Abstract

We present mid-infrared (MIR) supercontinuum generation in polarization-maintained ZBLAN fibers pumped by 2 µm femtosecond pulses from a Tm:YAP regenerative amplifier. A stable supercontinuum that spreads from 380 nm to 4 µm was generated by coupling only 0.5  µJ pulse energy into an elliptical core ZBLAN fiber. The supercontinuum was characterized using cross-correlation frequency-resolved optical gating (XFROG). The complex structure of the XFROG trace due to the pulse-to-pulse spectrum instability have been fixed by reducing the length of the applied fibers or improving the quality of the incident pulse spectrum.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson
Opt. Express 21(20) 24281-24287 (2013)

Step-index fluoride fibers with all-normal dispersion for coherent mid-infrared supercontinuum generation

Yu Li, Longfei Wang, Meisong Liao, YinYao Liu, Xia Li, Wanjun Bi, Fei Yu, Long Zhang, Yiguang Jiang, Zaiyang Wang, Longfei Zhang, Chengfeng Yuan, and Lili Hu
J. Opt. Soc. Am. B 36(11) 2972-2980 (2019)

Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power

Chenan Xia, Malay Kumar, Ming-Yuan Cheng, Ravi S. Hegde, Mohammed N. Islam, Almantas Galvanauskas, Herbert G. Winful, Fred L. Terry, Mike J. Freeman, Marcel Poulain, and Gwenael Mazé
Opt. Express 15(3) 865-871 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, ed. The Supercontinuum Laser Source: The Ultimate White Light, 3rd ed (Springer-Verlag New York, 2016).
  2. J. M. Dudley and J. R. Taylor, eds., Supercontinuum generation in optical fibers (Cambridge University, 2010).
  3. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  5. B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
    [Crossref]
  6. N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
    [Crossref]
  7. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
    [Crossref]
  8. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
    [Crossref]
  9. C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
    [Crossref]
  10. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
    [Crossref]
  11. I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9$\mu$μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
    [Crossref]
  12. N. Nagl, K. F. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a cr:zns oscillator and step-index fluoride fibers,” Opt. Lett. 44(10), 2390–2393 (2019).
    [Crossref]
  13. R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 $\mu$μ m,” Opt. Express 23(24), 30592–30602 (2015).
    [Crossref]
  14. M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
    [Crossref]
  15. A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “700 MW peak power of a 380 fs regenerative amplifier with Tm:YAP,” Opt. Express 23(13), 16884–16889 (2015).
    [Crossref]
  16. A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Comparison between Tm:YAP and Ho:YAG ultrashort pulse regenerative amplification,” Opt. Express 24(8), 8632–8640 (2016).
    [Crossref]
  17. P. Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališauskas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and P. B. Phua, “High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers,” Opt. Lett. 38(15), 2746–2749 (2013).
    [Crossref]
  18. K. Murari, H. Cankaya, P. Kroetz, G. Cirmi, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers,” Opt. Lett. 41(6), 1114–1117 (2016).
    [Crossref]
  19. L. von Grafenstein, M. Bock, D. Ueberschaer, U. Griebner, and T. Elsaesser, “Ho:YLF chirped pulse amplification at kilohertz repetition rates - 4.3 ps pulses at 2 $\mu$μm with GW peak power,” Opt. Lett. 41(20), 4668–4671 (2016).
    [Crossref]
  20. X. Ren, L. H. Mach, Y. Yin, Y. Wang, and Z. Chang, “Generation of 1 kHz, 2.3 mJ, 88 fs, 2.5 $\mu$μm pulses from a Cr$^{2+}$2+:ZnSe chirped pulse amplifier,” Opt. Lett. 43(14), 3381–3384 (2018).
    [Crossref]
  21. S. A. Rezvani, M. Suzuki, P. Malevich, C. Livache, J. V. de Montgolfier, Y. Nomura, N. Tsurumachi, A. Baltuška, and T. Fuji, “Millijoule femtosecond pulses at 1937 nm from a diode-pumped ring cavity Tm:YAP regenerative amplifier,” Opt. Express 26(22), 29460–29470 (2018).
    [Crossref]
  22. P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuška, and A. Pugžlys, “Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier,” Opt. Lett. 41(5), 930–933 (2016).
    [Crossref]
