Abstract

We present the photonic printing that can display different color images depending on the optical polarization of incident light. The dynamic selection among different images becomes possible by using anisotropic Fabry-Perot resonators that incorporate a layer of liquid crystal molecules aligned by directional molecular registration (DMR) as polarization-dependent color pixels. Using the new device platform, we demonstrate a prototype of an anticounterfeiting label with inherent anti-replicability that results from the molecular-level origin of security images. In addition, this concept is extended to polarization-selective holography. Our molecular-level approach enables to develop a new class of security labels and holographic storage media.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Full-coloration based on metallic nanostructures through phase discontinuity in Fabry-Perot resonators

In-Ho Lee, Eui-Sang Yu, Sin-Hyung Lee, and Sin-Doo Lee
Opt. Express 27(23) 33098-33110 (2019)

Concept of chiral image storage and selection based on liquid crystals by circular polarization

Sang Hyun Lee, Sin-Hyung Lee, Se-Um Kim, Sujie Kang, and Sin-Doo Lee
Opt. Express 27(8) 11661-11672 (2019)

Combinatorial color arrays based on optical micro-resonators in monolithic architecture

In-Ho Lee, Sin-Hyung Lee, Chang-Min Keum, Se-Um Kim, and Sin-Doo Lee
Opt. Express 22(12) 15320-15327 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Fudouzi and Y. Xia, “Colloidal crystals with tunable colors and their use as photonic papers,” Langmuir 19(23), 9653–9660 (2003).
    [Crossref]
  2. K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
    [Crossref]
  3. S. Ye, Q. Fu, and J. Ge, “Invisible photonic prints shown by deformation,” Adv. Funct. Mater. 24(41), 6430–6438 (2014).
    [Crossref]
  4. S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
    [Crossref]
  5. H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
    [Crossref]
  6. H. Fudouzi and T. Sawada, “Photonic rubber sheets with tunable color by elastic deformation,” Langmuir 22(3), 1365–1368 (2006).
    [Crossref]
  7. R. Zhang, Q. Wang, and X. Zheng, “Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties,” J. Mater. Chem. C 6(13), 3182–3199 (2018).
    [Crossref]
  8. I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, and Y. Jang, “Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency,” Adv. Mater. 22(44), 4973–4977 (2010).
    [Crossref]
  9. D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
    [Crossref]
  10. S.-U. Kim, S.-H. Lee, I.-H. Lee, B.-Y. Lee, J.-H. Na, and S.-D. Lee, “Generation of intensity-tunable structural color from helical photonic crystals for full color reflective-type display,” Opt. Express 26(10), 13561–13572 (2018).
    [Crossref]
  11. L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
    [Crossref]
  12. X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 14606 (2017).
    [Crossref]
  13. Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
    [Crossref]
  14. V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
    [Crossref]
  15. E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic color filters as dual-state nanopixels for high-density microimage encoding,” Adv. Funct. Mater. 27(35), 1701866 (2017).
    [Crossref]
  16. L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
    [Crossref]
  17. H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
    [Crossref]
  18. H. Nam, K. Song, D. Ha, and T. Kim, “Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors,” Sci. Rep. 6(1), 30885 (2016).
    [Crossref]
  19. Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
    [Crossref]
  20. S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
    [Crossref]
  21. P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref]
  22. X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
    [Crossref]
  23. Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
    [Crossref]
  24. L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 (2016).
    [Crossref]
  25. W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
    [Crossref]
  26. K. T. Lim, H. Liu, Y. Liu, and J. K. Yang, “Holographic colour prints for enhanced optical security by combined phase and amplitude control,” Nat. Commun. 10(1), 25 (2019).
    [Crossref]
  27. A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
    [Crossref]
  28. Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem., Int. Ed. 42(8), 894–897 (2003).
    [Crossref]
  29. I.-H. Lee, S.-H. Lee, C.-M. Keum, S.-U. Kim, and S.-D. Lee, “Combinatorial color arrays based on optical micro-resonators in monolithic architecture,” Opt. Express 22(12), 15320–15327 (2014).
    [Crossref]
  30. Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned Fabry–Perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
    [Crossref]
  31. Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
    [Crossref]
  32. S.-J. Kim, H.-K. Choi, H. Lee, and S.-H. Hong, “Solution-processable nanocrystal-based broadband Fabry–Perot absorber for reflective vivid color generation,” ACS Appl. Mater. Interfaces 11(7), 7280–7287 (2019).
    [Crossref]
  33. M. Shih, A. Shishido, and I. Khoo, “All-optical image processing by means of a photosensitive nonlinear liquid-crystal film: edge enhancement and image addition–subtraction,” Opt. Lett. 26(15), 1140–1142 (2001).
    [Crossref]
  34. S. R. Nersisyan and N. V. Tabiryan, “Polarization imaging components based on patterned photoalignment,” Mol. Cryst. Liq. Cryst. 489(1), 156/[482]–168/[494] (2008).
    [Crossref]
  35. X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
    [Crossref]
  36. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
    [Crossref]
  37. S. D. Rezaei, R. J. Hong Ng, Z. Dong, J. Ho, E. H. Koay, S. Ramakrishna, and J. K. Yang, “Wide-gamut plasmonic color palettes with constant subwavelength resolution,” ACS Nano 13(3), 3580–3588 (2019).
    [Crossref]
  38. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice and applications (Routledge, 2017).
  39. T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
    [Crossref]
  40. Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
    [Crossref]
  41. B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, “Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels,” Adv. Opt. Mater. 6(4), 1701009 (2018).
    [Crossref]
  42. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, and C.-W. Qiu, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
    [Crossref]
  43. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
    [Crossref]
  44. B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, and Y.-F. Xiao, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
    [Crossref]
  45. G. Yoon, D. Lee, K. T. Nam, and J. Rho, “Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility,” ACS Photonics 5(5), 1643–1647 (2018).
    [Crossref]
  46. S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71(25), 3613–3615 (1997).
    [Crossref]
  47. X. H. Li, V. M. Kozenkov, F. S. Y. Yeung, P. Z. Xu, V. G. Chigrinov, and H. S. Kwok, “Liquid-crystal photoalignment by super thin azo dye layer,” Jpn. J. Appl. Phys. 45(1A), 203–205 (2006).
    [Crossref]
  48. V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of liquid crystalline materials: physics and applications (John Wiley & Sons, 2008), Vol. 17.

