Abstract

Lasers based on Cr2+-doped II-VI material, often known as the Ti:Sapphire of the mid-infrared, can directly provide few-cycle pulses with octave-spanning spectra, and serve as efficient drivers for generating broadband mid-infrared radiation. It is expected that the wider adoption of this technology benefits from more compact and cost-effective embodiments. Here, we report the first directly diode-pumped, Kerr-lens mode-locked Cr2+-doped II-VI oscillator pumped by a single InP diode, providing average powers over 500 mW and pulse durations of 45 fs — shorter than six optical cycles at 2.4 µm. These correspond to a sixty-fold increase in peak power compared to the previous diode-pumped record, and are at similar levels with respect to more mature fiber-pumped oscillators. The diode-pumped femtosecond oscillator presented here constitutes a key step toward a more accessible alternative to synchrotron-like infrared radiation and is expected to accelerate research in laser spectroscopy and ultrafast infrared optics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Directly diode-pumped Kerr-lens mode-locked Cr4+:YAG laser

S. Naumov, E. Sorokin, and I. T. Sorokina
Opt. Lett. 29(11) 1276-1278 (2004)

47-fs Kerr-lens mode-locked Cr:ZnSe laser with high spectral purity

Yuchen Wang, Toney T. Fernandez, Nicola Coluccelli, Alessio Gambetta, Paolo Laporta, and Gianluca Galzerano
Opt. Express 25(21) 25193-25200 (2017)

Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser

Sadao Uemura and Kenji Torizuka
Opt. Lett. 24(11) 780-782 (1999)