  23. T. Kanai, P. Malevich, S. S. Kangaparambil, K. Ishida, M. Mizui, K. Yamanouchi, H. Hoogland, R. Holzwarth, A. Pugzlys, and A. Baltuška, “Parametric amplification of 100 fs mid-infrared pulses in ZnGeP$_2$2 driven by a Ho:YAG chirped-pulse amplifier,” Opt. Lett. 42(4), 683–686 (2017).
    [Crossref]
  24. D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, and J. Biegert, “7 $\mu$μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 $\mu$μm,” Optica 3(2), 147–150 (2016).
    [Crossref]
  25. U. Elu, M. Baudisch, H. Pires, F. Tani, M. H. Frosz, F. Köttig, A. Ermolov, P. S. Russell, and J. Biegert, “High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier,” Optica 4(9), 1024–1029 (2017).
    [Crossref]
  26. W. Gao, K. Ogawa, X. Xue, M. Liao, D. Deng, T. Cheng, T. Suzuki, and Y. Ohishi, “Third-harmonic generation in an elliptical-core ZBLAN fluoride fiber,” Opt. Lett. 38(14), 2566–2568 (2013).
    [Crossref]
  27. S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
    [Crossref]
  28. R. Trebino, J. Dudley, and X. Gu, “Ultrafast technology: Measuring and understanding the most complex ultrashort pulse ever generated,” Opt. Photonics News 14(12), 44 (2003).
    [Crossref]
  29. A. Kumar and A. Ghatak, Polarization of Light with Applications in Optical Fibers, SPIE Digital Library (SPIE Press, 2011).
  30. D. Penninckx and N. Beck, “Definition, meaning, and measurement of the polarization extinction ratio of fiber-based devices,” Appl. Opt. 44(36), 7773–7779 (2005).
    [Crossref]
  31. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
    [Crossref]
  32. Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
    [Crossref]
  33. J. McFerran, M. Marić, and A. Luiten, “Efficient detection and control of the carrier-envelope offset frequency in a self-referencing optical frequency synthesizer,” Appl. Phys. B 79(1), 39–44 (2004).
    [Crossref]
  34. S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
    [Crossref]
  35. X. Fang and T. Kobayashi, “Self-stabilization of the carrier-envelope phase of an optical parametric amplifier verified with a photonic crystal fiber,” Opt. Lett. 29(11), 1282–1284 (2004).
    [Crossref]
  36. U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
    [Crossref]
  37. K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17(15), 12627–12640 (2009).
    [Crossref]
  38. A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
    [Crossref]
  39. M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
    [Crossref]
  40. M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
    [Crossref]
  41. G. McConnell, “Confocal laser scanning fluorescence microscopy with a visible continuum source,” Opt. Express 12(13), 2844–2850 (2004).
    [Crossref]
  42. A. Kudlinski, B. Barviau, A. Leray, C. Spriet, L. Héliot, and A. Mussot, “Control of pulse-to-pulse fluctuations in visible supercontinuum,” Opt. Express 18(26), 27445–27454 (2010).
    [Crossref]
  43. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27(11), 924–926 (2002).
    [Crossref]
  44. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
    [Crossref]
  45. S. Reynaud and A. Heidmann, “A semiclassical linear input output transformation for quantum fluctuations,” Opt. Commun. 71(3-4), 209–214 (1989).
    [Crossref]
  46. C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys. 68(3), 801–853 (1996).
    [Crossref]
  47. F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13(17), 6615–6625 (2005).
    [Crossref]
  48. M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses,” Opt. Express 23(11), 13776–13787 (2015).
    [Crossref]

2019 (3)

2018 (4)

2017 (3)

2016 (7)

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, and J. Biegert, “7 $\mu$μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 $\mu$μm,” Optica 3(2), 147–150 (2016).
[Crossref]

P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuška, and A. Pugžlys, “Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier,” Opt. Lett. 41(5), 930–933 (2016).
[Crossref]

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Comparison between Tm:YAP and Ho:YAG ultrashort pulse regenerative amplification,” Opt. Express 24(8), 8632–8640 (2016).
[Crossref]

K. Murari, H. Cankaya, P. Kroetz, G. Cirmi, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers,” Opt. Lett. 41(6), 1114–1117 (2016).
[Crossref]

L. von Grafenstein, M. Bock, D. Ueberschaer, U. Griebner, and T. Elsaesser, “Ho:YLF chirped pulse amplification at kilohertz repetition rates - 4.3 ps pulses at 2 $\mu$μm with GW peak power,” Opt. Lett. 41(20), 4668–4671 (2016).
[Crossref]