2019 (3)

K. T. Lim, H. Liu, Y. Liu, and J. K. Yang, “Holographic colour prints for enhanced optical security by combined phase and amplitude control,” Nat. Commun. 10(1), 25 (2019).
[Crossref]

S.-J. Kim, H.-K. Choi, H. Lee, and S.-H. Hong, “Solution-processable nanocrystal-based broadband Fabry–Perot absorber for reflective vivid color generation,” ACS Appl. Mater. Interfaces 11(7), 7280–7287 (2019).
[Crossref]

S. D. Rezaei, R. J. Hong Ng, Z. Dong, J. Ho, E. H. Koay, S. Ramakrishna, and J. K. Yang, “Wide-gamut plasmonic color palettes with constant subwavelength resolution,” ACS Nano 13(3), 3580–3588 (2019).
[Crossref]

2018 (4)

B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, “Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels,” Adv. Opt. Mater. 6(4), 1701009 (2018).
[Crossref]

G. Yoon, D. Lee, K. T. Nam, and J. Rho, “Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility,” ACS Photonics 5(5), 1643–1647 (2018).
[Crossref]

R. Zhang, Q. Wang, and X. Zheng, “Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties,” J. Mater. Chem. C 6(13), 3182–3199 (2018).
[Crossref]

S.-U. Kim, S.-H. Lee, I.-H. Lee, B.-Y. Lee, J.-H. Na, and S.-D. Lee, “Generation of intensity-tunable structural color from helical photonic crystals for full color reflective-type display,” Opt. Express 26(10), 13561–13572 (2018).
[Crossref]

2017 (8)

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 14606 (2017).
[Crossref]

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic color filters as dual-state nanopixels for high-density microimage encoding,” Adv. Funct. Mater. 27(35), 1701866 (2017).
[Crossref]

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned Fabry–Perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
[Crossref]

2016 (7)

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, and Y.-F. Xiao, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

H. Nam, K. Song, D. Ha, and T. Kim, “Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors,” Sci. Rep. 6(1), 30885 (2016).
[Crossref]

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
[Crossref]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[Crossref]

L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 (2016).
[Crossref]

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref]

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref]

2015 (4)

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref]

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

2014 (4)

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref]

I.-H. Lee, S.-H. Lee, C.-M. Keum, S.-U. Kim, and S.-D. Lee, “Combinatorial color arrays based on optical micro-resonators in monolithic architecture,” Opt. Express 22(12), 15320–15327 (2014).
[Crossref]

S. Ye, Q. Fu, and J. Ge, “Invisible photonic prints shown by deformation,” Adv. Funct. Mater. 24(41), 6430–6438 (2014).
[Crossref]

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref]

2013 (1)

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, and C.-W. Qiu, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

2012 (4)

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref]

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
[Crossref]

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

2010 (2)

I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, and Y. Jang, “Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency,” Adv. Mater. 22(44), 4973–4977 (2010).
[Crossref]

X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
[Crossref]

2009 (2)

