Abstract

We experimentally investigate the performance of NbTiN superconducting nanowire single photon detectors above the base temperature of a conventional Gifford-McMahon cryocooler (2.5 K). By tailoring design and thickness (8 - 13 nm) of the detectors, high performance, high operating temperature, single-photon detection from the visible to telecom wavelengths are demonstrated. At 4.3 K, a detection efficiency of 82 % at 785 nm wavelength and a timing jitter of 30 ± 0.3 ps are achieved. In addition, for 1550 nm and similar operating temperature we measured a detection efficiency as high as 64 %. Finally, we show that at temperatures up to 7 K, unity internal efficiency is maintained for the visible spectrum. Our work is particularly important to allow for the large scale implementation of superconducting single photon detectors in combination with heat sources such as free-space optical windows, cryogenic electronics, microwave sources and active optical components for complex quantum optical experiments and bio-imaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw
Opt. Express 25(22) 26792-26801 (2017)

High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam
Opt. Express 23(26) 33792-33801 (2015)

Optimizing the stoichiometry of ultrathin NbTiN films for high-performance superconducting nanowire single-photon detectors

Julien Zichi, Jin Chang, Stephan Steinhauer, Kristina von Fieandt, Johannes W. N. Los, Gijs Visser, Nima Kalhor, Thomas Lettner, Ali W. Elshaari, Iman Esmaeil Zadeh, and Val Zwiller
Opt. Express 27(19) 26579-26587 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
    [Crossref]
  2. E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25, 26792–26801 (2017).
    [Crossref] [PubMed]
  3. H. Wang, H. Li, L. You, Y. Wang, L. Zhang, X. Yang, W. Zhang, Z. Wang, and X. Xie, “Fast and high efficiency superconducting nanowire single-photon detector at 630 nm wavelength,” Appl. Opt. 58, 1868–1872 (2019).
    [Crossref] [PubMed]
  4. I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2, 111301 (2017).
    [Crossref]
  5. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210 (2013).
    [Crossref]
  6. W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Physics, Mech. & Astron. 60, 120314 (2017).
    [Crossref]
  7. C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single photon detectors with milli-hz dark count rate,” Sci. Reports 3, 1893 (2013). Article.
    [Crossref]
  8. W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, and X. Xie, “A 16-Pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).
  9. I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub - 10 ps time resolution,” ArXiv e-prints (2018).
  10. M. Sidorova, A. Semenov, H.-W. Hübers, A. Kuzmin, S. Doerner, K. Ilin, M. Siegel, I. Charaev, and D. Vodolazov, “Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux,” Phys. Rev. B 98, 134504 (2018).
    [Crossref]
  11. B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).
  12. M. Caloz, B. Korzh, E. Ramirez, C. Schönenberger, R. J. Warburton, H. Zbinden, M. D. Shaw, and F. Bussières, “Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors,” ArXiv e-prints (2019).
  13. B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53, 309–321 (2018).
    [Crossref]
  14. M. Montinaro, G. Wüst, M. Munsch, Y. Fontana, E. Russo-Averchi, M. Heiss, A. Fontcuberta, I. Morral, R. J. Warburton, and M. Poggio, “Quantum dot opto-mechanics in a fully self-assembled nanowire,” Nano Lett. 14, 4454–4460 (2014).
    [Crossref] [PubMed]
  15. Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9, 2994 (2018).
    [Crossref] [PubMed]
  16. N. B. Manson, M. Hedges, M. S. J. Barson, R. Ahlefeldt, M. W. Doherty, H. Abe, T. Ohshima, and M. J. Sellars, “NV--N+ pair centre in 1b diamond,” New J. Phys. 20, 113037 (2018).
    [Crossref]
  17. S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
    [Crossref] [PubMed]
  18. I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
    [Crossref] [PubMed]
  19. S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).
  20. W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363 (2015). Review Article.
    [Crossref]
  21. R. Gourgues, I. E. Zadeh, A. W. Elshaari, G. Bulgarini, J. W. N. Los, J. Zichi, D. Dalacu, P. J. Poole, S. N. Dorenbos, and V. Zwiller, “Controlled integration of selected detectors and emitters in photonic integrated circuits,” Opt. Express 27, 3710–3716 (2019).
    [Crossref] [PubMed]
  22. M. Gehl, C. Long, D. Trotter, A. Starbuck, A. Pomerene, J. B. Wright, S. Melgaard, J. Siirola, A. L. Lentine, and C. DeRose, “Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures,” Optica 4, 374–382 (2017).
    [Crossref]
  23. H. Shibata, T. Akazaki, and Y. Tokura, “Fabrication of MgB2 nanowire single-photon detector with meander structure,” Appl. Phys. Express 6, 023101 (2013).
    [Crossref]
  24. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
    [Crossref]
  25. N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 K platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30, 11LT01 (2017).
    [Crossref]
  26. H. Dang, T. Zhang, R. Zha, J. Tan, J. Li, Y. Zhao, B. Zhao, H. Tan, and R. Xue, “Development of 2 K space cryocoolers for cooling the superconducting nanowire single photon detector,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).
    [Crossref]
  27. J. Zichi, J. Chang, S. Steinhauer, K. von Fieandt, J. W. Los, G. Visser, N. Kalhor, T. Lettner, A. Elshaari, I. E. Zadeh, and V. Zwiller, “Nb xTi 1−xN low timing jitter single-photon detectors with unity internal efficiency at 1550 nm and 2.5 k,” ArXiv e-prints (2019).
  28. K. Ilin, R. Schneider, D. Gerthsen, A. Engel, H. Bartolf, A. Schilling, A. Semenov, H.-W. Huebers, B. Freitag, and M. Siegel, “Ultra-thin NbN films on Si: crystalline and superconducting properties,” J. Physics: Conf. Ser. 97, 012045 (2008).
  29. A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80, 054510 (2009).
    [Crossref]
  30. A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express 19, 9102–9110 (2011).
    [Crossref] [PubMed]
  31. M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
    [Crossref]
  32. T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
    [Crossref]
  33. E. Oliveira, E. Bértolo, C. Núñez, V. Pilla, H. M. Santos, J. Fernández-Lodeiro, A. Fernández-Lodeiro, J. Djafari, J. L. Capelo, and C. Lodeiro, “Green and red fluorescent dyes for translational applications in imaging and sensing analytes: A dual-color flag,” ChemistryOpen 7, 3 (2018).
    [Crossref] [PubMed]
  34. Rockland Immunochemicals Inc., “Fluorescent dye overview,” https://rockland-inc.com/fluorescent-dyes.aspx ,.
  35. L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
    [Crossref]
  36. E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
    [Crossref]
  37. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
    [Crossref] [PubMed]

2019 (5)

H. Wang, H. Li, L. You, Y. Wang, L. Zhang, X. Yang, W. Zhang, Z. Wang, and X. Xie, “Fast and high efficiency superconducting nanowire single-photon detector at 630 nm wavelength,” Appl. Opt. 58, 1868–1872 (2019).
[Crossref] [PubMed]

W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, and X. Xie, “A 16-Pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).