2015 (3)

2014 (2)

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9$\mu$μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (1)

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

2010 (1)

2009 (2)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17(15), 12627–12640 (2009).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (2)

2004 (3)

2003 (4)

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

R. Trebino, J. Dudley, and X. Gu, “Ultrafast technology: Measuring and understanding the most complex ultrashort pulse ever generated,” Opt. Photonics News 14(12), 44 (2003).
[Crossref]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

2002 (2)

2001 (1)

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

1996 (1)

C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys. 68(3), 801–853 (1996).
[Crossref]

1989 (1)

S. Reynaud and A. Heidmann, “A semiclassical linear input output transformation for quantum fluctuations,” Opt. Commun. 71(3-4), 209–214 (1989).
[Crossref]

1982 (1)

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
[Crossref]

Adam, J.-L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Agger, C.

Ališauskas, S.

Andriukaitis, G.

Anne, M.-L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Baltuška, A.

Bang, O.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9$\mu$μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref]

Barh, A.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Bartels, A.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Barviau, B.

Baudisch, M.

Beck, N.

Benson, T.

Bergquist, J. C.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Biegert, J.

Bize, S.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Bock, M.

Boussard, C.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Brilland, L.

Bureau, B.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Cable, A.

Camy, P.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Cankaya, H.

Cao, Q.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

Caves, C. M.

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
[Crossref]

Chahal, R.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Chalus, O.

Chang, Z.

Charpentier, F.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Cheng, T.

Chua, C. F.

Cirmi, G.

Coen, S.

Cousin, S. L.

Cui, S.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Curtis, E. A.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

de Montgolfier, J. V.

Deng, D.

Denninger, M.

Diddams, S. A.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Doualan, J.-L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Dudley, J.

R. Trebino, J. Dudley, and X. Gu, “Ultrafast technology: Measuring and understanding the most complex ultrashort pulse ever generated,” Opt. Photonics News 14(12), 44 (2003).
[Crossref]

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dupont, S.

Ell, R.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Elsaesser, T.

Elu, U.

Engelsholm, R. D.

Ermolov, A.

Fang, X.

Farries, M.

Fendel, P.

Fernández, A.

Feuchter, T.

Flöry, T.

Foy, P.

Freeman, M. J.

Frosz, M. H.

Fuji, T.

Fujimoto, J. G.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Gaeta, A. L.

Gaida, C.

Gao, W.

Gardner, D.

Gebhardt, M.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Ghatak, A.

A. Kumar and A. Ghatak, Polarization of Light with Applications in Optical Fibers, SPIE Digital Library (SPIE Press, 2011).

González-Herráez, M.

Gonzalo, I. B.

Griebner, U.

Gu, X.

R. Trebino, J. Dudley, and X. Gu, “Ultrafast technology: Measuring and understanding the most complex ultrashort pulse ever generated,” Opt. Photonics News 14(12), 44 (2003).
[Crossref]

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[Crossref]

Hädrich, S.

Hannesschläger, G.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Hartl, I.

Haus, H. A.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Heidmann, A.

S. Reynaud and A. Heidmann, “A semiclassical linear input output transformation for quantum fluctuations,” Opt. Commun. 71(3-4), 209–214 (1989).
[Crossref]

Héliot, L.

Hemmer, M.

Henry, C. H.

C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys. 68(3), 801–853 (1996).
[Crossref]

Hollberg, L.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Holzwarth, R.

Hoogland, H.

Hooper, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Huot, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Ippen, E. P.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Ishida, K.

Islam, M. N.

Israelsen, N. M.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
[Crossref]

Jain, D.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Jauregui, C.

Jenkins, D.

Jensen, M.

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
[Crossref]

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Jiang, Z.

Kanai, T.

Kangaparambil, S. S.

Karpowicz, N.

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Kärtner, F. X.

K. Murari, H. Cankaya, P. Kroetz, G. Cirmi, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers,” Opt. Lett. 41(6), 1114–1117 (2016).
[Crossref]

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Kazarinov, R. F.

C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys. 68(3), 801–853 (1996).
[Crossref]

Ke, K.

Keiber, S.

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Keiding, S. R.

Kimmel, M.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[Crossref]

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Kobayashi, T.

Köttig, F.

Kracht, D.

Krausz, F.