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref]

2008 (1)

S. R. Nersisyan and N. V. Tabiryan, “Polarization imaging components based on patterned photoalignment,” Mol. Cryst. Liq. Cryst. 489(1), 156/[482]–168/[494] (2008).
[Crossref]

2006 (2)

H. Fudouzi and T. Sawada, “Photonic rubber sheets with tunable color by elastic deformation,” Langmuir 22(3), 1365–1368 (2006).
[Crossref]

X. H. Li, V. M. Kozenkov, F. S. Y. Yeung, P. Z. Xu, V. G. Chigrinov, and H. S. Kwok, “Liquid-crystal photoalignment by super thin azo dye layer,” Jpn. J. Appl. Phys. 45(1A), 203–205 (2006).
[Crossref]

2003 (2)

H. Fudouzi and Y. Xia, “Colloidal crystals with tunable colors and their use as photonic papers,” Langmuir 19(23), 9653–9660 (2003).
[Crossref]

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem., Int. Ed. 42(8), 894–897 (2003).
[Crossref]

2001 (1)

1997 (1)

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71(25), 3613–3615 (1997).
[Crossref]

Atwater, H. A.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref]

Baek, H.

I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, and Y. Jang, “Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency,” Adv. Mater. 22(44), 4973–4977 (2010).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, and C.-W. Qiu, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Bai, L.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref]

Bermak, A.

Bonod, N.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Boroumand, J.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref]

Boussaid, F.

Bozhevolnyi, S. I.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref]

Casari, D.

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref]

Chanda, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref]

Cheah, K.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, and C.-W. Qiu, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, J.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, and Y.-F. Xiao, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Chen, Q.-W.

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
[Crossref]

Chen, S.

B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, “Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels,” Adv. Opt. Mater. 6(4), 1701009 (2018).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, and C.-W. Qiu, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, W. T.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

Chen, X.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, and C.-W. Qiu, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, Y.

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned Fabry–Perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref]

Cheng, H.

B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, “Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels,” Adv. Opt. Mater. 6(4), 1701009 (2018).
[Crossref]

Chigrinov, V. G.

X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
[Crossref]

X. H. Li, V. M. Kozenkov, F. S. Y. Yeung, P. Z. Xu, V. G. Chigrinov, and H. S. Kwok, “Liquid-crystal photoalignment by super thin azo dye layer,” Jpn. J. Appl. Phys. 45(1A), 203–205 (2006).
[Crossref]

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of liquid crystalline materials: physics and applications (John Wiley & Sons, 2008), Vol. 17.

Choi, H.-K.

S.-J. Kim, H.-K. Choi, H. Lee, and S.-H. Hong, “Solution-processable nanocrystal-based broadband Fabry–Perot absorber for reflective vivid color generation,” ACS Appl. Mater. Interfaces 11(7), 7280–7287 (2019).
[Crossref]

Choi, S.-E.

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Chon, J. W.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref]

Chu, W.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, and Y.-F. Xiao, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Chung, J.

I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, and Y. Jang, “Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency,” Adv. Mater. 22(44), 4973–4977 (2010).
[Crossref]

Clark, A. W.

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic color filters as dual-state nanopixels for high-density microimage encoding,” Adv. Funct. Mater. 27(35), 1701866 (2017).
[Crossref]

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref]

Cooper, J. M.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref]

Crozier, K. B.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref]

Dai, P.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned Fabry–Perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

De Sio, L.

Dong, F.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, and Y.-F. Xiao, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Dong, Z.

S. D. Rezaei, R. J. Hong Ng, Z. Dong, J. Ho, E. H. Koay, S. Ramakrishna, and J. K. Yang, “Wide-gamut plasmonic color palettes with constant subwavelength resolution,” ACS Nano 13(3), 3580–3588 (2019).
[Crossref]

Duan, H.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned Fabry–Perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Duan, X.

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 14606 (2017).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

Duan, Z.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

Duempelmann, L.

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref]

Ellenbogen, T.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref]

Francescangeli, O.

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71(25), 3613–3615 (1997).
[Crossref]

Franklin, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref]

Fu, Q.

S. Ye, Q. Fu, and J. Ge, “Invisible photonic prints shown by deformation,” Adv. Funct. Mater. 24(41), 6430–6438 (2014).
[Crossref]

Fudouzi, H.

H. Fudouzi and T. Sawada, “Photonic rubber sheets with tunable color by elastic deformation,” Langmuir 22(3), 1365–1368 (2006).
[Crossref]

H. Fudouzi and Y. Xia, “Colloidal crystals with tunable colors and their use as photonic papers,” Langmuir 19(23), 9653–9660 (2003).
[Crossref]

Fujishima, A.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem., Int. Ed. 42(8), 894–897 (2003).
[Crossref]

Gallinet, B.

