Lett. 32(9), 1281–1283 (2011).
    [Crossref]
  33. S. Bai, Z. Tang, Z. Huang, and J. Wang, “Transient Thermoreflectance Measurement of Thermal Conductivity of Nanoscale Silicon Nitride Thin Films,” in Proceedings of ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels (2009), pp. 457–460.
  34. J. Cho, K. K. Chu, P. C. Chao, C. McGray, M. Asheghi, and K. E. Goodson, “Thermal conduction normal to thin silicon nitride films on diamond and GaN,”in Proceedings of Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). (IEEE, 2014), pp. 1186–1191.
    [Crossref]
  35. J. A. Kalb, “Crystallization kinetics in antimony and tellurium alloys used for phase change recording,” University of Aachen (2001).
  36. M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical Effect in Phase-Change Nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
    [Crossref]
  37. S. G.-C. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
    [Crossref] [PubMed]
  38. C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories,” IEEE Trans. NanoTechnol. 10(4), 900–912 (2011).
    [Crossref]
  39. V. Bragaglia, B. Jenichen, A. Giussani, K. Perumal, H. Riechert, and R. Calarco, “Structural change upon annealing of amorphous GeSbTe grown on Si(111),” J. Appl. Phys. 116(5), 054913 (2014).
    [Crossref]
  40. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
    [Crossref] [PubMed]
  41. V. Palankovski and R. Quay, Analysis and Simulation of Heterostructure Devices, Computational Microelectronics (Springer, Wien, 2004).
  42. M. B. Takeyama, M. Sato, Y. Nakata, Y. Kobayashi, T. Nakamura, and A. Noya, “Characterization of silicon nitride thin films deposited by reactive sputtering and plasma- enhanced CVD at low temperatures,” Jpn. J. Appl. Phys. 53(5S2), 05GE01 (2014)
  43. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
    [Crossref] [PubMed]
  44. F. Udrea, J. W. Gardner, D. Setiadi, J. A. Covington, T. Dogaru, C. C. Lu, and W. I. Milne, “Design and simulations of SOI CMOS micro-hotplate gas sensors,” Sens. Actuators B Chem. 78(1–3), 180–190 (2001).
    [Crossref]
  45. P. Dong, T.-C. Hu, T.-Y. Liow, Y.-K. Chen, C. Xie, X. Luo, G.-Q. Lo, R. Kopf, and A. Tate, “Novel integration technique for silicon/III-V hybrid laser,” Opt. Express 22(22), 26854–26861 (2014).
    [Crossref] [PubMed]
  46. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  47. G. T. Furukawa, M. L. Reilly, and J. S. Gallagher, “Critical Analysis of Heat—Capacity Data and Evaluation of Thermodynamic Properties of Ruthenium, Rhodium, Palladium, Iridium, and Platinum from 0 to 300K. A Survey of the Literature Data on Osmium,” J. Phys. Chem. Ref. Data 3(1), 163–209 (1974).
    [Crossref]
  48. Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5(1), 10718 (2015).
    [Crossref] [PubMed]
  49. S. Lovell and E. Rollinson, “Density of Thin Films of Vacuum Evaporated Metals,” Nature 218(5147), 1179–1180 (1968).
    [Crossref]
  50. C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited],” Opt. Mater. Express 8(9), 2455–2470 (2018).
    [Crossref]
  51. C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material,” ACS Photonics 6(1), 87–92 (2019).
    [Crossref]
  52. I. Hilmi, E. Thelander, P. Schumacher, J. W. Gerlach, and B. Rauschenbach, “Epitaxial Ge 2 Sb 2 Te 5 films on Si(111) prepared by pulsed laser deposition,” Thin Solid Films 619, 81–85 (2016).
    [Crossref]
  53. C. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
    [Crossref]
  54. J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater. 11(4), 279–283 (2012).
    [Crossref] [PubMed]
  55. M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
    [Crossref]

2019 (4)

X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell,” Optica 6(1), 1–6 (2019).
[Crossref]

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), u5759 (2019).
[PubMed]

L. Lu, W. Dong, J. K. Behera, L. Chew, and R. E. Simpson, “Inter-diffusion of plasmonic metals and phase change materials,” J. Mater. Sci. 54(4), 2814–2823 (2019).
[Crossref]

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material,” ACS Photonics 6(1), 87–92 (2019).
[Crossref]

2018 (4)

2017 (5)

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

J.-C. Weeber, J. Arocas, O. Heintz, L. Markey, S. Viarbitskaya, G. Colas-des-Francs, K. Hammani, A. Dereux, C. Hoessbacher, U. Koch, J. Leuthold, K. Rohracher, A. L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, N. Pleros, and D. Tsiokos, “Characterization of CMOS metal based dielectric loaded surface plasmon waveguides at telecom wavelengths,” Opt. Express 25(1), 394–408 (2017).
[Crossref] [PubMed]

E. Yalon, S. Deshmukh, M. Muñoz Rojo, F. Lian, C. M. Neumann, F. Xiong, and E. Pop, “Spatially Resolved Thermometry of Resistive Memory Devices,” Sci. Rep. 7(1), 15360 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

2016 (5)

I. Hilmi, E. Thelander, P. Schumacher, J. W. Gerlach, and B. Rauschenbach, “Epitaxial Ge 2 Sb 2 Te 5 films on Si(111) prepared by pulsed laser deposition,” Thin Solid Films 619, 81–85 (2016).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical Effect in Phase-Change Nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

S. G.-C. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref] [PubMed]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

T. Alexoudi, D. Fitsios, A. Bazin, P. Monnier, R. Raj, A. Miliou, G. T. Kanellos, N. Pleros, and F. Raineri, “III-V-on-Si Photonic Crystal Nanocavity Laser Technology for Optical Static Random Access Memories,” IEEE J. Sel. Top. Quantum Electron. 22(6), 295–304 (2016).
[Crossref]

2015 (6)

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Y. Fang and M. Sun, “Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4(6), 1–11 (2015).
[Crossref]

M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
[Crossref]

Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5(1), 10718 (2015).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

2014 (5)