N. Nagl, K. F. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a cr:zns oscillator and step-index fluoride fibers,” Opt. Lett. 44(10), 2390–2393 (2019).
[Crossref]

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Kroetz, P.

Kubat, I.

Kudlinski, A.

Kumar, A.

A. Kumar and A. Ghatak, Polarization of Light with Applications in Optical Fibers, SPIE Digital Library (SPIE Press, 2011).

Leick, L.

Leray, A.

Li, P.

Liao, M.

W. Gao, K. Ogawa, X. Xue, M. Liao, D. Deng, T. Cheng, T. Suzuki, and Y. Ohishi, “Third-harmonic generation in an elliptical-core ZBLAN fluoride fiber,” Opt. Lett. 38(14), 2566–2568 (2013).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Limpert, J.

Liu, D.

Livache, C.

Lloyd, G. R.

Loréal, O.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Lucas, J.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Lucas, P.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Luiten, A.

J. McFerran, M. Marić, and A. Luiten, “Efficient detection and control of the carrier-envelope offset frequency in a self-referencing optical frequency synthesizer,” Appl. Phys. B 79(1), 39–44 (2004).
[Crossref]

Mach, L. H.

Mak, K. F.

Malevich, P.

Maria, M.

Maric, M.

J. McFerran, M. Marić, and A. Luiten, “Efficient detection and control of the carrier-envelope offset frequency in a self-referencing optical frequency synthesizer,” Appl. Phys. B 79(1), 39–44 (2004).
[Crossref]

Martin-Lopez, S.

McConnell, G.

McFerran, J.

J. McFerran, M. Marić, and A. Luiten, “Efficient detection and control of the carrier-envelope offset frequency in a self-referencing optical frequency synthesizer,” Appl. Phys. B 79(1), 39–44 (2004).
[Crossref]

Méchin, D.

Metzler, G.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Michalska, M.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

Mikolajczyk, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

Mizui, M.

Møller, U. V.

Monbet, V.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Morgner, U.

Moselund, P. M.

Murari, K.

Mussot, A.

Nagl, N.

Nallala, J.

Napier, B.

Nazabal, V.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Neumann, J.

Nomura, Y.

O’Shea, P.

Oates, C. W.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Ogawa, K.

Ohishi, Y.

W. Gao, K. Ogawa, X. Xue, M. Liao, D. Deng, T. Cheng, T. Suzuki, and Y. Ohishi, “Third-harmonic generation in an elliptical-core ZBLAN fluoride fiber,” Opt. Lett. 38(14), 2566–2568 (2013).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Pafchek, R.

Pedersen, C.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Penninckx, D.

Pervak, V.

N. Nagl, K. F. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a cr:zns oscillator and step-index fluoride fibers,” Opt. Lett. 44(10), 2390–2393 (2019).
[Crossref]

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Petersen, C.

Petersen, C. R.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9$\mu$μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref]

Phua, P. B.

Pires, H.

Podoleanu, A.

Pronin, O.

Prtljaga, N.

Pugzlys, A.

Pugžlys, A.

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Quetel, L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Ramond, T. M.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Ren, X.

Reynaud, S.

S. Reynaud and A. Heidmann, “A semiclassical linear input output transformation for quantum fluctuations,” Opt. Commun. 71(3-4), 209–214 (1989).
[Crossref]

Rezvani, S. A.

Ruehl, A.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

Russell, P. S.

Saad, M.

Salem, R.

Sanchez, D.

Schibli, T. R.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Schunemann, P.

Schwarz, A.

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Seddon, A.

Seddon, A. B.

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

Sederberg, S.

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Shreenath, A. P.

Simon-Boisson, C.

Sire, O.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Spriet, C.

Stone, N.

Stutzki, F.

Suzuki, M.

Suzuki, T.

W. Gao, K. Ogawa, X. Xue, M. Liao, D. Deng, T. Cheng, T. Suzuki, and Y. Ohishi, “Third-harmonic generation in an elliptical-core ZBLAN fluoride fiber,” Opt. Lett. 38(14), 2566–2568 (2013).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Swiderski, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

Tan, L. H.

Tani, F.

Tariel, H.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Thøgersen, J.

Tidemand-Lichtenberg, P.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Trebino, R.

R. Trebino, J. Dudley, and X. Gu, “Ultrafast technology: Measuring and understanding the most complex ultrashort pulse ever generated,” Opt. Photonics News 14(12), 44 (2003).
[Crossref]

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[Crossref]

Trubetskov, M.