R. Gourgues, I. E. Zadeh, A. W. Elshaari, G. Bulgarini, J. W. N. Los, J. Zichi, D. Dalacu, P. J. Poole, S. N. Dorenbos, and V. Zwiller, “Controlled integration of selected detectors and emitters in photonic integrated circuits,” Opt. Express 27, 3710–3716 (2019).
[Crossref] [PubMed]

H. Dang, T. Zhang, R. Zha, J. Tan, J. Li, Y. Zhao, B. Zhao, H. Tan, and R. Xue, “Development of 2 K space cryocoolers for cooling the superconducting nanowire single photon detector,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).
[Crossref]

E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
[Crossref]

2018 (7)

E. Oliveira, E. Bértolo, C. Núñez, V. Pilla, H. M. Santos, J. Fernández-Lodeiro, A. Fernández-Lodeiro, J. Djafari, J. L. Capelo, and C. Lodeiro, “Green and red fluorescent dyes for translational applications in imaging and sensing analytes: A dual-color flag,” ChemistryOpen 7, 3 (2018).
[Crossref] [PubMed]

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9, 2994 (2018).
[Crossref] [PubMed]

N. B. Manson, M. Hedges, M. S. J. Barson, R. Ahlefeldt, M. W. Doherty, H. Abe, T. Ohshima, and M. J. Sellars, “NV--N+ pair centre in 1b diamond,” New J. Phys. 20, 113037 (2018).
[Crossref]

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

M. Sidorova, A. Semenov, H.-W. Hübers, A. Kuzmin, S. Doerner, K. Ilin, M. Siegel, I. Charaev, and D. Vodolazov, “Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux,” Phys. Rev. B 98, 134504 (2018).
[Crossref]

B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53, 309–321 (2018).
[Crossref]

2017 (5)

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2, 111301 (2017).
[Crossref]

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25, 26792–26801 (2017).
[Crossref] [PubMed]

M. Gehl, C. Long, D. Trotter, A. Starbuck, A. Pomerene, J. B. Wright, S. Melgaard, J. Siirola, A. L. Lentine, and C. DeRose, “Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures,” Optica 4, 374–382 (2017).
[Crossref]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Physics, Mech. & Astron. 60, 120314 (2017).
[Crossref]

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 K platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30, 11LT01 (2017).
[Crossref]

2016 (1)

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref] [PubMed]

2015 (2)

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363 (2015). Review Article.
[Crossref]

2014 (1)

M. Montinaro, G. Wüst, M. Munsch, Y. Fontana, E. Russo-Averchi, M. Heiss, A. Fontcuberta, I. Morral, R. J. Warburton, and M. Poggio, “Quantum dot opto-mechanics in a fully self-assembled nanowire,” Nano Lett. 14, 4454–4460 (2014).
[Crossref] [PubMed]

2013 (3)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210 (2013).
[Crossref]

H. Shibata, T. Akazaki, and Y. Tokura, “Fabrication of MgB2 nanowire single-photon detector with meander structure,” Appl. Phys. Express 6, 023101 (2013).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single photon detectors with milli-hz dark count rate,” Sci. Reports 3, 1893 (2013). Article.
[Crossref]

2011 (2)

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express 19, 9102–9110 (2011).
[Crossref] [PubMed]

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
[Crossref]

2010 (1)

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[Crossref]

2009 (1)

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80, 054510 (2009).
[Crossref]

2008 (2)

K. Ilin, R. Schneider, D. Gerthsen, A. Engel, H. Bartolf, A. Schilling, A. Semenov, H.-W. Huebers, B. Freitag, and M. Siegel, “Ultra-thin NbN films on Si: crystalline and superconducting properties,” J. Physics: Conf. Ser. 97, 012045 (2008).

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

2006 (1)

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

2001 (1)

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Abe, H.

N. B. Manson, M. Hedges, M. S. J. Barson, R. Ahlefeldt, M. W. Doherty, H. Abe, T. Ohshima, and M. J. Sellars, “NV--N+ pair centre in 1b diamond,” New J. Phys. 20, 113037 (2018).
[Crossref]

Ahlefeldt, R.

N. B. Manson, M. Hedges, M. S. J. Barson, R. Ahlefeldt, M. W. Doherty, H. Abe, T. Ohshima, and M. J. Sellars, “NV--N+ pair centre in 1b diamond,” New J. Phys. 20, 113037 (2018).
[Crossref]

Akazaki, T.

H. Shibata, T. Akazaki, and Y. Tokura, “Fabrication of MgB2 nanowire single-photon detector with meander structure,” Appl. Phys. Express 6, 023101 (2013).
[Crossref]

Allmaras, J. P.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25, 26792–26801 (2017).
[Crossref] [PubMed]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Appel, J.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Autry, T. M.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Babaie, M.

B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53, 309–321 (2018).
[Crossref]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210 (2013).
[Crossref]

Barson, M. S. J.

N. B. Manson, M. Hedges, M. S. J. Barson, R. Ahlefeldt, M. W. Doherty, H. Abe, T. Ohshima, and M. J. Sellars, “NV--N+ pair centre in 1b diamond,” New J. Phys. 20, 113037 (2018).
[Crossref]

Bartolf, H.

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80, 054510 (2009).
[Crossref]

K. Ilin, R. Schneider, D. Gerthsen, A. Engel, H. Bartolf, A. Schilling, A. Semenov, H.-W. Huebers, B. Freitag, and M. Siegel, “Ultra-thin NbN films on Si: crystalline and superconducting properties,” J. Physics: Conf. Ser. 97, 012045 (2008).

Berggren, K. K.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Bernien, H.

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363 (2015). Review Article.
[Crossref]

Bersin, E. A.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Bértolo, E.

E. Oliveira, E. Bértolo, C. Núñez, V. Pilla, H. M. Santos, J. Fernández-Lodeiro, A. Fernández-Lodeiro, J. Djafari, J. L. Capelo, and C. Lodeiro, “Green and red fluorescent dyes for translational applications in imaging and sensing analytes: A dual-color flag,” ChemistryOpen 7, 3 (2018).
[Crossref] [PubMed]

Beyer, A. D.

Böttger, U.

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80, 054510 (2009).
[Crossref]

Bradshaw, T.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 K platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30, 11LT01 (2017).
[Crossref]

Briggs, R. M.

Bulgarini, G.

R. Gourgues, I. E. Zadeh, A. W. Elshaari, G. Bulgarini, J. W. N. Los, J. Zichi, D. Dalacu, P. J. Poole, S. N. Dorenbos, and V. Zwiller, “Controlled integration of selected detectors and emitters in photonic integrated circuits,” Opt. Express 27, 3710–3716 (2019).
[Crossref] [PubMed]

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2, 111301 (2017).
[Crossref]

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub - 10 ps time resolution,” ArXiv e-prints (2018).

Bussières, F.

M. Caloz, B. Korzh, E. Ramirez, C. Schönenberger, R. J. Warburton, H. Zbinden, M. D. Shaw, and F. Bussières, “Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors,” ArXiv e-prints (2019).

Calkins, B.

Caloz, M.

M. Caloz, B. Korzh, E. Ramirez, C. Schönenberger, R. J. Warburton, H. Zbinden, M. D. Shaw, and F. Bussières, “Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors,” ArXiv e-prints (2019).

Capelo, J. L.

E. Oliveira, E. Bértolo, C. Núñez, V. Pilla, H. M. Santos, J. Fernández-Lodeiro, A. Fernández-Lodeiro, J. Djafari, J. L. Capelo, and C. Lodeiro, “Green and red fluorescent dyes for translational applications in imaging and sensing analytes: A dual-color flag,” ChemistryOpen 7, 3 (2018).
[Crossref] [PubMed]

Cardenas, J.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Chang, J.

