Abstract

We have demonstrated the first MgO:PPLN ridge waveguides based on ZnO indiffusion and dicing. The fabrication process utilizes ductile regime dicing of a planar waveguide layer producing second harmonic generation (SHG) devices with a near-symmetric sinc2 spectral profile, indicating highly uniform 40 mm long devices. A near circular pump mode is also obtained enabling efficient coupling to single mode telecommunication fibers. A conversion efficiency of 145%/W, for 1560-780 nm SHG, has been measured.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO3 crystals

Lei Wang, Christian E. Haunhorst, Martin F. Volk, Feng Chen, and Detlef Kip
Opt. Express 23(23) 30188-30194 (2015)

Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3

Kiminori Mizuuchi, Tomoya Sugita, Kazuhisa Yamamoto, Tatsuo Kawaguchi, Takeshi Yoshino, and Minoru Imaeda
Opt. Lett. 28(15) 1344-1346 (2003)

High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide

Lu Ming, Corin B. E. Gawith, Katia Gallo, Martin V. O’Connor, Gregory D. Emmerson, and Peter G. R. Smith
Opt. Express 13(13) 4862-4868 (2005)

References

  • View by:
  • |
  • |
  • |

  1. P. F. Bordui and M. M. Fejer, “Inorganic crystals for nonlinear optical frequency conversion,” Annu. Rev. Mater. Sci. 23(1), 321–379 (1993).
    [Crossref]
  2. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
    [Crossref]
  3. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lit. Technol. 24(7), 2579–2592 (2006).
    [Crossref]
  4. T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
    [Crossref]
  5. W. P. Risk, T. R. Gosnell, and A. V. Nurmikko, Compact Blue-Green Lasers (Cambridge University, 2003), Chap 1–2.
  6. S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express 19(17), 16032–16043 (2011).
    [Crossref] [PubMed]
  7. T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), 42–46 (2014).
    [Crossref]
  8. P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
    [Crossref]
  9. F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3(4), 362–365 (2016).
    [Crossref]
  10. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
    [Crossref]
  11. L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
    [Crossref]
  12. T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B 116(4), 997–1004 (2014).
    [Crossref]
  13. D. Akamatsu, M. Yasuda, T. Kohno, A. Onae, and F. L. Hong, “A compact light source at 461 nm using a periodically poled LiNbO3 waveguide for strontium magneto-optical trapping,” Opt. Express 19(3), 2046–2051 (2011).
    [Crossref] [PubMed]
  14. R. Kou, S. Kurimura, K. Kikuchi, A. Terasaki, H. Nakajima, K. Kondou, and J. Ichikawa, “High-gain, wide-dynamic-range parametric interaction in Mg-doped LiNbO3 quasi-phase-matched adhered ridge waveguide,” Opt. Express 19(12), 11867–11872 (2011).
    [Crossref] [PubMed]
  15. M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt.18(085503), (2016).
  16. D. Tulli, D. Janner, and V. Pruneri, “Room temperature direct bonding of LiNbO3 crystal layers and its application to high-voltage optical sensing,” J. Micromech. Microeng.21(085025), (2011).
  17. S. Pal, B. K. Das, and W. Sohler, “Photorefractive damage resistance in Ti:PPLN waveguides with ridge geometry,” Appl. Phys. B 120(4), 737–749 (2015).
    [Crossref]
  18. W. Tsai, T. Chiang, L. Liu, P. Chang, and Y. Su, “Time and temperature dependent study of Zn and Ni codiffused LiNbO3 waveguides,” J. Lit. Technol. 33(23), 4950–4956 (2015).
    [Crossref]
  19. E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” J. Appl. Phys.86(161119), (2005).
  20. R. Twu, C. Huang, and W. Wang, “Zn indiffusion waveguide polarizer on a Y-cut LiNbO3 at 1.32-µm wavelength,” IEEE Photonics Technol. Lett. 12(2), 161–163 (2000).
    [Crossref]
  21. L. Ming, C. Gawith, K. Gallo, M. O’Connor, G. Emmerson, and P. Smith, “High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide,” Opt. Express 13(13), 4862–4868 (2005).
    [Crossref] [PubMed]
  22. W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO(3),” Opt. Lett. 16(13), 995–997 (1991).
    [Crossref] [PubMed]
  23. W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lit. Technol. 10(9), 1238–1246 (1992).
    [Crossref]
  24. BS EN ISO 11146–1:2005, Lasers and laser-related equipment. Test methods for laser beam widths, divergence angles and beam propagation ratios. Stigmatic and simple astigmatic beams (British Standard, 2005)
  25. L. G. Carpenter, S. A. Berry, and C. B. E. Gawith, “Ductile dicing of LiNbO3 ridge waveguide facets to achieve 0.29 nm surface roughness in single process step,” Electron. Lett. 53(25), 1672–1674 (2017).
    [Crossref]
  26. L. Wang, C. E. Haunhorst, M. F. Volk, F. Chen, and D. Kip, “Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO(3) crystals,” Opt. Express 23(23), 30188–30194 (2015).
    [Crossref] [PubMed]