References

  • View by:
  • |
  • |
  • |

  1. J. Haas and B. Mizaikoff, “Advances in Mid-Infrared Spectroscopy for Chemical Analysis,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 45–68 (2016).
    [Crossref] [PubMed]
  2. K. C. Cossel, E. M. Waxman, I. A. Finneran, G. A. Blake, J. Ye, and N. R. Newbury, “Gas-phase broadband spectroscopy using active sources: progress, status, and applications,” J. Opt. Soc. Am. B 34(1), 104–129 (2017).
    [Crossref] [PubMed]
  3. M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
    [Crossref] [PubMed]
  4. W. D. Duncan and G. P. Williams, “Infrared synchrotron radiation from electron storage rings,” Appl. Opt. 22(18), 2914–2923 (1983).
    [Crossref] [PubMed]
  5. H.-Y. N. Holman, M. C. Martin, E. A. Blakely, K. Bjornstad, and W. R. McKinney, “IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy,” Biopolymers 57(6), 329–335 (2000).
    [Crossref] [PubMed]
  6. H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7191–7196 (2014).
    [Crossref] [PubMed]
  7. M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8(11), 841–845 (2014).
    [Crossref]
  8. G. J. Ellis and M. C. Martin, “Opportunities and challenges for polymer science using synchrotron-based infrared spectroscopy,” Eur. Polym. J. 81, 505–531 (2016).
    [Crossref]
  9. M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
    [Crossref] [PubMed]
  10. C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, and J. Limpert, “Watt-scale super-octave mid-infrared intrapulse difference frequency generation,” Light Sci. Appl. 7(1), 94 (2018).
    [Crossref] [PubMed]
  11. J. Zhang, K. F. Mak, N. Nagl, M. Seidel, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1,” Light Sci. Appl. 7(2), 17180 (2018).
    [Crossref] [PubMed]
  12. F. Mörz, R. Semenyshyn, T. Steinle, F. Neubrech, U. Zschieschang, H. Klauk, A. Steinmann, and H. Giessen, “Nearly diffraction limited FTIR mapping using an ultrastable broadband femtosecond laser tunable from 1.33 to 8 µm,” Opt. Express 25(26), 32355–32363 (2017).
    [Crossref]
  13. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [Crossref]
  14. B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
    [Crossref]
  15. S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
    [Crossref]
  16. P. Hannaford, Femtosecond Laser Spectroscopy, 1 ed. (Springer-Verlag, 2005).
  17. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  18. I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
    [Crossref]
  19. A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12(4), 209–214 (2018).
    [Crossref]
  20. N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
    [Crossref]
  21. E. Sorokin and I. T. Sorokina, “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” in CLEO Europe - EQEC Conference, CLEO/Europe and EQEC 2009 Conference Digest (Optical Society of America), paper CF1_3 (2009).
    [Crossref]
  22. N. Tolstik, E. Sorokin, and I. T. Sorokina, “Kerr-lens mode-locked Cr:ZnS laser,” Opt. Lett. 38(3), 299–301 (2013).
    [Crossref] [PubMed]
  23. I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 273–291 (2015).
    [Crossref]
  24. S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
    [Crossref] [PubMed]
  25. Y. Wang, T. T. Fernandez, N. Coluccelli, A. Gambetta, P. Laporta, and G. Galzerano, “47-fs Kerr-lens mode-locked Cr:ZnSe laser with high spectral purity,” Opt. Express 25(21), 25193–25200 (2017).
    [Crossref] [PubMed]
  26. N. Nagl, K. F. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44(10), 2390–2393 (2019).
    [Crossref] [PubMed]
  27. S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7(7), 2636–2650 (2017).
    [Crossref]
  28. S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
    [Crossref]
  29. Q. Wang, J. Zhang, A. Kessel, N. Nagl, V. Pervak, O. Pronin, and K. F. Mak, “Broadband mid-infrared coverage (2-17 μm) with few-cycle pulses via cascaded parametric processes,” Opt. Lett. 44(10), 2566–2569 (2019).
    [Crossref] [PubMed]
  30. S. Vasilyev, I. S. Moskalev, V. O. Smolski, J. M. Peppers, M. Mirov, A. V. Muraviev, K. Zawilski, P. G. Schunemann, S. B. Mirov, K. L. Vodopyanov, and V. P. Gapontsev, “Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-µm pulses,” Optica 6(1), 111–114 (2019).
    [Crossref]
  31. V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6 μm,” Opt. Lett. 40(12), 2906–2908 (2015).
    [Crossref] [PubMed]
  32. S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
    [Crossref]
  33. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared Coherent Sources and Applications (Springer-Verlag, 2008).
  34. M. Kot and K. Ždánský, “Measurement of radiative and nonradiative recombination rate in InGaAsP-InP LED’s,” IEEE J. Quantum Electron. 28(8), 1746–1750 (1992).
    [Crossref]
  35. J. Piprek, J. K. White, and A. J. SpringThorpe, “What Limits the Maximum Output Power of Long-Wavelength AlGaInAs/InP Laser Diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).
    [Crossref]
  36. R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, “Demonstrations of diode-pumped and grating-tuned ZnSe:Cr2+ lasers,” OSA Trends in Optics and Photonics: Advanced Solid State Lasers 10, 208–210 (1997).
    [Crossref]
  37. A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, M. Mond, E. Heumann, G. Huber, H. Kretschmann, and S. Kück, “Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals,” Appl. Phys. B 72(2), 253–255 (2001).
    [Crossref]
  38. I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “InP diode-pumped Cr:ZnS and Cr:ZnSe highly-efficient, widely-tunable, mid-IR lasers,” Proc. SPIE 7578, 75781K (2010).
    [Crossref]
  39. G. J. Wagner, A. M. Schober, G. T. Bennett, D. L. Bruns, J. H. Marquardt, and T. J. Carrig, “Multi-Watt Broadly-Tunable Diode-Pumped Cr:ZnSe Laser,” in 2012 Conference on Lasers and Electro-Optics (CLEO; Optical Society of America) paper CTu2D.2 (2012).
  40. K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe Thin Disk Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
    [Crossref]
  41. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express 20(13), 13677–13683 (2012).
    [Crossref] [PubMed]
  42. E. Slobodtchikov and P. F. Moulton, “Progress in ultrafast Cr:ZnSe lasers,” in Lasers, Sources, and Related Photonic Devices OSA Technical Digest (CD, Optical Society of America), paper AW5A.4 (2012)
  43. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
    [Crossref] [PubMed]
  44. J. Zhang, J. Brons, M. Seidel, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, “49-fs Yb:YAG thin-disk oscillator with distributed Kerr-lens mode-locking,” in 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (Optical Society of America), paper PD_A_1, (2015).
  45. S. Vasilyev, M. Mirov, and V. Gapontsev, “High Power Kerr-Lens Mode-Locked Femtosecond mid-IR Laser with Efficient Second Harmonic Generation in Polycrystalline Cr2+:ZnS and Cr2+:ZnSe,” in Advanced Solid State Lasers OSA Technical Digest (online), (2014).
  46. K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, “Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power,” Opt. Express 23(23), 30043–30048 (2015).
    [Crossref] [PubMed]
  47. S. Backus, M. Kirchner, C. Durfee, M. Murnane, and H. Kapteyn, “Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode,” Opt. Express 25(11), 12469–12477 (2017).
    [Crossref] [PubMed]
  48. H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and Its Wavelength and Temperature Derivatives,” J. Phys. Chem. Ref. Data 13(1), 103–150 (1984).
    [Crossref]
  49. Y. Wang, J. Fonseca-Campos, W.-G. Liang, C.-Q. Xu, and I. Vargas-Baca, “Noise analysis of Second-Harmonic Generation in Undoped and MgO-Doped Periodically Poled Lithium Niobate,” Adv. Optoelectron. 2008(428971), 1–10 (2008).
    [Crossref]
  50. P. Dutta and P. M. Horn, “Low-frequency fluctuations in solids: 1/f noise,” Rev. Mod. Phys. 53(3), 497–516 (1981).
    [Crossref]
  51. C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, H.-A. Bachor, and I. Freitag, “Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source,” J. Opt. Soc. Am. B 14(11), 2936–2945 (1997).
    [Crossref]
  52. A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Concentration dependence of fluorescence and lasing efficiency in Cr2+:ZnSe lasers,” Opt. Mater. 29(6), 703–708 (2007).
    [Crossref]
  53. M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity noise transfer through a diode-pumped titanium sapphire laser system,” IEEE J. Quantum Electron. 54(1), 1700209 (2018).
    [Crossref]
  54. R. P. Scott, C. Langrock, and B. H. Kolner, “High-Dynamic-Range Laser Amplitude and Phase Noise Measurement Techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
    [Crossref]
  55. S. Backus, M. Kirchner, R. Lemons, D. Schmidt, C. Durfee, M. Murnane, and H. Kapteyn, “Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system,” Opt. Express 25(4), 3666–3674 (2017).
    [Crossref] [PubMed]
  56. F. Seifert, P. Kwee, M. Heurs, B. Willke, and K. Danzmann, “Laser power stabilization for second-generation gravitational wave detectors,” Opt. Lett. 31(13), 2000–2002 (2006).
    [Crossref] [PubMed]