J. Zichi, J. Chang, S. Steinhauer, K. von Fieandt, J. W. Los, G. Visser, N. Kalhor, T. Lettner, A. Elshaari, I. E. Zadeh, and V. Zwiller, “Nb xTi 1−xN low timing jitter single-photon detectors with unity internal efficiency at 1550 nm and 2.5 k,” ArXiv e-prints (2019).

Charaev, I.

M. Sidorova, A. Semenov, H.-W. Hübers, A. Kuzmin, S. Doerner, K. Ilin, M. Siegel, I. Charaev, and D. Vodolazov, “Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux,” Phys. Rev. B 98, 134504 (2018).
[Crossref]

Charbon, E.

B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53, 309–321 (2018).
[Crossref]

Chen, E. H.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Chen, Y.

Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9, 2994 (2018).
[Crossref] [PubMed]

Chulkova, G.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Colangelo, M.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Couillard, M.

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

Covre da Silva, S. F.

E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
[Crossref]

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Crook, M.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 K platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30, 11LT01 (2017).
[Crossref]

Crouch, G. M.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Dalacu, D.

R. Gourgues, I. E. Zadeh, A. W. Elshaari, G. Bulgarini, J. W. N. Los, J. Zichi, D. Dalacu, P. J. Poole, S. N. Dorenbos, and V. Zwiller, “Controlled integration of selected detectors and emitters in photonic integrated circuits,” Opt. Express 27, 3710–3716 (2019).
[Crossref] [PubMed]

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref] [PubMed]

Dane, A. E.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Dang, H.

H. Dang, T. Zhang, R. Zha, J. Tan, J. Li, Y. Zhao, B. Zhao, H. Tan, and R. Xue, “Development of 2 K space cryocoolers for cooling the superconducting nanowire single photon detector,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).
[Crossref]

DeRose, C.

Ding, F.

Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9, 2994 (2018).
[Crossref] [PubMed]

Djafari, J.

E. Oliveira, E. Bértolo, C. Núñez, V. Pilla, H. M. Santos, J. Fernández-Lodeiro, A. Fernández-Lodeiro, J. Djafari, J. L. Capelo, and C. Lodeiro, “Green and red fluorescent dyes for translational applications in imaging and sensing analytes: A dual-color flag,” ChemistryOpen 7, 3 (2018).
[Crossref] [PubMed]

Dobrovolskiy, S.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 K platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30, 11LT01 (2017).
[Crossref]

Dobrovolskiy, S. M.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2, 111301 (2017).
[Crossref]

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub - 10 ps time resolution,” ArXiv e-prints (2018).

Doerner, S.

M. Sidorova, A. Semenov, H.-W. Hübers, A. Kuzmin, S. Doerner, K. Ilin, M. Siegel, I. Charaev, and D. Vodolazov, “Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux,” Phys. Rev. B 98, 134504 (2018).
[Crossref]

Doherty, M. W.

N. B. Manson, M. Hedges, M. S. J. Barson, R. Ahlefeldt, M. W. Doherty, H. Abe, T. Ohshima, and M. J. Sellars, “NV--N+ pair centre in 1b diamond,” New J. Phys. 20, 113037 (2018).
[Crossref]

Dorenbos, S. N.

R. Gourgues, I. E. Zadeh, A. W. Elshaari, G. Bulgarini, J. W. N. Los, J. Zichi, D. Dalacu, P. J. Poole, S. N. Dorenbos, and V. Zwiller, “Controlled integration of selected detectors and emitters in photonic integrated circuits,” Opt. Express 27, 3710–3716 (2019).
[Crossref] [PubMed]

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 K platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30, 11LT01 (2017).
[Crossref]

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2, 111301 (2017).
[Crossref]

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub - 10 ps time resolution,” ArXiv e-prints (2018).

Dzardanov, A.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Elshaari, A.

J. Zichi, J. Chang, S. Steinhauer, K. von Fieandt, J. W. Los, G. Visser, N. Kalhor, T. Lettner, A. Elshaari, I. E. Zadeh, and V. Zwiller, “Nb xTi 1−xN low timing jitter single-photon detectors with unity internal efficiency at 1550 nm and 2.5 k,” ArXiv e-prints (2019).

Elshaari, A. W.

R. Gourgues, I. E. Zadeh, A. W. Elshaari, G. Bulgarini, J. W. N. Los, J. Zichi, D. Dalacu, P. J. Poole, S. N. Dorenbos, and V. Zwiller, “Controlled integration of selected detectors and emitters in photonic integrated circuits,” Opt. Express 27, 3710–3716 (2019).
[Crossref] [PubMed]

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref] [PubMed]

Engel, A.

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80, 054510 (2009).
[Crossref]

K. Ilin, R. Schneider, D. Gerthsen, A. Engel, H. Bartolf, A. Schilling, A. Semenov, H.-W. Huebers, B. Freitag, and M. Siegel, “Ultra-thin NbN films on Si: crystalline and superconducting properties,” J. Physics: Conf. Ser. 97, 012045 (2008).

Englund, D.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Esmaeil Zadeh, I.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2, 111301 (2017).
[Crossref]

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub - 10 ps time resolution,” ArXiv e-prints (2018).

Fernández-Lodeiro, A.

E. Oliveira, E. Bértolo, C. Núñez, V. Pilla, H. M. Santos, J. Fernández-Lodeiro, A. Fernández-Lodeiro, J. Djafari, J. L. Capelo, and C. Lodeiro, “Green and red fluorescent dyes for translational applications in imaging and sensing analytes: A dual-color flag,” ChemistryOpen 7, 3 (2018).
[Crossref] [PubMed]

Fernández-Lodeiro, J.

E. Oliveira, E. Bértolo, C. Núñez, V. Pilla, H. M. Santos, J. Fernández-Lodeiro, A. Fernández-Lodeiro, J. Djafari, J. L. Capelo, and C. Lodeiro, “Green and red fluorescent dyes for translational applications in imaging and sensing analytes: A dual-color flag,” ChemistryOpen 7, 3 (2018).
[Crossref] [PubMed]

Figueroa, E.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Finley, J. J.

E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
[Crossref]

Fognini, A.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref] [PubMed]

Fontana, Y.

M. Montinaro, G. Wüst, M. Munsch, Y. Fontana, E. Russo-Averchi, M. Heiss, A. Fontcuberta, I. Morral, R. J. Warburton, and M. Poggio, “Quantum dot opto-mechanics in a fully self-assembled nanowire,” Nano Lett. 14, 4454–4460 (2014).
[Crossref] [PubMed]

Fontcuberta, A.

M. Montinaro, G. Wüst, M. Munsch, Y. Fontana, E. Russo-Averchi, M. Heiss, A. Fontcuberta, I. Morral, R. J. Warburton, and M. Poggio, “Quantum dot opto-mechanics in a fully self-assembled nanowire,” Nano Lett. 14, 4454–4460 (2014).
[Crossref] [PubMed]

Frasca, S.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Freitag, B.

K. Ilin, R. Schneider, D. Gerthsen, A. Engel, H. Bartolf, A. Schilling, A. Semenov, H.-W. Huebers, B. Freitag, and M. Siegel, “Ultra-thin NbN films on Si: crystalline and superconducting properties,” J. Physics: Conf. Ser. 97, 012045 (2008).