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref]

Gao, J.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref]

Gao, Y.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

Ge, J.

S. Ye, Q. Fu, and J. Ge, “Invisible photonic prints shown by deformation,” Adv. Funct. Mater. 24(41), 6430–6438 (2014).
[Crossref]

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Go, D.

I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, and Y. Jang, “Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency,” Adv. Mater. 22(44), 4973–4977 (2010).
[Crossref]

Goh, X. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref]

Gu, M.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref]

Gu, Z.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref]

Gu, Z. Z.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem., Int. Ed. 42(8), 894–897 (2003).
[Crossref]

Ha, D.

H. Nam, K. Song, D. Ha, and T. Kim, “Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors,” Sci. Rep. 6(1), 30885 (2016).
[Crossref]

Halas, N. J.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Hegde, R. S.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Heo, Y.

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
[Crossref]

Heydari, E.

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic color filters as dual-state nanopixels for high-density microimage encoding,” Adv. Funct. Mater. 27(35), 1701866 (2017).
[Crossref]

Ho, J.

S. D. Rezaei, R. J. Hong Ng, Z. Dong, J. Ho, E. H. Koay, S. Ramakrishna, and J. K. Yang, “Wide-gamut plasmonic color palettes with constant subwavelength resolution,” ACS Nano 13(3), 3580–3588 (2019).
[Crossref]

Højlund-Nielsen, E.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[Crossref]

Hong, S.-H.

S.-J. Kim, H.-K. Choi, H. Lee, and S.-H. Hong, “Solution-processable nanocrystal-based broadband Fabry–Perot absorber for reflective vivid color generation,” ACS Appl. Mater. Interfaces 11(7), 7280–7287 (2019).
[Crossref]

Hong Ng, R. J.

S. D. Rezaei, R. J. Hong Ng, Z. Dong, J. Ho, E. H. Koay, S. Ramakrishna, and J. K. Yang, “Wide-gamut plasmonic color palettes with constant subwavelength resolution,” ACS Nano 13(3), 3580–3588 (2019).
[Crossref]

Hu, H.

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
[Crossref]

Hu, X.-Y.

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, and C.-W. Qiu, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Huang, Y.-W.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

Jang, Y.

I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, and Y. Jang, “Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency,” Adv. Mater. 22(44), 4973–4977 (2010).
[Crossref]

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, and C.-W. Qiu, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Kal, J.

I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, and Y. Jang, “Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency,” Adv. Mater. 22(44), 4973–4977 (2010).
[Crossref]

Kamin, S.

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 14606 (2017).
[Crossref]

Kang, C.

I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, and Y. Jang, “Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency,” Adv. Mater. 22(44), 4973–4977 (2010).
[Crossref]

Kang, H.

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Keum, C.-M.

Khoo, I.

Kim, D.

I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, and Y. Jang, “Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency,” Adv. Mater. 22(44), 4973–4977 (2010).
[Crossref]

Kim, E.

I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, and Y. Jang, “Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency,” Adv. Mater. 22(44), 4973–4977 (2010).
[Crossref]

Kim, H.

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Kim, J.

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Kim, S. H.

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
[Crossref]

Kim, S.-J.

S.-J. Kim, H.-K. Choi, H. Lee, and S.-H. Hong, “Solution-processable nanocrystal-based broadband Fabry–Perot absorber for reflective vivid color generation,” ACS Appl. Mater. Interfaces 11(7), 7280–7287 (2019).
[Crossref]

Kim, S.-U.

Kim, T.

H. Nam, K. Song, D. Ha, and T. Kim, “Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors,” Sci. Rep. 6(1), 30885 (2016).
[Crossref]

Kimball, B. R.

Koay, E. H.

S. D. Rezaei, R. J. Hong Ng, Z. Dong, J. Ho, E. H. Koay, S. Ramakrishna, and J. K. Yang, “Wide-gamut plasmonic color palettes with constant subwavelength resolution,” ACS Nano 13(3), 3580–3588 (2019).
[Crossref]

Koh, S. C.

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Kozenkov, V. M.

X. H. Li, V. M. Kozenkov, F. S. Y. Yeung, P. Z. Xu, V. G. Chigrinov, and H. S. Kwok, “Liquid-crystal photoalignment by super thin azo dye layer,” Jpn. J. Appl. Phys. 45(1A), 203–205 (2006).
[Crossref]

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of liquid crystalline materials: physics and applications (John Wiley & Sons, 2008), Vol. 17.

Krawczyk, M.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Kristensen, A.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[Crossref]

Kumar, K.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref]

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Kwak, D.