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Tsurumachi, N.

Tünnermann, A.

Ueberschaer, D.

Vanholsbeeck, F.

Verhoef, A. J.

von Grafenstein, L.

Wandt, D.

Wang, Q.

Wang, Y.

Ward, J.

Welsh, M. J.

Wienke, A.

Windeler, R.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

Windeler, R. S.

Wojtas, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

Xia, C.

Xu, L.

Xue, X.

Yamanouchi, K.

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Yin, Y.

Zawilski, K.

Zeek, E.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

J. McFerran, M. Marić, and A. Luiten, “Efficient detection and control of the carrier-envelope offset frequency in a self-referencing optical frequency synthesizer,” Appl. Phys. B 79(1), 39–44 (2004).
[Crossref]

Appl. Phys. Lett. (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Infrared Phys. Technol. (1)

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Int. J. Appl. Glass Sci. (1)

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

Light: Sci. Appl. (1)

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Nat. Photonics (1)

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Opt. Commun. (1)

S. Reynaud and A. Heidmann, “A semiclassical linear input output transformation for quantum fluctuations,” Opt. Commun. 71(3-4), 209–214 (1989).
[Crossref]

Opt. Eng. (1)

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Opt. Express (11)

K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17(15), 12627–12640 (2009).
[Crossref]

A. Kudlinski, B. Barviau, A. Leray, C. Spriet, L. Héliot, and A. Mussot, “Control of pulse-to-pulse fluctuations in visible supercontinuum,” Opt. Express 18(26), 27445–27454 (2010).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9$\mu$μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref]

M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses,” Opt. Express 23(11), 13776–13787 (2015).
[Crossref]

A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “700 MW peak power of a 380 fs regenerative amplifier with Tm:YAP,” Opt. Express 23(13), 16884–16889 (2015).
[Crossref]

R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 $\mu$μ m,” Opt. Express 23(24), 30592–30602 (2015).
[Crossref]

G. McConnell, “Confocal laser scanning fluorescence microscopy with a visible continuum source,” Opt. Express 12(13), 2844–2850 (2004).
[Crossref]

F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13(17), 6615–6625 (2005).
[Crossref]

S. A. Rezvani, M. Suzuki, P. Malevich, C. Livache, J. V. de Montgolfier, Y. Nomura, N. Tsurumachi, A. Baltuška, and T. Fuji, “Millijoule femtosecond pulses at 1937 nm from a diode-pumped ring cavity Tm:YAP regenerative amplifier,” Opt. Express 26(22), 29460–29470 (2018).
[Crossref]

A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Comparison between Tm:YAP and Ho:YAG ultrashort pulse regenerative amplification,” Opt. Express 24(8), 8632–8640 (2016).
[Crossref]

Opt. Lett. (13)

L. von Grafenstein, M. Bock, D. Ueberschaer, U. Griebner, and T. Elsaesser, “Ho:YLF chirped pulse amplification at kilohertz repetition rates - 4.3 ps pulses at 2 $\mu$μm with GW peak power,” Opt. Lett. 41(20), 4668–4671 (2016).
[Crossref]

T. Kanai, P. Malevich, S. S. Kangaparambil, K. Ishida, M. Mizui, K. Yamanouchi, H. Hoogland, R. Holzwarth, A. Pugzlys, and A. Baltuška, “Parametric amplification of 100 fs mid-infrared pulses in ZnGeP$_2$2 driven by a Ho:YAG chirped-pulse amplifier,” Opt. Lett. 42(4), 683–686 (2017).
[Crossref]

M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

X. Ren, L. H. Mach, Y. Yin, Y. Wang, and Z. Chang, “Generation of 1 kHz, 2.3 mJ, 88 fs, 2.5 $\mu$μm pulses from a Cr$^{2+}$2+:ZnSe chirped pulse amplifier,” Opt. Lett. 43(14), 3381–3384 (2018).
[Crossref]

N. Nagl, K. F. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a cr:zns oscillator and step-index fluoride fibers,” Opt. Lett. 44(10), 2390–2393 (2019).
[Crossref]

P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuška, and A. Pugžlys, “Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier,” Opt. Lett. 41(5), 930–933 (2016).
[Crossref]

K. Murari, H. Cankaya, P. Kroetz, G. Cirmi, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers,” Opt. Lett. 41(6), 1114–1117 (2016).
[Crossref]