Fujiwara, M.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
[Crossref]

Gao, W. B.

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363 (2015). Review Article.
[Crossref]

Gehl, M.

Gemmell, N. R.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 K platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30, 11LT01 (2017).
[Crossref]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210 (2013).
[Crossref]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Gerthsen, D.

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80, 054510 (2009).
[Crossref]

K. Ilin, R. Schneider, D. Gerthsen, A. Engel, H. Bartolf, A. Schilling, A. Semenov, H.-W. Huebers, B. Freitag, and M. Siegel, “Ultra-thin NbN films on Si: crystalline and superconducting properties,” J. Physics: Conf. Ser. 97, 012045 (2008).

Gippius, N. A.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80, 054510 (2009).
[Crossref]

Goldstein, J.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Goltsman, G. N.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Gourgues, R.

Gourgues, R. B. M.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2, 111301 (2017).
[Crossref]

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub - 10 ps time resolution,” ArXiv e-prints (2018).

Green, B.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 K platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30, 11LT01 (2017).
[Crossref]

Gruber, S. M.

Günther, B.

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80, 054510 (2009).
[Crossref]

Gupta, J. A.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

Hadfield, R. H.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 K platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30, 11LT01 (2017).
[Crossref]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

Haffouz, S.

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

Hale, P. D.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Hanschke, L.

E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
[Crossref]

Hanson, R.

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363 (2015). Review Article.
[Crossref]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210 (2013).
[Crossref]

Heath, R. M.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 K platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30, 11LT01 (2017).
[Crossref]

Hedges, M.

N. B. Manson, M. Hedges, M. S. J. Barson, R. Ahlefeldt, M. W. Doherty, H. Abe, T. Ohshima, and M. J. Sellars, “NV--N+ pair centre in 1b diamond,” New J. Phys. 20, 113037 (2018).
[Crossref]

Heiss, M.

M. Montinaro, G. Wüst, M. Munsch, Y. Fontana, E. Russo-Averchi, M. Heiss, A. Fontcuberta, I. Morral, R. J. Warburton, and M. Poggio, “Quantum dot opto-mechanics in a fully self-assembled nanowire,” Nano Lett. 14, 4454–4460 (2014).
[Crossref] [PubMed]

Hills, M.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 K platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30, 11LT01 (2017).
[Crossref]

Hofherr, M.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[Crossref]

Homulle, H. A. R.

B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53, 309–321 (2018).
[Crossref]

Huang, H.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Huang, J.

W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, and X. Xie, “A 16-Pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Physics, Mech. & Astron. 60, 120314 (2017).
[Crossref]

Hübers, H.-W.

M. Sidorova, A. Semenov, H.-W. Hübers, A. Kuzmin, S. Doerner, K. Ilin, M. Siegel, I. Charaev, and D. Vodolazov, “Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux,” Phys. Rev. B 98, 134504 (2018).
[Crossref]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80, 054510 (2009).
[Crossref]

Huebers, H.-W.

K. Ilin, R. Schneider, D. Gerthsen, A. Engel, H. Bartolf, A. Schilling, A. Semenov, H.-W. Huebers, B. Freitag, and M. Siegel, “Ultra-thin NbN films on Si: crystalline and superconducting properties,” J. Physics: Conf. Ser. 97, 012045 (2008).

Ilin, K.

M. Sidorova, A. Semenov, H.-W. Hübers, A. Kuzmin, S. Doerner, K. Ilin, M. Siegel, I. Charaev, and D. Vodolazov, “Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux,” Phys. Rev. B 98, 134504 (2018).
[Crossref]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80, 054510 (2009).
[Crossref]

K. Ilin, R. Schneider, D. Gerthsen, A. Engel, H. Bartolf, A. Schilling, A. Semenov, H.-W. Huebers, B. Freitag, and M. Siegel, “Ultra-thin NbN films on Si: crystalline and superconducting properties,” J. Physics: Conf. Ser. 97, 012045 (2008).

Imamoglu, A.

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363 (2015). Review Article.
[Crossref]

Incandela, R. M.

B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53, 309–321 (2018).
[Crossref]

Jöns, K. D.

E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
[Crossref]

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref] [PubMed]

Kalhor, N.

J. Zichi, J. Chang, S. Steinhauer, K. von Fieandt, J. W. Los, G. Visser, N. Kalhor, T. Lettner, A. Elshaari, I. E. Zadeh, and V. Zwiller, “Nb xTi 1−xN low timing jitter single-photon detectors with unity internal efficiency at 1550 nm and 2.5 k,” ArXiv e-prints (2019).

Keil, R.

Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9, 2994 (2018).
[Crossref] [PubMed]

Korkusinski, M.

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

Korystov, D.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Korzh, B.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25, 26792–26801 (2017).
[Crossref] [PubMed]

M. Caloz, B. Korzh, E. Ramirez, C. Schönenberger, R. J. Warburton, H. Zbinden, M. D. Shaw, and F. Bussières, “Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors,” ArXiv e-prints (2019).

Korzh, B. A.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Kuzmin, A.

M. Sidorova, A. Semenov, H.-W. Hübers, A. Kuzmin, S. Doerner, K. Ilin, M. Siegel, I. Charaev, and D. Vodolazov, “Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux,” Phys. Rev. B 98, 134504 (2018).
[Crossref]

Lapointe, J.

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

Lentine, A. L.

Lettner, T.

E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
[Crossref]

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

J. Zichi, J. Chang, S. Steinhauer, K. von Fieandt, J. W. Los, G. Visser, N. Kalhor, T. Lettner, A. Elshaari, I. E. Zadeh, and V. Zwiller, “Nb xTi 1−xN low timing jitter single-photon detectors with unity internal efficiency at 1550 nm and 2.5 k,” ArXiv e-prints (2019).

Li, H.

H. Wang, H. Li, L. You, Y. Wang, L. Zhang, X. Yang, W. Zhang, Z. Wang, and X. Xie, “Fast and high efficiency superconducting nanowire single-photon detector at 630 nm wavelength,” Appl. Opt. 58, 1868–1872 (2019).
[Crossref] [PubMed]

W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, and X. Xie, “A 16-Pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Physics, Mech. & Astron. 60, 120314 (2017).
[Crossref]

Li, J.

H. Dang, T. Zhang, R. Zha, J. Tan, J. Li, Y. Zhao, B. Zhao, H. Tan, and R. Xue, “Development of 2 K space cryocoolers for cooling the superconducting nanowire single photon detector,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).
[Crossref]

Li, L.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Lipatov, A.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Lipson, M.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Lita, A. E.

Liu, X.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Physics, Mech. & Astron. 60, 120314 (2017).
[Crossref]

Lobino, M.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Lodeiro, C.

E. Oliveira, E. Bértolo, C. Núñez, V. Pilla, H. M. Santos, J. Fernández-Lodeiro, A. Fernández-Lodeiro, J. Djafari, J. L. Capelo, and C. Lodeiro, “Green and red fluorescent dyes for translational applications in imaging and sensing analytes: A dual-color flag,” ChemistryOpen 7, 3 (2018).
[Crossref] [PubMed]

Long, C.

Los, J. W.