I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, and Y. Jang, “Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency,” Adv. Mater. 22(44), 4973–4977 (2010).
[Crossref]

Kwok, H. S.

X. H. Li, V. M. Kozenkov, F. S. Y. Yeung, P. Z. Xu, V. G. Chigrinov, and H. S. Kwok, “Liquid-crystal photoalignment by super thin azo dye layer,” Jpn. J. Appl. Phys. 45(1A), 203–205 (2006).
[Crossref]

Kwok, H.-S.

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of liquid crystalline materials: physics and applications (John Wiley & Sons, 2008), Vol. 17.

Kwon, S.

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Lee, B.-Y.

Lee, D.

G. Yoon, D. Lee, K. T. Nam, and J. Rho, “Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility,” ACS Photonics 5(5), 1643–1647 (2018).
[Crossref]

Lee, H.

S.-J. Kim, H.-K. Choi, H. Lee, and S.-H. Hong, “Solution-processable nanocrystal-based broadband Fabry–Perot absorber for reflective vivid color generation,” ACS Appl. Mater. Interfaces 11(7), 7280–7287 (2019).
[Crossref]

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Lee, I.

I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, and Y. Jang, “Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency,” Adv. Mater. 22(44), 4973–4977 (2010).
[Crossref]

Lee, I.-H.

Lee, J. S.

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
[Crossref]

Lee, S.-D.

Lee, S.-H.

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Li, Q.-T.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, and Y.-F. Xiao, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Li, X. H.

X. H. Li, V. M. Kozenkov, F. S. Y. Yeung, P. Z. Xu, V. G. Chigrinov, and H. S. Kwok, “Liquid-crystal photoalignment by super thin azo dye layer,” Jpn. J. Appl. Phys. 45(1A), 203–205 (2006).
[Crossref]

Li, Z.

B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, “Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels,” Adv. Opt. Mater. 6(4), 1701009 (2018).
[Crossref]

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref]

Liao, Z.

Lim, K. T.

K. T. Lim, H. Liu, Y. Liu, and J. K. Yang, “Holographic colour prints for enhanced optical security by combined phase and amplitude control,” Nat. Commun. 10(1), 25 (2019).
[Crossref]

Link, S.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Liu, H.

K. T. Lim, H. Liu, Y. Liu, and J. K. Yang, “Holographic colour prints for enhanced optical security by combined phase and amplitude control,” Nat. Commun. 10(1), 25 (2019).
[Crossref]

Liu, N.

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 14606 (2017).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

Liu, W.

B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, “Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels,” Adv. Opt. Mater. 6(4), 1701009 (2018).
[Crossref]

Liu, Y.

K. T. Lim, H. Liu, Y. Liu, and J. K. Yang, “Holographic colour prints for enhanced optical security by combined phase and amplitude control,” Nat. Commun. 10(1), 25 (2019).
[Crossref]

Luu-Dinh, A.

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref]

Matuschek, M.

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

Modak, S.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref]

Mortensen, N. A.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[Crossref]

Mu, Z.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, and C.-W. Qiu, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Na, J.-H.

Nagasaki, Y.

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
[Crossref]

Nakajima, R.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem., Int. Ed. 42(8), 894–897 (2003).
[Crossref]

Nam, H.

H. Nam, K. Song, D. Ha, and T. Kim, “Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors,” Sci. Rep. 6(1), 30885 (2016).
[Crossref]

Nam, K. T.

G. Yoon, D. Lee, K. T. Nam, and J. Rho, “Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility,” ACS Photonics 5(5), 1643–1647 (2018).
[Crossref]

Neale, S. L.

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic color filters as dual-state nanopixels for high-density microimage encoding,” Adv. Funct. Mater. 27(35), 1701866 (2017).
[Crossref]

Nersisyan, S.

Nersisyan, S. R.

S. R. Nersisyan and N. V. Tabiryan, “Polarization imaging components based on patterned photoalignment,” Mol. Cryst. Liq. Cryst. 489(1), 156/[482]–168/[494] (2008).
[Crossref]

Neubrech, F.

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

Nordlander, P.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Novotny, L.

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref]

Oh, Y. K.

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
[Crossref]

Onishi, H.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem., Int. Ed. 42(8), 894–897 (2003).
[Crossref]

Park, W.

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Qiu, C.-W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, and C.-W. Qiu, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Ramakrishna, S.

S. D. Rezaei, R. J. Hong Ng, Z. Dong, J. Ho, E. H. Koay, S. Ramakrishna, and J. K. Yang, “Wide-gamut plasmonic color palettes with constant subwavelength resolution,” ACS Nano 13(3), 3580–3588 (2019).
[Crossref]

Rezaei, S. D.