P. Dong, T.-C. Hu, T.-Y. Liow, Y.-K. Chen, C. Xie, X. Luo, G.-Q. Lo, R. Kopf, and A. Tate, “Novel integration technique for silicon/III-V hybrid laser,” Opt. Express 22(22), 26854–26861 (2014).
[Crossref] [PubMed]

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8(4), 317–320 (2014).
[Crossref]

V. Bragaglia, B. Jenichen, A. Giussani, K. Perumal, H. Riechert, and R. Calarco, “Structural change upon annealing of amorphous GeSbTe grown on Si(111),” J. Appl. Phys. 116(5), 054913 (2014).
[Crossref]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

2013 (3)

A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
[Crossref] [PubMed]

R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller, “Quantum interference in plasmonic circuits,” Nat. Nanotechnol. 8(10), 719–722 (2013).
[Crossref] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

2012 (6)

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J.-M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express 20(16), 17402–17410 (2012).
[Crossref] [PubMed]

J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref] [PubMed]

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater. 11(4), 279–283 (2012).
[Crossref] [PubMed]

2011 (2)

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories,” IEEE Trans. NanoTechnol. 10(4), 900–912 (2011).
[Crossref]

E. Bozorg-Grayeli, J. P. Reifenberg, M. A. Panzer, J. A. Rowlette, and K. E. Goodson, “Temperature-dependent thermal properties of phase-change memory electrode materials,” IEEE Electron Device Lett. 32(9), 1281–1283 (2011).
[Crossref]

2007 (2)

A. Alduino and M. Paniccia, “Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[Crossref]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

2001 (1)

F. Udrea, J. W. Gardner, D. Setiadi, J. A. Covington, T. Dogaru, C. C. Lu, and W. I. Milne, “Design and simulations of SOI CMOS micro-hotplate gas sensors,” Sens. Actuators B Chem. 78(1–3), 180–190 (2001).
[Crossref]

1997 (1)

C. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
[Crossref]

1974 (1)

G. T. Furukawa, M. L. Reilly, and J. S. Gallagher, “Critical Analysis of Heat—Capacity Data and Evaluation of Thermodynamic Properties of Ruthenium, Rhodium, Palladium, Iridium, and Platinum from 0 to 300K. A Survey of the Literature Data on Osmium,” J. Phys. Chem. Ref. Data 3(1), 163–209 (1974).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1968 (1)

S. Lovell and E. Rollinson, “Density of Thin Films of Vacuum Evaporated Metals,” Nature 218(5147), 1179–1180 (1968).
[Crossref]

Aassime, A.

Alduino, A.

A. Alduino and M. Paniccia, “Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

Aleksandrova, A.

Alexoudi, T.

T. Alexoudi, D. Fitsios, A. Bazin, P. Monnier, R. Raj, A. Miliou, G. T. Kanellos, N. Pleros, and F. Raineri, “III-V-on-Si Photonic Crystal Nanocavity Laser Technology for Optical Static Random Access Memories,” IEEE J. Sel. Top. Quantum Electron. 22(6), 295–304 (2016).
[Crossref]

Alloatti, L.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Arbabi, A.

Arocas, J.

Asanovic, K.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Asheghi, M.

J. Cho, K. K. Chu, P. C. Chao, C. McGray, M. Asheghi, and K. E. Goodson, “Thermal conduction normal to thin silicon nitride films on diamond and GaN,”in Proceedings of Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). (IEEE, 2014), pp. 1186–1191.
[Crossref]

Atabaki, A. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Atwater, H. A.

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8(4), 317–320 (2014).
[Crossref]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Avizienis, R. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Aziz, M. M.

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories,” IEEE Trans. NanoTechnol. 10(4), 900–912 (2011).
[Crossref]

Baets, R.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

Baeuerle, B.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Barbillon, G.

Bartenlian, B.

Bazin, A.

T. Alexoudi, D. Fitsios, A. Bazin, P. Monnier, R. Raj, A. Miliou, G. T. Kanellos, N. Pleros, and F. Raineri, “III-V-on-Si Photonic Crystal Nanocavity Laser Technology for Optical Static Random Access Memories,” IEEE J. Sel. Top. Quantum Electron. 22(6), 295–304 (2016).
[Crossref]

Behera, J. K.

L. Lu, W. Dong, J. K. Behera, L. Chew, and R. E. Simpson, “Inter-diffusion of plasmonic metals and phase change materials,” J. Mater. Sci. 54(4), 2814–2823 (2019).
[Crossref]

Bez, R.

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories,” IEEE Trans. NanoTechnol. 10(4), 900–912 (2011).
[Crossref]

Bhaskaran, H.

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), u5759 (2019).
[PubMed]

X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell,” Optica 6(1), 1–6 (2019).
[Crossref]

J. Von Keitz, J. Feldmann, N. Gruhler, C. Ríos, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Reconfigurable Nanophotonic Cavities with Nonvolatile Response,” ACS Photonics 5(11), 4644–4649 (2018).
[Crossref]

C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited],” Opt. Mater. Express 8(9), 2455–2470 (2018).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

S. G.-C. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref] [PubMed]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical Effect in Phase-Change Nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

Boechler, N.

Bozorg-Grayeli, E.

E. Bozorg-Grayeli, J. P. Reifenberg, M. A. Panzer, J. A. Rowlette, and K. E. Goodson, “Temperature-dependent thermal properties of phase-change memory electrode materials,” IEEE Electron Device Lett. 32(9), 1281–1283 (2011).
[Crossref]

Bragaglia, V.

V. Bragaglia, B. Jenichen, A. Giussani, K. Perumal, H. Riechert, and R. Calarco, “Structural change upon annealing of amorphous GeSbTe grown on Si(111),” J. Appl. Phys. 116(5), 054913 (2014).
[Crossref]

Calarco, R.

V. Bragaglia, B. Jenichen, A. Giussani, K. Perumal, H. Riechert, and R. Calarco, “Structural change upon annealing of amorphous GeSbTe grown on Si(111),” J. Appl. Phys. 116(5), 054913 (2014).
[Crossref]

Carrillo, S. G.-C.