J. Zichi, J. Chang, S. Steinhauer, K. von Fieandt, J. W. Los, G. Visser, N. Kalhor, T. Lettner, A. Elshaari, I. E. Zadeh, and V. Zwiller, “Nb xTi 1−xN low timing jitter single-photon detectors with unity internal efficiency at 1550 nm and 2.5 k,” ArXiv e-prints (2019).

Los, J. W. N.

R. Gourgues, I. E. Zadeh, A. W. Elshaari, G. Bulgarini, J. W. N. Los, J. Zichi, D. Dalacu, P. J. Poole, S. N. Dorenbos, and V. Zwiller, “Controlled integration of selected detectors and emitters in photonic integrated circuits,” Opt. Express 27, 3710–3716 (2019).
[Crossref] [PubMed]

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2, 111301 (2017).
[Crossref]

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub - 10 ps time resolution,” ArXiv e-prints (2018).

Lv, C.

W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, and X. Xie, “A 16-Pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Physics, Mech. & Astron. 60, 120314 (2017).
[Crossref]

Lvovsky, A. I.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Makise, K.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
[Crossref]

Manson, N. B.

N. B. Manson, M. Hedges, M. S. J. Barson, R. Ahlefeldt, M. W. Doherty, H. Abe, T. Ohshima, and M. J. Sellars, “NV--N+ pair centre in 1b diamond,” New J. Phys. 20, 113037 (2018).
[Crossref]

Markham, M. L.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Marsili, F.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25, 26792–26801 (2017).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210 (2013).
[Crossref]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Melgaard, S.

Miki, S.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
[Crossref]

Miller, A. J.

Mirin, R. P.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25, 26792–26801 (2017).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210 (2013).
[Crossref]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Mnaymneh, K.

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

Montinaro, M.

M. Montinaro, G. Wüst, M. Munsch, Y. Fontana, E. Russo-Averchi, M. Heiss, A. Fontcuberta, I. Morral, R. J. Warburton, and M. Poggio, “Quantum dot opto-mechanics in a fully self-assembled nanowire,” Nano Lett. 14, 4454–4460 (2014).
[Crossref] [PubMed]

Moody, G.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Morral, I.

M. Montinaro, G. Wüst, M. Munsch, Y. Fontana, E. Russo-Averchi, M. Heiss, A. Fontcuberta, I. Morral, R. J. Warburton, and M. Poggio, “Quantum dot opto-mechanics in a fully self-assembled nanowire,” Nano Lett. 14, 4454–4460 (2014).
[Crossref] [PubMed]

Mouradian, S. L.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Müller, K.

E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
[Crossref]

Munsch, M.

M. Montinaro, G. Wüst, M. Munsch, Y. Fontana, E. Russo-Averchi, M. Heiss, A. Fontcuberta, I. Morral, R. J. Warburton, and M. Poggio, “Quantum dot opto-mechanics in a fully self-assembled nanowire,” Nano Lett. 14, 4454–4460 (2014).
[Crossref] [PubMed]

Nam, S. W.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25, 26792–26801 (2017).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210 (2013).
[Crossref]

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express 19, 9102–9110 (2011).
[Crossref] [PubMed]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Núñez, C.

E. Oliveira, E. Bértolo, C. Núñez, V. Pilla, H. M. Santos, J. Fernández-Lodeiro, A. Fernández-Lodeiro, J. Djafari, J. L. Capelo, and C. Lodeiro, “Green and red fluorescent dyes for translational applications in imaging and sensing analytes: A dual-color flag,” ChemistryOpen 7, 3 (2018).
[Crossref] [PubMed]

Ohshima, T.

N. B. Manson, M. Hedges, M. S. J. Barson, R. Ahlefeldt, M. W. Doherty, H. Abe, T. Ohshima, and M. J. Sellars, “NV--N+ pair centre in 1b diamond,” New J. Phys. 20, 113037 (2018).
[Crossref]

Okunev, O.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Oliveira, E.

E. Oliveira, E. Bértolo, C. Núñez, V. Pilla, H. M. Santos, J. Fernández-Lodeiro, A. Fernández-Lodeiro, J. Djafari, J. L. Capelo, and C. Lodeiro, “Green and red fluorescent dyes for translational applications in imaging and sensing analytes: A dual-color flag,” ChemistryOpen 7, 3 (2018).
[Crossref] [PubMed]

Patra, B.

B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53, 309–321 (2018).
[Crossref]

Pernice, W. H. P.

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single photon detectors with milli-hz dark count rate,” Sci. Reports 3, 1893 (2013). Article.
[Crossref]

Pilla, V.

E. Oliveira, E. Bértolo, C. Núñez, V. Pilla, H. M. Santos, J. Fernández-Lodeiro, A. Fernández-Lodeiro, J. Djafari, J. L. Capelo, and C. Lodeiro, “Green and red fluorescent dyes for translational applications in imaging and sensing analytes: A dual-color flag,” ChemistryOpen 7, 3 (2018).
[Crossref] [PubMed]

Poggio, M.

M. Montinaro, G. Wüst, M. Munsch, Y. Fontana, E. Russo-Averchi, M. Heiss, A. Fontcuberta, I. Morral, R. J. Warburton, and M. Poggio, “Quantum dot opto-mechanics in a fully self-assembled nanowire,” Nano Lett. 14, 4454–4460 (2014).
[Crossref] [PubMed]

Poitras, C. B.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Poitras, D.

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

Pomerene, A.

Poole, P. J.

R. Gourgues, I. E. Zadeh, A. W. Elshaari, G. Bulgarini, J. W. N. Los, J. Zichi, D. Dalacu, P. J. Poole, S. N. Dorenbos, and V. Zwiller, “Controlled integration of selected detectors and emitters in photonic integrated circuits,” Opt. Express 27, 3710–3716 (2019).
[Crossref] [PubMed]

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref] [PubMed]

Qiu, W.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
[Crossref]

Rall, D.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[Crossref]

Ramirez, E.

M. Caloz, B. Korzh, E. Ramirez, C. Schönenberger, R. J. Warburton, H. Zbinden, M. D. Shaw, and F. Bussières, “Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors,” ArXiv e-prints (2019).

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Rastelli, A.

E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
[Crossref]

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Rawlings, T.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 K platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30, 11LT01 (2017).
[Crossref]

Reimer, M. E.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref] [PubMed]

Reindl, M.

E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
[Crossref]

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Rezac, J. D.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Russo-Averchi, E.

M. Montinaro, G. Wüst, M. Munsch, Y. Fontana, E. Russo-Averchi, M. Heiss, A. Fontcuberta, I. Morral, R. J. Warburton, and M. Poggio, “Quantum dot opto-mechanics in a fully self-assembled nanowire,” Nano Lett. 14, 4454–4460 (2014).
[Crossref] [PubMed]

Santos, H. M.

E. Oliveira, E. Bértolo, C. Núñez, V. Pilla, H. M. Santos, J. Fernández-Lodeiro, A. Fernández-Lodeiro, J. Djafari, J. L. Capelo, and C. Lodeiro, “Green and red fluorescent dyes for translational applications in imaging and sensing analytes: A dual-color flag,” ChemistryOpen 7, 3 (2018).
[Crossref] [PubMed]

Sasaki, M.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
[Crossref]

Schäll, E.

E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
[Crossref]

Schilling, A.

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80, 054510 (2009).
[Crossref]

K. Ilin, R. Schneider, D. Gerthsen, A. Engel, H. Bartolf, A. Schilling, A. Semenov, H.-W. Huebers, B. Freitag, and M. Siegel, “Ultra-thin NbN films on Si: crystalline and superconducting properties,” J. Physics: Conf. Ser. 97, 012045 (2008).