W. Gao, K. Ogawa, X. Xue, M. Liao, D. Deng, T. Cheng, T. Suzuki, and Y. Ohishi, “Third-harmonic generation in an elliptical-core ZBLAN fluoride fiber,” Opt. Lett. 38(14), 2566–2568 (2013).
[Crossref]

P. Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališauskas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and P. B. Phua, “High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers,” Opt. Lett. 38(15), 2746–2749 (2013).
[Crossref]

A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27(11), 924–926 (2002).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[Crossref]

X. Fang and T. Kobayashi, “Self-stabilization of the carrier-envelope phase of an optical parametric amplifier verified with a photonic crystal fiber,” Opt. Lett. 29(11), 1282–1284 (2004).
[Crossref]

Opt. Photonics News (1)

R. Trebino, J. Dudley, and X. Gu, “Ultrafast technology: Measuring and understanding the most complex ultrashort pulse ever generated,” Opt. Photonics News 14(12), 44 (2003).
[Crossref]

Optica (2)

Phys. Rev. D (1)

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
[Crossref]

Phys. Rev. Lett. (1)

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Rev. Mod. Phys. (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys. 68(3), 801–853 (1996).
[Crossref]

Sci. Rep. (1)

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

Other (3)

R. R. Alfano, ed. The Supercontinuum Laser Source: The Ultimate White Light, 3rd ed (Springer-Verlag New York, 2016).

J. M. Dudley and J. R. Taylor, eds., Supercontinuum generation in optical fibers (Cambridge University, 2010).

A. Kumar and A. Ghatak, Polarization of Light with Applications in Optical Fibers, SPIE Digital Library (SPIE Press, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Schematic design of the system. LD, laser diode. BS, beam splitter. FM, folding mirror.
Fig. 2.
Fig. 2. (a) Spectrum of the amplified signal with 0.189 mJ energy with 23.5 W absorbed power at $-20^\circ$C and 10 kHz repetition rate after 45 round trips. (b) Retrieved spectrum of the second harmonic from the SHG-FROG.
Fig. 3.
Fig. 3. Refractive index of the fiber. Inset: cross-section of the fiber by an optical microscope.
Fig. 4.
Fig. 4. Calculated dispersion of the fiber (solid line), birefringence of the fiber (dashed line).
Fig. 5.
Fig. 5. Recorded spectrum of the generated SC in a 50 cm of PM-ZBLAN fiber. Inset: intensity distribution in linear scale.
Fig. 6.
Fig. 6. (a) Measured trace from the SFG-XFROG system, (b) retrieved trace with 0.02 best error value in a 1024$\times$1024 grid, (c) retrieved temporal profile and (d) retrieved spectrum.
Fig. 7.
Fig. 7. Recorded spectrum of the generated SC in 9 cm PM-ZBLAN fiber using FTIR. Inset: intensity distribution in linear scale.
Fig. 8.
Fig. 8. (a) Measured trace from the SFG-XFROG system for a 9 cm PM-ZBLAN fiber, (b) retrieved trace with 0.012 best error value in a 1024$\times$1024 grid, (c) retrieved temporal profile and (d) retrieved spectrum.
Fig. 9.
Fig. 9. Recorded spectrum of the generated SC in 4.5 cm PM-ZBLAN fiber using FTIR. Inset: intensity distribution in linear scale.
Fig. 10.
Fig. 10. (a) Measured trace from the SFG-XFROG system for a 4.5 cm PM-ZBLAN fiber, (b) retrieved trace with 0.015 best error value in a 1024$\times$1024 grid, (c) retrieved temporal profile and (d) retrieved spectrum.
Fig. 11.
Fig. 11. (a)-(d) Measured spectrum using Yokogawa spectrum analyzer (AQ6375) with 0.04 nm resolution for pump pulses after 45, 40, 35 and 30 round trips accordingly.
Fig. 12.
Fig. 12. (a)-(c) Measured trace, (d)-(f) retrieved trace from the SFG-XFROG for pulses generated in 4.5 cm of PM-ZBLAN fiber for pump pulses after 40, 35 and 30 round trips accordingly.
Fig. 13.
Fig. 13. (a)-(c) Retrieved temporal profile, (d)-(f) retrieved spectrum from the SFG-XFROG for pulses generated in 4.5 cm of PM-ZBLAN fiber for pump pulses after 40, 35 and 30 round trips accordingly.

Metrics