Cazzaniga, F.

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories,” IEEE Trans. NanoTechnol. 10(4), 900–912 (2011).
[Crossref]

Chao, P. C.

J. Cho, K. K. Chu, P. C. Chao, C. McGray, M. Asheghi, and K. E. Goodson, “Thermal conduction normal to thin silicon nitride films on diamond and GaN,”in Proceedings of Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). (IEEE, 2014), pp. 1186–1191.
[Crossref]

Chashnikova, M.

Chen, C.

Chen, Y. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Chen, Y.-K.

Cheng, L.

C. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
[Crossref]

Cheng, Z.

X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell,” Optica 6(1), 1–6 (2019).
[Crossref]

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), u5759 (2019).
[PubMed]

C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited],” Opt. Mater. Express 8(9), 2455–2470 (2018).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5(1), 10718 (2015).
[Crossref] [PubMed]

Chew, L.

L. Lu, W. Dong, J. K. Behera, L. Chew, and R. E. Simpson, “Inter-diffusion of plasmonic metals and phase change materials,” J. Mater. Sci. 54(4), 2814–2823 (2019).
[Crossref]

Chmielak, B.

Cho, J.

J. Cho, K. K. Chu, P. C. Chao, C. McGray, M. Asheghi, and K. E. Goodson, “Thermal conduction normal to thin silicon nitride films on diamond and GaN,”in Proceedings of Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). (IEEE, 2014), pp. 1186–1191.
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, K. K.

J. Cho, K. K. Chu, P. C. Chao, C. McGray, M. Asheghi, and K. E. Goodson, “Thermal conduction normal to thin silicon nitride films on diamond and GaN,”in Proceedings of Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). (IEEE, 2014), pp. 1186–1191.
[Crossref]

Colas-des-Francs, G.

Colburn, S.

Cook, H. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Covington, J. A.

F. Udrea, J. W. Gardner, D. Setiadi, J. A. Covington, T. Dogaru, C. C. Lu, and W. I. Milne, “Design and simulations of SOI CMOS micro-hotplate gas sensors,” Sens. Actuators B Chem. 78(1–3), 180–190 (2001).
[Crossref]

Cryan, M. J.

Dagens, B.

Dalton, L. R.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Dereux, A.

Deshmukh, S.

Dhakal, A.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

Dogaru, T.

F. Udrea, J. W. Gardner, D. Setiadi, J. A. Covington, T. Dogaru, C. C. Lu, and W. I. Milne, “Design and simulations of SOI CMOS micro-hotplate gas sensors,” Sens. Actuators B Chem. 78(1–3), 180–190 (2001).
[Crossref]

Dong, P.

Dong, W.

L. Lu, W. Dong, J. K. Behera, L. Chew, and R. E. Simpson, “Inter-diffusion of plasmonic metals and phase change materials,” J. Mater. Sci. 54(4), 2814–2823 (2019).
[Crossref]

Doylend, J.

Ducry, F.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Elder, D. L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Emboras, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Fakonas, J. S.

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8(4), 317–320 (2014).
[Crossref]

Fang, Y.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4(6), 1–11 (2015).
[Crossref]

Fedoryshyn, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Fedosenko, O.

Feldmann, J.

J. Von Keitz, J. Feldmann, N. Gruhler, C. Ríos, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Reconfigurable Nanophotonic Cavities with Nonvolatile Response,” ACS Photonics 5(11), 4644–4649 (2018).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Février, M.

Fitsios, D.

T. Alexoudi, D. Fitsios, A. Bazin, P. Monnier, R. Raj, A. Miliou, G. T. Kanellos, N. Pleros, and F. Raineri, “III-V-on-Si Photonic Crystal Nanocavity Laser Technology for Optical Static Random Access Memories,” IEEE J. Sel. Top. Quantum Electron. 22(6), 295–304 (2016).
[Crossref]

Flores, Y.

Frantz, J.

Furukawa, G. T.

G. T. Furukawa, M. L. Reilly, and J. S. Gallagher, “Critical Analysis of Heat—Capacity Data and Evaluation of Thermodynamic Properties of Ruthenium, Rhodium, Palladium, Iridium, and Platinum from 0 to 300K. A Survey of the Literature Data on Osmium,” J. Phys. Chem. Ref. Data 3(1), 163–209 (1974).
[Crossref]

Gallagher, J. S.

G. T. Furukawa, M. L. Reilly, and J. S. Gallagher, “Critical Analysis of Heat—Capacity Data and Evaluation of Thermodynamic Properties of Ruthenium, Rhodium, Palladium, Iridium, and Platinum from 0 to 300K. A Survey of the Literature Data on Osmium,” J. Phys. Chem. Ref. Data 3(1), 163–209 (1974).
[Crossref]

Gardner, J. W.

F. Udrea, J. W. Gardner, D. Setiadi, J. A. Covington, T. Dogaru, C. C. Lu, and W. I. Milne, “Design and simulations of SOI CMOS micro-hotplate gas sensors,” Sens. Actuators B Chem. 78(1–3), 180–190 (2001).
[Crossref]

Georgas, M. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Gerlach, J. W.

I. Hilmi, E. Thelander, P. Schumacher, J. W. Gerlach, and B. Rauschenbach, “Epitaxial Ge 2 Sb 2 Te 5 films on Si(111) prepared by pulsed laser deposition,” Thin Solid Films 619, 81–85 (2016).
[Crossref]

Gholipour, B.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater. 11(4), 279–283 (2012).
[Crossref] [PubMed]

Giesecke, A. L.

Giussani, A.

V. Bragaglia, B. Jenichen, A. Giussani, K. Perumal, H. Riechert, and R. Calarco, “Structural change upon annealing of amorphous GeSbTe grown on Si(111),” J. Appl. Phys. 116(5), 054913 (2014).
[Crossref]

Goddard, L. L.

Gogol, P.

Goodson, K. E.