Schmidt, O. G.

Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9, 2994 (2018).
[Crossref] [PubMed]

Schneider, R.

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80, 054510 (2009).
[Crossref]

K. Ilin, R. Schneider, D. Gerthsen, A. Engel, H. Bartolf, A. Schilling, A. Semenov, H.-W. Huebers, B. Freitag, and M. Siegel, “Ultra-thin NbN films on Si: crystalline and superconducting properties,” J. Physics: Conf. Ser. 97, 012045 (2008).

Schöll, E.

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

Schönenberger, C.

M. Caloz, B. Korzh, E. Ramirez, C. Schönenberger, R. J. Warburton, H. Zbinden, M. D. Shaw, and F. Bussières, “Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors,” ArXiv e-prints (2019).

Schröder, T.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Schuck, C.

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single photon detectors with milli-hz dark count rate,” Sci. Reports 3, 1893 (2013). Article.
[Crossref]

Schwall, R. E.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

Schweickert, L.

E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
[Crossref]

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Sebastiano, F.

B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53, 309–321 (2018).
[Crossref]

Sellars, M. J.

N. B. Manson, M. Hedges, M. S. J. Barson, R. Ahlefeldt, M. W. Doherty, H. Abe, T. Ohshima, and M. J. Sellars, “NV--N+ pair centre in 1b diamond,” New J. Phys. 20, 113037 (2018).
[Crossref]

Semenov, A.

M. Sidorova, A. Semenov, H.-W. Hübers, A. Kuzmin, S. Doerner, K. Ilin, M. Siegel, I. Charaev, and D. Vodolazov, “Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux,” Phys. Rev. B 98, 134504 (2018).
[Crossref]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80, 054510 (2009).
[Crossref]

K. Ilin, R. Schneider, D. Gerthsen, A. Engel, H. Bartolf, A. Schilling, A. Semenov, H.-W. Huebers, B. Freitag, and M. Siegel, “Ultra-thin NbN films on Si: crystalline and superconducting properties,” J. Physics: Conf. Ser. 97, 012045 (2008).

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Shahmohammadi, M.

B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53, 309–321 (2018).
[Crossref]

Shaw, M. D.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25, 26792–26801 (2017).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210 (2013).
[Crossref]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

M. Caloz, B. Korzh, E. Ramirez, C. Schönenberger, R. J. Warburton, H. Zbinden, M. D. Shaw, and F. Bussières, “Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors,” ArXiv e-prints (2019).

Shibata, H.

H. Shibata, T. Akazaki, and Y. Tokura, “Fabrication of MgB2 nanowire single-photon detector with meander structure,” Appl. Phys. Express 6, 023101 (2013).
[Crossref]

Sidorova, M.

M. Sidorova, A. Semenov, H.-W. Hübers, A. Kuzmin, S. Doerner, K. Ilin, M. Siegel, I. Charaev, and D. Vodolazov, “Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux,” Phys. Rev. B 98, 134504 (2018).
[Crossref]

Siegel, M.

M. Sidorova, A. Semenov, H.-W. Hübers, A. Kuzmin, S. Doerner, K. Ilin, M. Siegel, I. Charaev, and D. Vodolazov, “Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux,” Phys. Rev. B 98, 134504 (2018).
[Crossref]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80, 054510 (2009).
[Crossref]

K. Ilin, R. Schneider, D. Gerthsen, A. Engel, H. Bartolf, A. Schilling, A. Semenov, H.-W. Huebers, B. Freitag, and M. Siegel, “Ultra-thin NbN films on Si: crystalline and superconducting properties,” J. Physics: Conf. Ser. 97, 012045 (2008).

Siirola, J.

Silverman, K. L.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Smirnov, K.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Sobolewski, R.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Song, L.

B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53, 309–321 (2018).
[Crossref]

Starbuck, A.

Staszewski, R. B.

B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53, 309–321 (2018).
[Crossref]

Steinhauer, S.

J. Zichi, J. Chang, S. Steinhauer, K. von Fieandt, J. W. Los, G. Visser, N. Kalhor, T. Lettner, A. Elshaari, I. E. Zadeh, and V. Zwiller, “Nb xTi 1−xN low timing jitter single-photon detectors with unity internal efficiency at 1550 nm and 2.5 k,” ArXiv e-prints (2019).

Steinmetz, V.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2, 111301 (2017).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210 (2013).
[Crossref]

Stevens, J.M.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Stevens, M. J.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

Tan, H.

H. Dang, T. Zhang, R. Zha, J. Tan, J. Li, Y. Zhao, B. Zhao, H. Tan, and R. Xue, “Development of 2 K space cryocoolers for cooling the superconducting nanowire single photon detector,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).
[Crossref]

Tan, J.

H. Dang, T. Zhang, R. Zha, J. Tan, J. Li, Y. Zhao, B. Zhao, H. Tan, and R. Xue, “Development of 2 K space cryocoolers for cooling the superconducting nanowire single photon detector,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).
[Crossref]

Tang, H. X.

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single photon detectors with milli-hz dark count rate,” Sci. Reports 3, 1893 (2013). Article.
[Crossref]

Terai, H.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
[Crossref]

Tokura, Y.

H. Shibata, T. Akazaki, and Y. Tokura, “Fabrication of MgB2 nanowire single-photon detector with meander structure,” Appl. Phys. Express 6, 023101 (2013).
[Crossref]

Trotta, R.

E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
[Crossref]

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Trotter, D.

Tsimvrakidis, K.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 K platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30, 11LT01 (2017).
[Crossref]

Twitchen, D. J.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

van Dijk, J. P. G.

B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53, 309–321 (2018).
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210 (2013).
[Crossref]

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express 19, 9102–9110 (2011).
[Crossref] [PubMed]

Verma, V. B.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25, 26792–26801 (2017).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210 (2013).
[Crossref]

Visser, G.

J. Zichi, J. Chang, S. Steinhauer, K. von Fieandt, J. W. Los, G. Visser, N. Kalhor, T. Lettner, A. Elshaari, I. E. Zadeh, and V. Zwiller, “Nb xTi 1−xN low timing jitter single-photon detectors with unity internal efficiency at 1550 nm and 2.5 k,” ArXiv e-prints (2019).

Vladimirescu, A.

B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53, 309–321 (2018).
[Crossref]

Vodolazov, D.

M. Sidorova, A. Semenov, H.-W. Hübers, A. Kuzmin, S. Doerner, K. Ilin, M. Siegel, I. Charaev, and D. Vodolazov, “Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux,” Phys. Rev. B 98, 134504 (2018).
[Crossref]

von Fieandt, K.

J. Zichi, J. Chang, S. Steinhauer, K. von Fieandt, J. W. Los, G. Visser, N. Kalhor, T. Lettner, A. Elshaari, I. E. Zadeh, and V. Zwiller, “Nb xTi 1−xN low timing jitter single-photon detectors with unity internal efficiency at 1550 nm and 2.5 k,” ArXiv e-prints (2019).

Voronov, B.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Walsh, M.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Wang, H.

Wang, Y.

Wang, Z.