2017 (2)

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

L. G. Carpenter, S. A. Berry, and C. B. E. Gawith, “Ductile dicing of LiNbO3 ridge waveguide facets to achieve 0.29 nm surface roughness in single process step,” Electron. Lett. 53(25), 1672–1674 (2017).
[Crossref]

2016 (1)

2015 (4)

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

S. Pal, B. K. Das, and W. Sohler, “Photorefractive damage resistance in Ti:PPLN waveguides with ridge geometry,” Appl. Phys. B 120(4), 737–749 (2015).
[Crossref]

W. Tsai, T. Chiang, L. Liu, P. Chang, and Y. Su, “Time and temperature dependent study of Zn and Ni codiffused LiNbO3 waveguides,” J. Lit. Technol. 33(23), 4950–4956 (2015).
[Crossref]

L. Wang, C. E. Haunhorst, M. F. Volk, F. Chen, and D. Kip, “Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO(3) crystals,” Opt. Express 23(23), 30188–30194 (2015).
[Crossref] [PubMed]

2014 (2)

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B 116(4), 997–1004 (2014).
[Crossref]

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), 42–46 (2014).
[Crossref]

2011 (3)

2010 (1)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

2006 (1)

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lit. Technol. 24(7), 2579–2592 (2006).
[Crossref]

2005 (1)

2002 (1)

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

2000 (1)

R. Twu, C. Huang, and W. Wang, “Zn indiffusion waveguide polarizer on a Y-cut LiNbO3 at 1.32-µm wavelength,” IEEE Photonics Technol. Lett. 12(2), 161–163 (2000).
[Crossref]

1993 (2)

P. F. Bordui and M. M. Fejer, “Inorganic crystals for nonlinear optical frequency conversion,” Annu. Rev. Mater. Sci. 23(1), 321–379 (1993).
[Crossref]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

1992 (1)

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lit. Technol. 10(9), 1238–1246 (1992).
[Crossref]

1991 (1)

Akamatsu, D.

Alibart, O.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), 42–46 (2014).
[Crossref]

Antoni-Micollier, L.

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B 116(4), 997–1004 (2014).
[Crossref]

Arahira, S.

Asobe, M.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

Baldi, P.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Bassignot, F.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt.18(085503), (2016).

Berry, S. A.

L. G. Carpenter, S. A. Berry, and C. B. E. Gawith, “Ductile dicing of LiNbO3 ridge waveguide facets to achieve 0.29 nm surface roughness in single process step,” Electron. Lett. 53(25), 1672–1674 (2017).
[Crossref]

Berthon, J.

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B 116(4), 997–1004 (2014).
[Crossref]

Bordui, P. F.

P. F. Bordui and M. M. Fejer, “Inorganic crystals for nonlinear optical frequency conversion,” Annu. Rev. Mater. Sci. 23(1), 321–379 (1993).
[Crossref]

Cantelar, E.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” J. Appl. Phys.86(161119), (2005).

Carpenter, L. G.

L. G. Carpenter, S. A. Berry, and C. B. E. Gawith, “Ductile dicing of LiNbO3 ridge waveguide facets to achieve 0.29 nm surface roughness in single process step,” Electron. Lett. 53(25), 1672–1674 (2017).
[Crossref]

Chang, P.