E. Bozorg-Grayeli, J. P. Reifenberg, M. A. Panzer, J. A. Rowlette, and K. E. Goodson, “Temperature-dependent thermal properties of phase-change memory electrode materials,” IEEE Electron Device Lett. 32(9), 1281–1283 (2011).
[Crossref]

J. Cho, K. K. Chu, P. C. Chao, C. McGray, M. Asheghi, and K. E. Goodson, “Thermal conduction normal to thin silicon nitride films on diamond and GaN,”in Proceedings of Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). (IEEE, 2014), pp. 1186–1191.
[Crossref]

Greer, A. L.

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater. 11(4), 279–283 (2012).
[Crossref] [PubMed]

Gruhler, N.

J. Von Keitz, J. Feldmann, N. Gruhler, C. Ríos, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Reconfigurable Nanophotonic Cavities with Nonvolatile Response,” ACS Photonics 5(11), 4644–4649 (2018).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Gruska, B.

Haffner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hafner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hammani, K.

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Hayat, H.

Heeres, R. W.

R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller, “Quantum interference in plasmonic circuits,” Nat. Nanotechnol. 8(10), 719–722 (2013).
[Crossref] [PubMed]

Heintz, O.

Hendrickson, J.

Heni, W.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hewak, D. W.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater. 11(4), 279–283 (2012).
[Crossref] [PubMed]

Hillerkuss, D.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hilmi, I.

I. Hilmi, E. Thelander, P. Schumacher, J. W. Gerlach, and B. Rauschenbach, “Epitaxial Ge 2 Sb 2 Te 5 films on Si(111) prepared by pulsed laser deposition,” Thin Solid Films 619, 81–85 (2016).
[Crossref]

Hoessbacher, C.

J.-C. Weeber, J. Arocas, O. Heintz, L. Markey, S. Viarbitskaya, G. Colas-des-Francs, K. Hammani, A. Dereux, C. Hoessbacher, U. Koch, J. Leuthold, K. Rohracher, A. L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, N. Pleros, and D. Tsiokos, “Characterization of CMOS metal based dielectric loaded surface plasmon waveguides at telecom wavelengths,” Opt. Express 25(1), 394–408 (2017).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hosseini, P.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

Hu, T.-C.

Jenichen, B.

V. Bragaglia, B. Jenichen, A. Giussani, K. Perumal, H. Riechert, and R. Calarco, “Structural change upon annealing of amorphous GeSbTe grown on Si(111),” J. Appl. Phys. 116(5), 054913 (2014).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Josten, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Juchli, L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Kanellos, G. T.

T. Alexoudi, D. Fitsios, A. Bazin, P. Monnier, R. Raj, A. Miliou, G. T. Kanellos, N. Pleros, and F. Raineri, “III-V-on-Si Photonic Crystal Nanocavity Laser Technology for Optical Static Random Access Memories,” IEEE J. Sel. Top. Quantum Electron. 22(6), 295–304 (2016).
[Crossref]

Kawaguchi, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

Kelaita, Y. A.

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8(4), 317–320 (2014).
[Crossref]

Khanolkar, A.

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Kimerling, L.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[Crossref]

Kirchain, R.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[Crossref]

Kischkat, J.

Klemm, M.

Klinkmüller, M.

Koch, U.

J.-C. Weeber, J. Arocas, O. Heintz, L. Markey, S. Viarbitskaya, G. Colas-des-Francs, K. Hammani, A. Dereux, C. Hoessbacher, U. Koch, J. Leuthold, K. Rohracher, A. L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, N. Pleros, and D. Tsiokos, “Characterization of CMOS metal based dielectric loaded surface plasmon waveguides at telecom wavelengths,” Opt. Express 25(1), 394–408 (2017).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Kohl, M.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Kopf, R.

Kouwenhoven, L. P.

R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller, “Quantum interference in plasmonic circuits,” Nat. Nanotechnol. 8(10), 719–722 (2013).
[Crossref] [PubMed]

Kumar, R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Kuramochi, E.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Le Gallo, M.

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), u5759 (2019).
[PubMed]

Le Thomas, N.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

Lee, H.

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8(4), 317–320 (2014).
[Crossref]

Lee, Y.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Leu, J. C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Leuthold, J.

J.-C. Weeber, J. Arocas, O. Heintz, L. Markey, S. Viarbitskaya, G. Colas-des-Francs, K. Hammani, A. Dereux, C. Hoessbacher, U. Koch, J. Leuthold, K. Rohracher, A. L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, N. Pleros, and D. Tsiokos, “Characterization of CMOS metal based dielectric loaded surface plasmon waveguides at telecom wavelengths,” Opt. Express 25(1), 394–408 (2017).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Li, H.

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material,” ACS Photonics 6(1), 87–92 (2019).
[Crossref]

Li, M.

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material,” ACS Photonics 6(1), 87–92 (2019).
[Crossref]

D. A. Mohr, D. Yoo, C. Chen, M. Li, and S.-H. Oh, “Waveguide-integrated mid-infrared plasmonics with high-efficiency coupling for ultracompact surface-enhanced infrared absorption spectroscopy,” Opt. Express 26(18), 23540–23549 (2018).
[Crossref] [PubMed]

Li, X.

Lian, F.

E. Yalon, S. Deshmukh, M. Muñoz Rojo, F. Lian, C. M. Neumann, F. Xiong, and E. Pop, “Spatially Resolved Thermometry of Resistive Memory Devices,” Sci. Rep. 7(1), 15360 (2017).
[Crossref] [PubMed]

Lin, S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Liow, T.-Y.

Liu, L.

Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5(1), 10718 (2015).
[Crossref] [PubMed]

Lo, G.-Q.

Lourtioz, J.-M.

Lovell, S.

S. Lovell and E. Rollinson, “Density of Thin Films of Vacuum Evaporated Metals,” Nature 218(5147), 1179–1180 (1968).
[Crossref]

Lu, C. C.

F. Udrea, J. W. Gardner, D. Setiadi, J. A. Covington, T. Dogaru, C. C. Lu, and W. I. Milne, “Design and simulations of SOI CMOS micro-hotplate gas sensors,” Sens. Actuators B Chem. 78(1–3), 180–190 (2001).
[Crossref]

Lu, L.