S. D. Rezaei, R. J. Hong Ng, Z. Dong, J. Ho, E. H. Koay, S. Ramakrishna, and J. K. Yang, “Wide-gamut plasmonic color palettes with constant subwavelength resolution,” ACS Nano 13(3), 3580–3588 (2019).
[Crossref]

Reznikov, Y.

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71(25), 3613–3615 (1997).
[Crossref]

Rho, J.

G. Yoon, D. Lee, K. T. Nam, and J. Rho, “Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility,” ACS Photonics 5(5), 1643–1647 (2018).
[Crossref]

Roberts, D. E.

Sato, O.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem., Int. Ed. 42(8), 894–897 (2003).
[Crossref]

Sawada, T.

H. Fudouzi and T. Sawada, “Photonic rubber sheets with tunable color by elastic deformation,” Langmuir 22(3), 1365–1368 (2006).
[Crossref]

Seo, K.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref]

Serebryannikov, A. E.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Shih, M.

Shishido, A.

Simoni, F.

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71(25), 3613–3615 (1997).
[Crossref]

Slussarenko, S.

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71(25), 3613–3615 (1997).
[Crossref]

Song, K.

H. Nam, K. Song, D. Ha, and T. Kim, “Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors,” Sci. Rep. 6(1), 30885 (2016).
[Crossref]

Song, Q.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

Song, Z.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, and Y.-F. Xiao, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Sperling, J. R.

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic color filters as dual-state nanopixels for high-density microimage encoding,” Adv. Funct. Mater. 27(35), 1701866 (2017).
[Crossref]

Steeves, D. M.

Sun, C.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, and Y.-F. Xiao, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Sun, G.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

Sun, S.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

Suzuki, M.

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
[Crossref]

Tabiryan, N.

Tabiryan, N. V.

S. R. Nersisyan and N. V. Tabiryan, “Polarization imaging components based on patterned photoalignment,” Mol. Cryst. Liq. Cryst. 489(1), 156/[482]–168/[494] (2008).
[Crossref]

Takahara, J.

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
[Crossref]

Takahashi, K.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem., Int. Ed. 42(8), 894–897 (2003).
[Crossref]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, and C.-W. Qiu, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Tan, S. J.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref]

Tang, J.

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
[Crossref]

Tian, J.

B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, “Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels,” Adv. Opt. Mater. 6(4), 1701009 (2018).
[Crossref]

Tsai, D. P.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

Tsai, W.-Y.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

Uetsuka, H.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem., Int. Ed. 42(8), 894–897 (2003).
[Crossref]

Uskova, O.

Vaidya, G.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Vannahme, C.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[Crossref]

Vashistha, V.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Vaughan, M.

M. Vaughan, The Fabry-Perot interferometer: history, theory, practice and applications (Routledge, 2017).

Vazquez-Guardado, A.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref]

Wan, W.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref]

Wang, B.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, and Y.-F. Xiao, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Wang, C.-M.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

Wang, Q.

R. Zhang, Q. Wang, and X. Zheng, “Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties,” J. Mater. Chem. C 6(13), 3182–3199 (2018).
[Crossref]

Wang, W.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref]

Wang, Y.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned Fabry–Perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Wang, Y. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref]

Wei, J. N.

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Wickboldt, L.

Wu, P. C.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

Wu, S.-T.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref]

Xia, Y.

H. Fudouzi and Y. Xia, “Colloidal crystals with tunable colors and their use as photonic papers,” Langmuir 19(23), 9653–9660 (2003).
[Crossref]

Xiao, S.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

Xiao, Y.-F.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, and Y.-F. Xiao, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Xie, Z.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref]

Xu, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref]

Xu, L.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, and Y.-F. Xiao, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Xu, P. Z.

X. H. Li, V. M. Kozenkov, F. S. Y. Yeung, P. Z. Xu, V. G. Chigrinov, and H. S. Kwok, “Liquid-crystal photoalignment by super thin azo dye layer,” Jpn. J. Appl. Phys. 45(1A), 203–205 (2006).
[Crossref]

Yang, B.

B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, “Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels,” Adv. Opt. Mater. 6(4), 1701009 (2018).
[Crossref]

Yang, D.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, and Y.-F. Xiao, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Yang, J. K.

S. D. Rezaei, R. J. Hong Ng, Z. Dong, J. Ho, E. H. Koay, S. Ramakrishna, and J. K. Yang, “Wide-gamut plasmonic color palettes with constant subwavelength resolution,” ACS Nano 13(3), 3580–3588 (2019).
[Crossref]

K. T. Lim, H. Liu, Y. Liu, and J. K. Yang, “Holographic colour prints for enhanced optical security by combined phase and amplitude control,” Nat. Commun. 10(1), 25 (2019).
[Crossref]

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref]

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Yang, X.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref]

Yang, Z.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned Fabry–Perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Ye, S.