W. Tsai, T. Chiang, L. Liu, P. Chang, and Y. Su, “Time and temperature dependent study of Zn and Ni codiffused LiNbO3 waveguides,” J. Lit. Technol. 33(23), 4950–4956 (2015).
[Crossref]

Chauvet, M.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt.18(085503), (2016).

Chen, F.

Chiang, T.

W. Tsai, T. Chiang, L. Liu, P. Chang, and Y. Su, “Time and temperature dependent study of Zn and Ni codiffused LiNbO3 waveguides,” J. Lit. Technol. 33(23), 4950–4956 (2015).
[Crossref]

Clark, A. S.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), 42–46 (2014).
[Crossref]

Collins, M. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), 42–46 (2014).
[Crossref]

Cussó, F.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” J. Appl. Phys.86(161119), (2005).

D’Auria, V.

Dahmani, B.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt.18(085503), (2016).

Das, B. K.

S. Pal, B. K. Das, and W. Sohler, “Photorefractive damage resistance in Ti:PPLN waveguides with ridge geometry,” Appl. Phys. B 120(4), 737–749 (2015).
[Crossref]

De Micheli, M.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

De Riedmatten, H.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Devaux, F.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt.18(085503), (2016).

Digonnet, M. J. F.

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lit. Technol. 10(9), 1238–1246 (1992).
[Crossref]

W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO(3),” Opt. Lett. 16(13), 995–997 (1991).
[Crossref] [PubMed]

Eggleton, B. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), 42–46 (2014).
[Crossref]

Emmerson, G.

Faure, B.

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B 116(4), 997–1004 (2014).
[Crossref]

Fedrici, B.

Feigelson, R. S.

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lit. Technol. 10(9), 1238–1246 (1992).
[Crossref]

W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO(3),” Opt. Lett. 16(13), 995–997 (1991).
[Crossref] [PubMed]

Fejer, M. M.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lit. Technol. 24(7), 2579–2592 (2006).
[Crossref]

P. F. Bordui and M. M. Fejer, “Inorganic crystals for nonlinear optical frequency conversion,” Annu. Rev. Mater. Sci. 23(1), 321–379 (1993).
[Crossref]

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lit. Technol. 10(9), 1238–1246 (1992).
[Crossref]

W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO(3),” Opt. Lett. 16(13), 995–997 (1991).
[Crossref] [PubMed]

Gallo, K.

Gauthier-Manuel, L.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt.18(085503), (2016).

Gawith, C.

Gawith, C. B. E.

L. G. Carpenter, S. A. Berry, and C. B. E. Gawith, “Ductile dicing of LiNbO3 ridge waveguide facets to achieve 0.29 nm surface roughness in single process step,” Electron. Lett. 53(25), 1672–1674 (2017).
[Crossref]

Gisin, N.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Haunhorst, C. E.

Hayford, D.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Henrot, F.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt.18(085503), (2016).

Herrmann, H.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Hong, F. L.

Huang, C.

R. Twu, C. Huang, and W. Wang, “Zn indiffusion waveguide polarizer on a Y-cut LiNbO3 at 1.32-µm wavelength,” IEEE Photonics Technol. Lett. 12(2), 161–163 (2000).
[Crossref]

Ichikawa, J.

Inoue, S.

Janner, D.

D. Tulli, D. Janner, and V. Pruneri, “Room temperature direct bonding of LiNbO3 crystal layers and its application to high-voltage optical sensing,” J. Micromech. Microeng.21(085025), (2011).

Kaiser, F.

Kikuchi, K.

Kip, D.

Kishimoto, T.

Kohno, T.

Kondou, K.

Kou, R.

Krupa, S.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Kumar, S.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lit. Technol. 24(7), 2579–2592 (2006).
[Crossref]

Kurimura, S.

Langrock, C.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lit. Technol. 24(7), 2579–2592 (2006).
[Crossref]

Lévèque, T.

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B 116(4), 997–1004 (2014).
[Crossref]

Lifante, G.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” J. Appl. Phys.86(161119), (2005).