L. Lu, W. Dong, J. K. Behera, L. Chew, and R. E. Simpson, “Inter-diffusion of plasmonic metals and phase change materials,” J. Mater. Sci. 54(4), 2814–2823 (2019).
[Crossref]

Lu, M.

Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5(1), 10718 (2015).
[Crossref] [PubMed]

Luo, X.

Ma, Z.

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

MacDonald, K. F.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Machulik, S.

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Majumdar, A.

Mansuripur, M.

C. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
[Crossref]

Markey, L.

Masselink, W. T.

Matsuo, S.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

McGray, C.

J. Cho, K. K. Chu, P. C. Chao, C. McGray, M. Asheghi, and K. E. Goodson, “Thermal conduction normal to thin silicon nitride films on diamond and GaN,”in Proceedings of Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). (IEEE, 2014), pp. 1186–1191.
[Crossref]

Mégy, R.

Melikyan, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Miliou, A.

T. Alexoudi, D. Fitsios, A. Bazin, P. Monnier, R. Raj, A. Miliou, G. T. Kanellos, N. Pleros, and F. Raineri, “III-V-on-Si Photonic Crystal Nanocavity Laser Technology for Optical Static Random Access Memories,” IEEE J. Sel. Top. Quantum Electron. 22(6), 295–304 (2016).
[Crossref]

Milne, W. I.

F. Udrea, J. W. Gardner, D. Setiadi, J. A. Covington, T. Dogaru, C. C. Lu, and W. I. Milne, “Design and simulations of SOI CMOS micro-hotplate gas sensors,” Sens. Actuators B Chem. 78(1–3), 180–190 (2001).
[Crossref]

Mohr, D. A.

Monastyrskyi, G.

Monnier, P.

T. Alexoudi, D. Fitsios, A. Bazin, P. Monnier, R. Raj, A. Miliou, G. T. Kanellos, N. Pleros, and F. Raineri, “III-V-on-Si Photonic Crystal Nanocavity Laser Technology for Optical Static Random Access Memories,” IEEE J. Sel. Top. Quantum Electron. 22(6), 295–304 (2016).
[Crossref]

Moroni, M.

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories,” IEEE Trans. NanoTechnol. 10(4), 900–912 (2011).
[Crossref]

Moss, B. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Muñoz Rojo, M.

E. Yalon, S. Deshmukh, M. Muñoz Rojo, F. Lian, C. M. Neumann, F. Xiong, and E. Pop, “Spatially Resolved Thermometry of Resistive Memory Devices,” Sci. Rep. 7(1), 15360 (2017).
[Crossref] [PubMed]

Myers, J.

Nash, G. R.

Neumann, C. M.

E. Yalon, S. Deshmukh, M. Muñoz Rojo, F. Lian, C. M. Neumann, F. Xiong, and E. Pop, “Spatially Resolved Thermometry of Resistive Memory Devices,” Sci. Rep. 7(1), 15360 (2017).
[Crossref] [PubMed]

Niegemann, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Notomi, M.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

Nozaki, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

Oh, S.-H.

Orava, J.

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater. 11(4), 279–283 (2012).
[Crossref] [PubMed]

Orcutt, J. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Ou, A. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Paniccia, M.

A. Alduino and M. Paniccia, “Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

Panzer, M. A.

E. Bozorg-Grayeli, J. P. Reifenberg, M. A. Panzer, J. A. Rowlette, and K. E. Goodson, “Temperature-dependent thermal properties of phase-change memory electrode materials,” IEEE Electron Device Lett. 32(9), 1281–1283 (2011).
[Crossref]

Pavanello, F.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Peng, C.

C. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
[Crossref]

Pernice, W. H.

Pernice, W. H. P.

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), u5759 (2019).
[PubMed]

J. Von Keitz, J. Feldmann, N. Gruhler, C. Ríos, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Reconfigurable Nanophotonic Cavities with Nonvolatile Response,” ACS Photonics 5(11), 4644–4649 (2018).
[Crossref]

C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited],” Opt. Mater. Express 8(9), 2455–2470 (2018).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical Effect in Phase-Change Nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

Pernice, W. H. P. P.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Perumal, K.

V. Bragaglia, B. Jenichen, A. Giussani, K. Perumal, H. Riechert, and R. Calarco, “Structural change upon annealing of amorphous GeSbTe grown on Si(111),” J. Appl. Phys. 116(5), 054913 (2014).
[Crossref]

Peters, S.

Peyskens, F.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

Pleros, N.

Pop, E.

Popovic, M. A.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Porschatis, C.

Pruneri, V.

M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
[Crossref]

Quidant, R.

M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
[Crossref]

Raineri, F.

T. Alexoudi, D. Fitsios, A. Bazin, P. Monnier, R. Raj, A. Miliou, G. T. Kanellos, N. Pleros, and F. Raineri, “III-V-on-Si Photonic Crystal Nanocavity Laser Technology for Optical Static Random Access Memories,” IEEE J. Sel. Top. Quantum Electron. 22(6), 295–304 (2016).
[Crossref]

Raj, R.

T. Alexoudi, D. Fitsios, A. Bazin, P. Monnier, R. Raj, A. Miliou, G. T. Kanellos, N. Pleros, and F. Raineri, “III-V-on-Si Photonic Crystal Nanocavity Laser Technology for Optical Static Random Access Memories,” IEEE J. Sel. Top. Quantum Electron. 22(6), 295–304 (2016).
[Crossref]

Ram, R. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Rauschenbach, B.

I. Hilmi, E. Thelander, P. Schumacher, J. W. Gerlach, and B. Rauschenbach, “Epitaxial Ge 2 Sb 2 Te 5 films on Si(111) prepared by pulsed laser deposition,” Thin Solid Films 619, 81–85 (2016).
[Crossref]

Reifenberg, J. P.

E. Bozorg-Grayeli, J. P. Reifenberg, M. A. Panzer, J. A. Rowlette, and K. E. Goodson, “Temperature-dependent thermal properties of phase-change memory electrode materials,” IEEE Electron Device Lett. 32(9), 1281–1283 (2011).
[Crossref]

Reilly, M. L.