H. Wang, H. Li, L. You, Y. Wang, L. Zhang, X. Yang, W. Zhang, Z. Wang, and X. Xie, “Fast and high efficiency superconducting nanowire single-photon detector at 630 nm wavelength,” Appl. Opt. 58, 1868–1872 (2019).
[Crossref] [PubMed]

W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, and X. Xie, “A 16-Pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Physics, Mech. & Astron. 60, 120314 (2017).
[Crossref]

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
[Crossref]

Warburton, R. J.

M. Montinaro, G. Wüst, M. Munsch, Y. Fontana, E. Russo-Averchi, M. Heiss, A. Fontcuberta, I. Morral, R. J. Warburton, and M. Poggio, “Quantum dot opto-mechanics in a fully self-assembled nanowire,” Nano Lett. 14, 4454–4460 (2014).
[Crossref] [PubMed]

M. Caloz, B. Korzh, E. Ramirez, C. Schönenberger, R. J. Warburton, H. Zbinden, M. D. Shaw, and F. Bussières, “Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors,” ArXiv e-prints (2019).

Williams, C.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Williams, R. L.

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

Wollman, E. E.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25, 26792–26801 (2017).
[Crossref] [PubMed]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Wright, J. B.

Wu, J.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Physics, Mech. & Astron. 60, 120314 (2017).
[Crossref]

Wu, X.

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

Wüst, G.

M. Montinaro, G. Wüst, M. Munsch, Y. Fontana, E. Russo-Averchi, M. Heiss, A. Fontcuberta, I. Morral, R. J. Warburton, and M. Poggio, “Quantum dot opto-mechanics in a fully self-assembled nanowire,” Nano Lett. 14, 4454–4460 (2014).
[Crossref] [PubMed]

Xie, X.

W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, and X. Xie, “A 16-Pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).

H. Wang, H. Li, L. You, Y. Wang, L. Zhang, X. Yang, W. Zhang, Z. Wang, and X. Xie, “Fast and high efficiency superconducting nanowire single-photon detector at 630 nm wavelength,” Appl. Opt. 58, 1868–1872 (2019).
[Crossref] [PubMed]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Physics, Mech. & Astron. 60, 120314 (2017).
[Crossref]

Xue, R.

H. Dang, T. Zhang, R. Zha, J. Tan, J. Li, Y. Zhao, B. Zhao, H. Tan, and R. Xue, “Development of 2 K space cryocoolers for cooling the superconducting nanowire single photon detector,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).
[Crossref]

Yamashita, T.

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
[Crossref]

Yang, X.

You, L.

H. Wang, H. Li, L. You, Y. Wang, L. Zhang, X. Yang, W. Zhang, Z. Wang, and X. Xie, “Fast and high efficiency superconducting nanowire single-photon detector at 630 nm wavelength,” Appl. Opt. 58, 1868–1872 (2019).
[Crossref] [PubMed]

W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, and X. Xie, “A 16-Pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Physics, Mech. & Astron. 60, 120314 (2017).
[Crossref]

Zadeh, I. E.

R. Gourgues, I. E. Zadeh, A. W. Elshaari, G. Bulgarini, J. W. N. Los, J. Zichi, D. Dalacu, P. J. Poole, S. N. Dorenbos, and V. Zwiller, “Controlled integration of selected detectors and emitters in photonic integrated circuits,” Opt. Express 27, 3710–3716 (2019).
[Crossref] [PubMed]

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref] [PubMed]

J. Zichi, J. Chang, S. Steinhauer, K. von Fieandt, J. W. Los, G. Visser, N. Kalhor, T. Lettner, A. Elshaari, I. E. Zadeh, and V. Zwiller, “Nb xTi 1−xN low timing jitter single-photon detectors with unity internal efficiency at 1550 nm and 2.5 k,” ArXiv e-prints (2019).

Zbinden, H.

M. Caloz, B. Korzh, E. Ramirez, C. Schönenberger, R. J. Warburton, H. Zbinden, M. D. Shaw, and F. Bussières, “Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors,” ArXiv e-prints (2019).

Zeuner, K. D.

E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
[Crossref]

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

Zha, R.

H. Dang, T. Zhang, R. Zha, J. Tan, J. Li, Y. Zhao, B. Zhao, H. Tan, and R. Xue, “Development of 2 K space cryocoolers for cooling the superconducting nanowire single photon detector,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).
[Crossref]

Zhang, C.

W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, and X. Xie, “A 16-Pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).

Zhang, L.

W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, and X. Xie, “A 16-Pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).

H. Wang, H. Li, L. You, Y. Wang, L. Zhang, X. Yang, W. Zhang, Z. Wang, and X. Xie, “Fast and high efficiency superconducting nanowire single-photon detector at 630 nm wavelength,” Appl. Opt. 58, 1868–1872 (2019).
[Crossref] [PubMed]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Physics, Mech. & Astron. 60, 120314 (2017).
[Crossref]

Zhang, T.

H. Dang, T. Zhang, R. Zha, J. Tan, J. Li, Y. Zhao, B. Zhao, H. Tan, and R. Xue, “Development of 2 K space cryocoolers for cooling the superconducting nanowire single photon detector,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).
[Crossref]

Zhang, W.

W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, and X. Xie, “A 16-Pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).

H. Wang, H. Li, L. You, Y. Wang, L. Zhang, X. Yang, W. Zhang, Z. Wang, and X. Xie, “Fast and high efficiency superconducting nanowire single-photon detector at 630 nm wavelength,” Appl. Opt. 58, 1868–1872 (2019).
[Crossref] [PubMed]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Physics, Mech. & Astron. 60, 120314 (2017).
[Crossref]

Zhao, B.

H. Dang, T. Zhang, R. Zha, J. Tan, J. Li, Y. Zhao, B. Zhao, H. Tan, and R. Xue, “Development of 2 K space cryocoolers for cooling the superconducting nanowire single photon detector,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).
[Crossref]

Zhao, Q.-Y.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Zhao, Y.

H. Dang, T. Zhang, R. Zha, J. Tan, J. Li, Y. Zhao, B. Zhao, H. Tan, and R. Xue, “Development of 2 K space cryocoolers for cooling the superconducting nanowire single photon detector,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).
[Crossref]

Zhu, D.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

Zichi, J.

R. Gourgues, I. E. Zadeh, A. W. Elshaari, G. Bulgarini, J. W. N. Los, J. Zichi, D. Dalacu, P. J. Poole, S. N. Dorenbos, and V. Zwiller, “Controlled integration of selected detectors and emitters in photonic integrated circuits,” Opt. Express 27, 3710–3716 (2019).
[Crossref] [PubMed]

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

J. Zichi, J. Chang, S. Steinhauer, K. von Fieandt, J. W. Los, G. Visser, N. Kalhor, T. Lettner, A. Elshaari, I. E. Zadeh, and V. Zwiller, “Nb xTi 1−xN low timing jitter single-photon detectors with unity internal efficiency at 1550 nm and 2.5 k,” ArXiv e-prints (2019).

Zopf, M.

Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9, 2994 (2018).
[Crossref] [PubMed]

Zwiller, V.