S. Ye, Q. Fu, and J. Ge, “Invisible photonic prints shown by deformation,” Adv. Funct. Mater. 24(41), 6430–6438 (2014).
[Crossref]

Yeung, F. S. Y.

X. H. Li, V. M. Kozenkov, F. S. Y. Yeung, P. Z. Xu, V. G. Chigrinov, and H. S. Kwok, “Liquid-crystal photoalignment by super thin azo dye layer,” Jpn. J. Appl. Phys. 45(1A), 203–205 (2006).
[Crossref]

Yin, Y.

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref]

Yoon, G.

G. Yoon, D. Lee, K. T. Nam, and J. Rho, “Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility,” ACS Photonics 5(5), 1643–1647 (2018).
[Crossref]

Yuan, C.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Zhang, C.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

Zhang, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, and C.-W. Qiu, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Zhang, L.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref]

Zhang, R.

R. Zhang, Q. Wang, and X. Zheng, “Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties,” J. Mater. Chem. C 6(13), 3182–3199 (2018).
[Crossref]

Zhang, S.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Zhao, X.

Zhao, Y.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Zheng, X.

R. Zhang, Q. Wang, and X. Zheng, “Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties,” J. Mater. Chem. C 6(13), 3182–3199 (2018).
[Crossref]

Zhong, Q.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref]

Zhou, X.-H.

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
[Crossref]

Zhou, Y.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned Fabry–Perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

Zhou, Z.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

Zhu, D.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref]

Zhu, X.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned Fabry–Perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[Crossref]

Zijlstra, P.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref]

ACS Appl. Mater. Interfaces (1)

S.-J. Kim, H.-K. Choi, H. Lee, and S.-H. Hong, “Solution-processable nanocrystal-based broadband Fabry–Perot absorber for reflective vivid color generation,” ACS Appl. Mater. Interfaces 11(7), 7280–7287 (2019).
[Crossref]

ACS Nano (6)

S. D. Rezaei, R. J. Hong Ng, Z. Dong, J. Ho, E. H. Koay, S. Ramakrishna, and J. K. Yang, “Wide-gamut plasmonic color palettes with constant subwavelength resolution,” ACS Nano 13(3), 3580–3588 (2019).
[Crossref]

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref]

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref]

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref]

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref]

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref]

ACS Photonics (2)

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

G. Yoon, D. Lee, K. T. Nam, and J. Rho, “Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility,” ACS Photonics 5(5), 1643–1647 (2018).
[Crossref]

Adv. Funct. Mater. (2)

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic color filters as dual-state nanopixels for high-density microimage encoding,” Adv. Funct. Mater. 27(35), 1701866 (2017).
[Crossref]

S. Ye, Q. Fu, and J. Ge, “Invisible photonic prints shown by deformation,” Adv. Funct. Mater. 24(41), 6430–6438 (2014).
[Crossref]

Adv. Mater. (1)

I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, and Y. Jang, “Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency,” Adv. Mater. 22(44), 4973–4977 (2010).
[Crossref]

Adv. Opt. Mater. (2)

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned Fabry–Perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, “Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels,” Adv. Opt. Mater. 6(4), 1701009 (2018).
[Crossref]

Angew. Chem., Int. Ed. (1)

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem., Int. Ed. 42(8), 894–897 (2003).
[Crossref]

Appl. Phys. Lett. (1)

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71(25), 3613–3615 (1997).
[Crossref]

J. Mater. Chem. (1)

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
[Crossref]

J. Mater. Chem. C (1)

R. Zhang, Q. Wang, and X. Zheng, “Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties,” J. Mater. Chem. C 6(13), 3182–3199 (2018).
[Crossref]

Jpn. J. Appl. Phys. (1)

X. H. Li, V. M. Kozenkov, F. S. Y. Yeung, P. Z. Xu, V. G. Chigrinov, and H. S. Kwok, “Liquid-crystal photoalignment by super thin azo dye layer,” Jpn. J. Appl. Phys. 45(1A), 203–205 (2006).
[Crossref]

Langmuir (2)

H. Fudouzi and T. Sawada, “Photonic rubber sheets with tunable color by elastic deformation,” Langmuir 22(3), 1365–1368 (2006).
[Crossref]

H. Fudouzi and Y. Xia, “Colloidal crystals with tunable colors and their use as photonic papers,” Langmuir 19(23), 9653–9660 (2003).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