G. T. Furukawa, M. L. Reilly, and J. S. Gallagher, “Critical Analysis of Heat—Capacity Data and Evaluation of Thermodynamic Properties of Ruthenium, Rhodium, Palladium, Iridium, and Platinum from 0 to 300K. A Survey of the Literature Data on Osmium,” J. Phys. Chem. Ref. Data 3(1), 163–209 (1974).
[Crossref]

Renger, J.

M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
[Crossref]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Riechert, H.

V. Bragaglia, B. Jenichen, A. Giussani, K. Perumal, H. Riechert, and R. Calarco, “Structural change upon annealing of amorphous GeSbTe grown on Si(111),” J. Appl. Phys. 116(5), 054913 (2014).
[Crossref]

Rios, C.

Ríos, C.

X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell,” Optica 6(1), 1–6 (2019).
[Crossref]

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), u5759 (2019).
[PubMed]

J. Von Keitz, J. Feldmann, N. Gruhler, C. Ríos, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Reconfigurable Nanophotonic Cavities with Nonvolatile Response,” ACS Photonics 5(11), 4644–4649 (2018).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical Effect in Phase-Change Nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Rohracher, K.

Rollinson, E.

S. Lovell and E. Rollinson, “Density of Thin Films of Vacuum Evaporated Metals,” Nature 218(5147), 1179–1180 (1968).
[Crossref]

Rowlette, J. A.

E. Bozorg-Grayeli, J. P. Reifenberg, M. A. Panzer, J. A. Rowlette, and K. E. Goodson, “Temperature-dependent thermal properties of phase-change memory electrode materials,” IEEE Electron Device Lett. 32(9), 1281–1283 (2011).
[Crossref]

Rudé, M.

M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
[Crossref]

Salamin, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Sato, T.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

Scherer, T.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Schumacher, P.

I. Hilmi, E. Thelander, P. Schumacher, J. W. Gerlach, and B. Rauschenbach, “Epitaxial Ge 2 Sb 2 Te 5 films on Si(111) prepared by pulsed laser deposition,” Thin Solid Films 619, 81–85 (2016).
[Crossref]

Sebastian, A.

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), u5759 (2019).
[PubMed]

Segawa, T.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

Semtsiv, M.

Setiadi, D.

F. Udrea, J. W. Gardner, D. Setiadi, J. A. Covington, T. Dogaru, C. C. Lu, and W. I. Milne, “Design and simulations of SOI CMOS micro-hotplate gas sensors,” Sens. Actuators B Chem. 78(1–3), 180–190 (2001).
[Crossref]

Shah, P.

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories,” IEEE Trans. NanoTechnol. 10(4), 900–912 (2011).
[Crossref]

Shainline, J. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Shinya, A.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

Simpson, R. E.

L. Lu, W. Dong, J. K. Behera, L. Chew, and R. E. Simpson, “Inter-diffusion of plasmonic metals and phase change materials,” J. Mater. Sci. 54(4), 2814–2823 (2019).
[Crossref]

M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
[Crossref]

Smith, C. E.

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater. 11(4), 279–283 (2012).
[Crossref] [PubMed]

Stegmaier, M.

C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited],” Opt. Mater. Express 8(9), 2455–2470 (2018).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical Effect in Phase-Change Nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Stojanovic, V. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Sumikura, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Sun, C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Sun, M.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4(6), 1–11 (2015).
[Crossref]

Suzaki, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

Takahashi, R.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

Takeda, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Takeuchi, I.

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material,” ACS Photonics 6(1), 87–92 (2019).
[Crossref]

Taniyama, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Tate, A.

Thelander, E.

I. Hilmi, E. Thelander, P. Schumacher, J. W. Gerlach, and B. Rauschenbach, “Epitaxial Ge 2 Sb 2 Te 5 films on Si(111) prepared by pulsed laser deposition,” Thin Solid Films 619, 81–85 (2016).
[Crossref]

Tsiokos, D.

Udrea, F.

F. Udrea, J. W. Gardner, D. Setiadi, J. A. Covington, T. Dogaru, C. C. Lu, and W. I. Milne, “Design and simulations of SOI CMOS micro-hotplate gas sensors,” Sens. Actuators B Chem. 78(1–3), 180–190 (2001).
[Crossref]

Van Dorpe, P.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

Vandenbosch, G. A. E.

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

Varesi, E.

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories,” IEEE Trans. NanoTechnol. 10(4), 900–912 (2011).
[Crossref]

Viarbitskaya, S.

Von Keitz, J.

J. Von Keitz, J. Feldmann, N. Gruhler, C. Ríos, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Reconfigurable Nanophotonic Cavities with Nonvolatile Response,” ACS Photonics 5(11), 4644–4649 (2018).
[Crossref]

Wade, M. T.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Wahlbrink, T.

Wang, D.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Wang, L.

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories,” IEEE Trans. NanoTechnol. 10(4), 900–912 (2011).
[Crossref]

Wang, X.

Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5(1), 10718 (2015).
[Crossref] [PubMed]

Waterman, A. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Weeber, J.-C.

Wright, C. D.

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), u5759 (2019).
[PubMed]

X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell,” Optica 6(1), 1–6 (2019).
[Crossref]

J. Von Keitz, J. Feldmann, N. Gruhler, C. Ríos, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Reconfigurable Nanophotonic Cavities with Nonvolatile Response,” ACS Photonics 5(11), 4644–4649 (2018).
[Crossref]

C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited],” Opt. Mater. Express 8(9), 2455–2470 (2018).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

S. G.-C. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref] [PubMed]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories,” IEEE Trans. NanoTechnol. 10(4), 900–912 (2011).
[Crossref]

Wu, C.

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material,” ACS Photonics 6(1), 87–92 (2019).
[Crossref]

Xie, C.

Xiong, F.