Liu, L.

W. Tsai, T. Chiang, L. Liu, P. Chang, and Y. Su, “Time and temperature dependent study of Zn and Ni codiffused LiNbO3 waveguides,” J. Lit. Technol. 33(23), 4950–4956 (2015).
[Crossref]

Luo, K. H.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Maillotte, H.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt.18(085503), (2016).

Marshall, A. F.

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lit. Technol. 10(9), 1238–1246 (1992).
[Crossref]

McGeehan, J. E.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lit. Technol. 24(7), 2579–2592 (2006).
[Crossref]

Meany, T.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), 42–46 (2014).
[Crossref]

Meier, T.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Ming, L.

Monteiro, F.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

Nakajima, H.

Namekata, N.

Ngah, L. A.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), 42–46 (2014).
[Crossref]

Nippa, D.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

O’Connor, M.

Oesterling, L.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Onae, A.

Ostrowsky, D. B.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Pal, S.

S. Pal, B. K. Das, and W. Sohler, “Photorefractive damage resistance in Ti:PPLN waveguides with ridge geometry,” Appl. Phys. B 120(4), 737–749 (2015).
[Crossref]

Pêcheur, V.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt.18(085503), (2016).

Pernas, P. L.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” J. Appl. Phys.86(161119), (2005).

Pruneri, V.

D. Tulli, D. Janner, and V. Pruneri, “Room temperature direct bonding of LiNbO3 crystal layers and its application to high-voltage optical sensing,” J. Micromech. Microeng.21(085025), (2011).

Reichelt, M.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

Sanguinetti, B.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Sanz-García, J. A.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” J. Appl. Phys.86(161119), (2005).

Sharapova, P. R.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Shaw, H. J.

Silberhorn, C.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Smith, P.

Sohler, W.

S. Pal, B. K. Das, and W. Sohler, “Photorefractive damage resistance in Ti:PPLN waveguides with ridge geometry,” Appl. Phys. B 120(4), 737–749 (2015).
[Crossref]

Steel, M. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), 42–46 (2014).
[Crossref]

Stinaff, E.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Su, Y.

W. Tsai, T. Chiang, L. Liu, P. Chang, and Y. Su, “Time and temperature dependent study of Zn and Ni codiffused LiNbO3 waveguides,” J. Lit. Technol. 33(23), 4950–4956 (2015).
[Crossref]

Tadanaga, O.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

Tanzilli, S.

F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3(4), 362–365 (2016).
[Crossref]

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), 42–46 (2014).
[Crossref]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Terasaki, A.

Thew, R.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Tittel, W.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Tsai, W.

W. Tsai, T. Chiang, L. Liu, P. Chang, and Y. Su, “Time and temperature dependent study of Zn and Ni codiffused LiNbO3 waveguides,” J. Lit. Technol. 33(23), 4950–4956 (2015).
[Crossref]

Tulli, D.

D. Tulli, D. Janner, and V. Pruneri, “Room temperature direct bonding of LiNbO3 crystal layers and its application to high-voltage optical sensing,” J. Micromech. Microeng.21(085025), (2011).

Twu, R.

R. Twu, C. Huang, and W. Wang, “Zn indiffusion waveguide polarizer on a Y-cut LiNbO3 at 1.32-µm wavelength,” IEEE Photonics Technol. Lett. 12(2), 161–163 (2000).
[Crossref]

Umeki, T.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

Volk, M. F.

Wang, L.

Wang, W.

R. Twu, C. Huang, and W. Wang, “Zn indiffusion waveguide polarizer on a Y-cut LiNbO3 at 1.32-µm wavelength,” IEEE Photonics Technol. Lett. 12(2), 161–163 (2000).
[Crossref]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

Williams, R. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), 42–46 (2014).
[Crossref]

Willner, A. E.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lit. Technol. 24(7), 2579–2592 (2006).
[Crossref]

Withford, M. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), 42–46 (2014).
[Crossref]

Wolterman, R.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Yaegashi, H.

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

Yasuda, M.

Young, W. M.