S. R. Nersisyan and N. V. Tabiryan, “Polarization imaging components based on patterned photoalignment,” Mol. Cryst. Liq. Cryst. 489(1), 156/[482]–168/[494] (2008).
[Crossref]

Nano Lett. (7)

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, and Y.-F. Xiao, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref]

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
[Crossref]

Nat. Commun. (4)

K. T. Lim, H. Liu, Y. Liu, and J. K. Yang, “Holographic colour prints for enhanced optical security by combined phase and amplitude control,” Nat. Commun. 10(1), 25 (2019).
[Crossref]

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6(1), 7337 (2015).
[Crossref]

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 14606 (2017).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, and C.-W. Qiu, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Nat. Nanotechnol. (3)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[Crossref]

Nat. Photonics (1)

H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Nat. Rev. Mater. (1)

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Nature (1)

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Sci. Rep. (1)

H. Nam, K. Song, D. Ha, and T. Kim, “Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors,” Sci. Rep. 6(1), 30885 (2016).
[Crossref]

Small (1)

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
[Crossref]

Other (2)

M. Vaughan, The Fabry-Perot interferometer: history, theory, practice and applications (Routledge, 2017).

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of liquid crystalline materials: physics and applications (John Wiley & Sons, 2008), Vol. 17.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Device structure and optical properties. (a) Schematic illustration of a Fabry-Perot resonator having a liquid crystal polymer (LCP) layer inside the resonant cavity. (b) The definition of the polarization angle of θ with respect to the LCP director. (c) Optical transmittance in the visible range for θ from 0° to 90° at the interval of 15° upon the normal incidence of broadband light. (d) Microscope images of different colors for θ from 0° to 90° at the interval of 22.5°. Scale bars represent 500 µm.
Fig. 2.
Fig. 2. Polarization-dependent quick-response (QR) code. Schematic illustrations of (a) randomly generated QR codes, A and B, and (b) three different sets of the QR images decomposed from QR codes, A and B, for recording. (c) Recording conditions of the polarization states (θDMR) for three different sets of the QR images. (d) Reading conditions of the polarization states (θOUT) of incident broadband light for reconstructing the original QR codes, A and B, separately. Microscopic images of the recorded polarization-dependent QR images upon the incidence of (e) unpolarized light, (f) polarized light parallel to the directions of the DMR for recording, and (g) polarized light according to the reading conditions (or along the bisectional directions between two adjacent directions of the DMR) for the QR codes, A and B, given in (d). In all cases, scale bars represent 1 cm.
Fig. 3.
Fig. 3. Recording and reading Fourier-transformed patterns. (a) Schematic illustration of recording the Fourier transformed patterns of the original images, ‘A’ and ‘B’, and reconstructing them. (b) Fourier transformed patterns of ‘A’ and (c) the corresponding microscopic image observed at the reading polarization angle of θOUT = 60°. (d) Fourier transformed patterns of ‘B’ and (e) the corresponding microscopic image observed at θOUT = 0°. (f) The values of the normalized intensity in red channel for A-C, B-C, and C as a function of θOUT. Two grey bands in (f) denote the ranges of the reading polarization angle for ‘A’ and ‘B’ at which the images of ‘A’ and ‘B’ were reconstructed and discernable with high contrast. In (c) and (e), scale bars represent 300 µm.
Fig. 4.
Fig. 4. Holographic image reconstruction. (a) Optical setup for reconstructing holographic images from Fourier-transformed patterns. Here, f represents the focal point of the Fourier lens. In addition, fx and fy denote the Cartesian axes in the Fourier space. Photographs showing the selection and reconstruction of one (in the complex or conjugate field) of two holographic images (of the zeroth order) at the reading polarization angle of (b) θOUT = 60° and (c) θOUT = 0°.
Fig. 5.
Fig. 5. The peak wavelengths at the resonance orders from the third to the ninth in the Fabry-Perot resonator as a function of the thickness of the resonant cavity. Filled and open symbols represent the data for the input polarization parallel and perpendicular to the alignment direction of liquid crystal polymer molecules, respectively.
Fig. 6.
Fig. 6. Microscopic images, comprising a color palette, for different values of the thickness of the resonant cavity. Scale bars represent 500 µm.
Fig. 7.
Fig. 7. Chromaticity diagram (CIE 1931) showing the color coordinates of different samples presented in Fig. 6 (black dots). Red and blue squares represent the numerical results for Fabry-Perot resonators with thinner resonant cavities.

Tables (1)

Tables Icon

Table 1. Selective photonic printing technologies.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S ( ξ , η ) = 1 2 [ U ( ξ , η ) + U ( ξ , η ) ] ,
B ( ξ , η ) = { 1 , S ( ξ , η ) 0 0 , S ( ξ , η ) 0.

Metrics