E. Yalon, S. Deshmukh, M. Muñoz Rojo, F. Lian, C. M. Neumann, F. Xiong, and E. Pop, “Spatially Resolved Thermometry of Resistive Memory Devices,” Sci. Rep. 7(1), 15360 (2017).
[Crossref] [PubMed]

Xu, P.

Xu, S.

Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5(1), 10718 (2015).
[Crossref] [PubMed]

Yalon, E.

E. Yalon, S. Deshmukh, M. Muñoz Rojo, F. Lian, C. M. Neumann, F. Xiong, and E. Pop, “Spatially Resolved Thermometry of Resistive Memory Devices,” Sci. Rep. 7(1), 15360 (2017).
[Crossref] [PubMed]

Yoo, D.

Youngblood, N.

Yu, H.

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material,” ACS Photonics 6(1), 87–92 (2019).
[Crossref]

Zhang, J.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Zhang, X.

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material,” ACS Photonics 6(1), 87–92 (2019).
[Crossref]

Zheludev, N. I.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Zheng, J.

Zwiller, V.

R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller, “Quantum interference in plasmonic circuits,” Nat. Nanotechnol. 8(10), 719–722 (2013).
[Crossref] [PubMed]

ACS Photonics (5)

J. Von Keitz, J. Feldmann, N. Gruhler, C. Ríos, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Reconfigurable Nanophotonic Cavities with Nonvolatile Response,” ACS Photonics 5(11), 4644–4649 (2018).
[Crossref]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical Effect in Phase-Change Nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material,” ACS Photonics 6(1), 87–92 (2019).
[Crossref]

Adv. Mater. (2)

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

IEEE Electron Device Lett. (1)

E. Bozorg-Grayeli, J. P. Reifenberg, M. A. Panzer, J. A. Rowlette, and K. E. Goodson, “Temperature-dependent thermal properties of phase-change memory electrode materials,” IEEE Electron Device Lett. 32(9), 1281–1283 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Alexoudi, D. Fitsios, A. Bazin, P. Monnier, R. Raj, A. Miliou, G. T. Kanellos, N. Pleros, and F. Raineri, “III-V-on-Si Photonic Crystal Nanocavity Laser Technology for Optical Static Random Access Memories,” IEEE J. Sel. Top. Quantum Electron. 22(6), 295–304 (2016).
[Crossref]

IEEE Trans. NanoTechnol. (1)

C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, and F. Cazzaniga, “The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories,” IEEE Trans. NanoTechnol. 10(4), 900–912 (2011).
[Crossref]

J. Appl. Phys. (2)

V. Bragaglia, B. Jenichen, A. Giussani, K. Perumal, H. Riechert, and R. Calarco, “Structural change upon annealing of amorphous GeSbTe grown on Si(111),” J. Appl. Phys. 116(5), 054913 (2014).
[Crossref]

C. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
[Crossref]

J. Mater. Sci. (1)

L. Lu, W. Dong, J. K. Behera, L. Chew, and R. E. Simpson, “Inter-diffusion of plasmonic metals and phase change materials,” J. Mater. Sci. 54(4), 2814–2823 (2019).
[Crossref]

J. Phys. Chem. Ref. Data (1)

G. T. Furukawa, M. L. Reilly, and J. S. Gallagher, “Critical Analysis of Heat—Capacity Data and Evaluation of Thermodynamic Properties of Ruthenium, Rhodium, Palladium, Iridium, and Platinum from 0 to 300K. A Survey of the Literature Data on Osmium,” J. Phys. Chem. Ref. Data 3(1), 163–209 (1974).
[Crossref]

Light Sci. Appl. (1)

Y. Fang and M. Sun, “Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4(6), 1–11 (2015).
[Crossref]

Nano Energy (1)

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

Nat. Commun. (1)

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Nat. Mater. (2)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater. 11(4), 279–283 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller, “Quantum interference in plasmonic circuits,” Nat. Nanotechnol. 8(10), 719–722 (2013).
[Crossref] [PubMed]

Nat. Photonics (7)

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8(4), 317–320 (2014).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

A. Alduino and M. Paniccia, “Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Nature (2)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

S. Lovell and E. Rollinson, “Density of Thin Films of Vacuum Evaporated Metals,” Nature 218(5147), 1179–1180 (1968).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (2)

Optica (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Sci. Adv. (2)

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” Sci. Adv. 5(2), u5759 (2019).
[PubMed]

Sci. Rep. (2)

E. Yalon, S. Deshmukh, M. Muñoz Rojo, F. Lian, C. M. Neumann, F. Xiong, and E. Pop, “Spatially Resolved Thermometry of Resistive Memory Devices,” Sci. Rep. 7(1), 15360 (2017).
[Crossref] [PubMed]

Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5(1), 10718 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

F. Udrea, J. W. Gardner, D. Setiadi, J. A. Covington, T. Dogaru, C. C. Lu, and W. I. Milne, “Design and simulations of SOI CMOS micro-hotplate gas sensors,” Sens. Actuators B Chem. 78(1–3), 180–190 (2001).
[Crossref]

Thin Solid Films (1)

I. Hilmi, E. Thelander, P. Schumacher, J. W. Gerlach, and B. Rauschenbach, “Epitaxial Ge 2 Sb 2 Te 5 films on Si(111) prepared by pulsed laser deposition,” Thin Solid Films 619, 81–85 (2016).
[Crossref]

Other (7)

V. Palankovski and R. Quay, Analysis and Simulation of Heterostructure Devices, Computational Microelectronics (Springer, Wien, 2004).

M. B. Takeyama, M. Sato, Y. Nakata, Y. Kobayashi, T. Nakamura, and A. Noya, “Characterization of silicon nitride thin films deposited by reactive sputtering and plasma- enhanced CVD at low temperatures,” Jpn. J. Appl. Phys. 53(5S2), 05GE01 (2014)

W. Frei, “Using Perfectly Matched Layers and Scattering Boundary Conditions for Wave Electromagnetics Problems,” https://uk.comsol.com/blogs/using-perfectly-matched-layers-and-scattering-boundary-conditions-for-wave-electromagnetics-problems/ .