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lit. Technol. 10(9), 1238–1246 (1992).
[Crossref]

W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO(3),” Opt. Lett. 16(13), 995–997 (1991).
[Crossref] [PubMed]

Zavatta, A.

Zbinden, H.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Annu. Rev. Mater. Sci. (1)

P. F. Bordui and M. M. Fejer, “Inorganic crystals for nonlinear optical frequency conversion,” Annu. Rev. Mater. Sci. 23(1), 321–379 (1993).
[Crossref]

Appl. Phys. B (2)

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B 116(4), 997–1004 (2014).
[Crossref]

S. Pal, B. K. Das, and W. Sohler, “Photorefractive damage resistance in Ti:PPLN waveguides with ridge geometry,” Appl. Phys. B 120(4), 737–749 (2015).
[Crossref]

Appl. Phys. Lett. (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

Electron. Lett. (1)

L. G. Carpenter, S. A. Berry, and C. B. E. Gawith, “Ductile dicing of LiNbO3 ridge waveguide facets to achieve 0.29 nm surface roughness in single process step,” Electron. Lett. 53(25), 1672–1674 (2017).
[Crossref]

Eur. Phys. J. D (1)

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. Twu, C. Huang, and W. Wang, “Zn indiffusion waveguide polarizer on a Y-cut LiNbO3 at 1.32-µm wavelength,” IEEE Photonics Technol. Lett. 12(2), 161–163 (2000).
[Crossref]

J. Lit. Technol. (3)

W. Tsai, T. Chiang, L. Liu, P. Chang, and Y. Su, “Time and temperature dependent study of Zn and Ni codiffused LiNbO3 waveguides,” J. Lit. Technol. 33(23), 4950–4956 (2015).
[Crossref]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lit. Technol. 24(7), 2579–2592 (2006).
[Crossref]

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lit. Technol. 10(9), 1238–1246 (1992).
[Crossref]

J. Mod. Opt. (1)

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Laser Photonics Rev. (1)

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), 42–46 (2014).
[Crossref]

New J. Phys. (1)

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

Other (5)

W. P. Risk, T. R. Gosnell, and A. V. Nurmikko, Compact Blue-Green Lasers (Cambridge University, 2003), Chap 1–2.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” J. Appl. Phys.86(161119), (2005).

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt.18(085503), (2016).

D. Tulli, D. Janner, and V. Pruneri, “Room temperature direct bonding of LiNbO3 crystal layers and its application to high-voltage optical sensing,” J. Micromech. Microeng.21(085025), (2011).

BS EN ISO 11146–1:2005, Lasers and laser-related equipment. Test methods for laser beam widths, divergence angles and beam propagation ratios. Stigmatic and simple astigmatic beams (British Standard, 2005)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 ZnO indiffused MgO:PPLN ridge waveguide fabrication routine and diagram of a typical device. The microscopy shows images of a typical ridge waveguide facet.
Fig. 2
Fig. 2 Planar waveguide second moment MFD for varying indiffusion temperatures and ZnO thicknesses; the indiffusion dwell time for all waveguides was one hour once the peak processing temperature was reached. The minimum MFD is achieved with a 150 nm film of ZnO and for an indiffusion temperature of 950 °C.
Fig. 3
Fig. 3 SHG spectra and mode profiles for a ridge waveguide fabricated with a 170 nm layer of ZnO indiffused at 900 °C for 1 hour, a 13.4 µm diced ridge width, and 18.6 µm period PPLN grating. (a) SHG spectra, the red lines show experimental data along with an average fit and the black dotted line shows a theoretical fit for the waveguide. (b) SHG mode from nonlinear excitation. Output mode profiles from linear excitation for (c) pump and (d) SHG output wavelengths.
Fig. 4
Fig. 4 SHG output for a ridge waveguide fabricated with a 170 nm layer of ZnO indiffused at 900 °C for 1 hour, a 13.4 µm diced ridge width, and 18.6 µm period PPLN grating. The highest measured efficiency was 145%/W, producing 22.3 mW of SHG with 124 mW of pump through the waveguide. The inset shows the phase matching spectra for different SHG output powers.

Metrics