R. Gourgues, I. E. Zadeh, A. W. Elshaari, G. Bulgarini, J. W. N. Los, J. Zichi, D. Dalacu, P. J. Poole, S. N. Dorenbos, and V. Zwiller, “Controlled integration of selected detectors and emitters in photonic integrated circuits,” Opt. Express 27, 3710–3716 (2019).
[Crossref] [PubMed]

E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
[Crossref]

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 K platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30, 11LT01 (2017).
[Crossref]

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2, 111301 (2017).
[Crossref]

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref] [PubMed]

J. Zichi, J. Chang, S. Steinhauer, K. von Fieandt, J. W. Los, G. Visser, N. Kalhor, T. Lettner, A. Elshaari, I. E. Zadeh, and V. Zwiller, “Nb xTi 1−xN low timing jitter single-photon detectors with unity internal efficiency at 1550 nm and 2.5 k,” ArXiv e-prints (2019).

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub - 10 ps time resolution,” ArXiv e-prints (2018).

APL Photonics (1)

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2, 111301 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

H. Shibata, T. Akazaki, and Y. Tokura, “Fabrication of MgB2 nanowire single-photon detector with meander structure,” Appl. Phys. Express 6, 023101 (2013).
[Crossref]

Appl. Phys. Lett. (4)

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99, 161105 (2011).
[Crossref]

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

ChemistryOpen (1)

E. Oliveira, E. Bértolo, C. Núñez, V. Pilla, H. M. Santos, J. Fernández-Lodeiro, A. Fernández-Lodeiro, J. Djafari, J. L. Capelo, and C. Lodeiro, “Green and red fluorescent dyes for translational applications in imaging and sensing analytes: A dual-color flag,” ChemistryOpen 7, 3 (2018).
[Crossref] [PubMed]

IEEE J. Solid-State Circuits (1)

B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53, 309–321 (2018).
[Crossref]

IEEE Transactions on Appl. Supercond. (2)

W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, and X. Xie, “A 16-Pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).

H. Dang, T. Zhang, R. Zha, J. Tan, J. Li, Y. Zhao, B. Zhao, H. Tan, and R. Xue, “Development of 2 K space cryocoolers for cooling the superconducting nanowire single photon detector,” IEEE Transactions on Appl. Supercond. 29, 1–4 (2019).
[Crossref]

J. Appl. Phys. (1)

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[Crossref]

J. Physics: Conf. Ser. (1)

K. Ilin, R. Schneider, D. Gerthsen, A. Engel, H. Bartolf, A. Schilling, A. Semenov, H.-W. Huebers, B. Freitag, and M. Siegel, “Ultra-thin NbN films on Si: crystalline and superconducting properties,” J. Physics: Conf. Ser. 97, 012045 (2008).

Nano Lett. (4)

E. Schäll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva, T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns, “Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability,” Nano Lett. 19, 2404–2410 (2019).
[Crossref]

M. Montinaro, G. Wüst, M. Munsch, Y. Fontana, E. Russo-Averchi, M. Heiss, A. Fontcuberta, I. Morral, R. J. Warburton, and M. Poggio, “Quantum dot opto-mechanics in a fully self-assembled nanowire,” Nano Lett. 14, 4454–4460 (2014).
[Crossref] [PubMed]

S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, E. Schöll, K. D. Jöns, V. Zwiller, and R. L. Williams, “Bright single inasp quantum dots at telecom wavelengths inposition-controlled inp nanowires: The role of the photonic waveguide,” Nano Lett. 18, 3047–3052 (2018). PMID: 29616557.
[Crossref] [PubMed]

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna,” Nat. Commun. 9, 2994 (2018).
[Crossref] [PubMed]

Nat. Photonics (2)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210 (2013).
[Crossref]

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363 (2015). Review Article.
[Crossref]

New J. Phys. (1)

N. B. Manson, M. Hedges, M. S. J. Barson, R. Ahlefeldt, M. W. Doherty, H. Abe, T. Ohshima, and M. J. Sellars, “NV--N+ pair centre in 1b diamond,” New J. Phys. 20, 113037 (2018).
[Crossref]

Opt. Express (3)

Optica (1)

Phys. Rev. B (2)

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80, 054510 (2009).
[Crossref]

M. Sidorova, A. Semenov, H.-W. Hübers, A. Kuzmin, S. Doerner, K. Ilin, M. Siegel, I. Charaev, and D. Vodolazov, “Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux,” Phys. Rev. B 98, 134504 (2018).
[Crossref]

Phys. Rev. Lett. (1)

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Sci. China Physics, Mech. & Astron. (1)

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Physics, Mech. & Astron. 60, 120314 (2017).
[Crossref]

Sci. Reports (1)

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single photon detectors with milli-hz dark count rate,” Sci. Reports 3, 1893 (2013). Article.
[Crossref]

Supercond. Sci. Technol. (1)

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 K platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30, 11LT01 (2017).
[Crossref]

Other (5)

J. Zichi, J. Chang, S. Steinhauer, K. von Fieandt, J. W. Los, G. Visser, N. Kalhor, T. Lettner, A. Elshaari, I. E. Zadeh, and V. Zwiller, “Nb xTi 1−xN low timing jitter single-photon detectors with unity internal efficiency at 1550 nm and 2.5 k,” ArXiv e-prints (2019).

Rockland Immunochemicals Inc., “Fluorescent dye overview,” https://rockland-inc.com/fluorescent-dyes.aspx ,.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub - 10 ps time resolution,” ArXiv e-prints (2018).

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, J.M. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” ArXiv e-prints (2018).

M. Caloz, B. Korzh, E. Ramirez, C. Schönenberger, R. J. Warburton, H. Zbinden, M. D. Shaw, and F. Bussières, “Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors,” ArXiv e-prints (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Measurements of the superconducting transition temperature for 8 nm and 13 nm film thickness. The table in the inset summarizes the Tc for the studied films. The error is estimated to be ±0.1 K. (b) False-color SEM image of the superconducting single photon detector meander. The inset shows the 70 nm nanowire width of the superconducting device. (c) Free-space holder with the sample wire-bonded in the center of the PCB. (d) Fiber-coupled superconducting detector wire-bonded to the PCB, mounted on the oxygen free copper block.
Fig. 2
Fig. 2 (a) Measurements of the critical current vs. base temperature for different film thicknesses (8 nm, 9 nm, 10.5 nm and 13 nm) and nanowire width (50 nm, 60nm, 70 nm and 100 nm). The red dashed line is a fit from the Ginzburg-Landau theory. (b) Measurements of the dark count rates vs. bias current for different film thicknesses (8 nm, 9 nm, 10.5 nm and 13 nm) with 70 nm nanowire width.
Fig. 3
Fig. 3 (a) Normalized detection efficiency vs. bias current at 4.3 K, 5.2 K and 6.2 K for 9 nm thick film. (b) Normalized detection efficiency vs. bias current at 4.3 K, 5.2 K, 6.2 K and 7.1 K for 13 nm thick film. The measurements are performed with CW laser diodes at 785 nm, 642 nm, 515 nm and 400 nm.
Fig. 4
Fig. 4 (a) Detection efficiency measurements at 785 nm and dark counts rate for T= 2.5 - 6.2 K vs. bias current. The inset presents the normalized detection efficiency at 670 nm vs. bias current in the same temperature range. (b) Detection efficiency measurements at 1550 nm and dark counts rate for T= 2.5 - 5.2 K vs. bias current.
Fig. 5
Fig. 5 Timing jitter measurements (dots) and their corresponding fits (lines) at base temperature of 4.3 K, 5.2 K and 6.2 K. The left inset is the detection pulse of the SNSPD at base temperature of 4.3 K, 5.2 K and 6.2 K. The right inset is the timing jitter as a function of the temperature.

Metrics