S. Bai, Z. Tang, Z. Huang, and J. Wang, “Transient Thermoreflectance Measurement of Thermal Conductivity of Nanoscale Silicon Nitride Thin Films,” in Proceedings of ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels (2009), pp. 457–460.

J. Cho, K. K. Chu, P. C. Chao, C. McGray, M. Asheghi, and K. E. Goodson, “Thermal conduction normal to thin silicon nitride films on diamond and GaN,”in Proceedings of Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). (IEEE, 2014), pp. 1186–1191.
[Crossref]

J. A. Kalb, “Crystallization kinetics in antimony and tellurium alloys used for phase change recording,” University of Aachen (2001).

N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, D. C. Wright, W. H. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase change devices with dual electrical-optical functionality,” arXiv preprint arXiv:1811.07651 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Integrated phase-change photonic memory, configuration and operation schematics. The memory level 1 or 0 is encoded in the phase-state (amorphous or crystalline) of the phase-change cell (here made from Ge2Sb2Te5, or GST for short). Read and write/erase are performed via delivery of optical laser pulses through an integrated waveguide; the optical absorption provided by GST provides both signal modulation for read operations and the heat source for write/erase operations. (a) Conventional configuration, consisting of (typically) a micrometer-scale phase-change cell deposited on top of the waveguide. (b) The proposed plasmonically-enhanced configuration, consisting of a metallic dimer nanoantenna, with the phase-change material deposited within the nanoantenna gap.
Fig. 2
Fig. 2 Plasmonically-enhanced all-photonic phase-change memory device: concept and electric field distribution. (a c) Cross sections of the photonic memory across xy, yz and yz planes respectively; each plane cuts the plasmonic nanoantenna at its center. (d f) Log10 of electric field norm (colorbar on the right) due to TE propagating waveguide mode of 1 mW power, along the planes corresponding to Figs. 2(a), 2(b) and 2(c) respectively (figures depict the electric field at room temperature for amorphous (left) and crystalline (right) states of the GST cell).
Fig. 3
Fig. 3 Integrated nanoantenna optical properties (note no GST is present here, the gap between the antennas is ‘filled’ with air). (a) Enhancement factor EF (left axis), transmission T, reflection R, absorption A and scattering S (right axis) for a nanoantenna-only configuration, with disc thickness and gap size of 10 nm. A peak EF value of 1182 is observed for a disc radius value of 100 nm, while the transmission sees a local minimum (T = 0.71) at 110 nm. (bc) Electric field magnitude, taken at the resonator cut plane passing through its center, and showing dipolar (b) and quadrupolar (c) plasmonic resonances at positions of the first and second peaks in EF. Color scale represents the strength of the field in the out-of-plane direction (red and blue have opposite signs), whereas the arrows depict the magnitude and direction of the field in-the-plane.
Fig. 4
Fig. 4 EF configuration dependency analysis. (a) EF for different gap g and thickness t configurations of the nanoantenna (arrows are a guide to the eye towards the effect of each parameter increase). Inset shows a magnified version of the g = 40 nm, t = 30 nm configuration, which is considered in more detail in the text. (b) Dependency of 1/EF on gap size g (blue line) and disc thickness t (brown line).
Fig. 5
Fig. 5 Plasmonically-enhanced photonic phase-change cell optical properties. (a) EF for a nanoantenna of various gap widths and thicknesses and with the gap region filled with air and GST in both its crystalline and amorphous phases. Inset shows the g = 40 nm, t = 30 nm case in more detail. (b) Absolute transmission (left axis) for both crystalline and amorphous GST and (right axis) maximum readout contrast.
Fig. 6
Fig. 6 Spectral response of the plasmonic phase-change cell across the 1300 nm – 1700 nm wavelength range. Left axis: absolute transmission (blue and brown lines, for crystalline and amorphous GST respectively). Right axis: maximum optical contrast. (Variation of refractive index of GST as a function of wavelength taken from [51]).
Fig. 7
Fig. 7 Temperature, crystal fraction and readout contrast during write (amorphization) and erase (re-crystallization) operations. (a) Temperature evolution in the cell on application of a 1 mW, 2 ns write pulse (inset shows pulse details). (b) Crystal fraction and readout contrast during the write process. (c) Temperature evolution during application of a double-step erase pulse (1.5 mW for 1.5 ns, followed immediately by a 15 ns pulse with linearly decreasing power from 1.2 mW to 0.5 mW, as shown in inset). (d) Crystal fraction and readout contrast during the erase process.
Fig. 8
Fig. 8 4-level storage demonstration, using the same plasmonically-enhanced cell configuration as in Fig. 6. (a) Variation of the crystal fraction X during the reset operation in which a 1 mW, 2 ns rectangular optical pulse initializes the cell crystal fraction to X = 0.185 ± 0.01 when starting from any of the assumed X levels of 0.18, 0.44, 0.72 and 1. (b) Crystal fraction, X, during the application of a double step pulse (a pulse of 1.5 mW for 1.5 ns, followed by 15 ns of linearly decreasing power from 1.2 mW to 0.5 mW), showing that the desired four multilevel states of X = 0.18, 0.44, 0.72 and 1 are achieved by termination of the excitation pulse after 10.2 ns, 12.4 ns, 13.8 ns and 16.5 ns respectively. The inset reports the dependency of X and the (room-temperature) optical readout contrast. (c-g) The spatial distribution of crystallized material within the GST cell for (d) X = 0.18, (e) X = 0.44, (f) X = 0.72 and (g) X = 0.98 and resulting from the erase operation reported in Fig. 8(b). Note that only (left) half of the GST cell is shown here, as shown in (c), with the crystallization distribution being mirrored in the center-plane of the cell (note that all colors in (d) to (g) represent crystalline regions, the different colors used only to aid visualization of the time-evolution of the crystallized region).

Tables (3)

Tables Icon

Table 1 Material parameters list for the plasmonic integrated phase-change photonic device simulation

Tables Icon

Table 2 Summary of plasmonic phase-change optical cell optical behavior at 1550 nm

Tables Icon

Table 3 Comparison of performance of various integrated phase-change photonic memory architectures

Metrics