2019 (4)

2018 (6)

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12(4), 209–214 (2018).
[Crossref]

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref] [PubMed]

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, and J. Limpert, “Watt-scale super-octave mid-infrared intrapulse difference frequency generation,” Light Sci. Appl. 7(1), 94 (2018).
[Crossref] [PubMed]

J. Zhang, K. F. Mak, N. Nagl, M. Seidel, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1,” Light Sci. Appl. 7(2), 17180 (2018).
[Crossref] [PubMed]

M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity noise transfer through a diode-pumped titanium sapphire laser system,” IEEE J. Quantum Electron. 54(1), 1700209 (2018).
[Crossref]

2017 (6)

2016 (3)

J. Haas and B. Mizaikoff, “Advances in Mid-Infrared Spectroscopy for Chemical Analysis,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 45–68 (2016).
[Crossref] [PubMed]

G. J. Ellis and M. C. Martin, “Opportunities and challenges for polymer science using synchrotron-based infrared spectroscopy,” Eur. Polym. J. 81, 505–531 (2016).
[Crossref]

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

2015 (6)

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 273–291 (2015).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref] [PubMed]

V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6 μm,” Opt. Lett. 40(12), 2906–2908 (2015).
[Crossref] [PubMed]

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
[Crossref]

K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, “Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power,” Opt. Express 23(23), 30043–30048 (2015).
[Crossref] [PubMed]

2014 (3)

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7191–7196 (2014).
[Crossref] [PubMed]

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8(11), 841–845 (2014).
[Crossref]

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

2010 (3)

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[Crossref]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “InP diode-pumped Cr:ZnS and Cr:ZnSe highly-efficient, widely-tunable, mid-IR lasers,” Proc. SPIE 7578, 75781K (2010).
[Crossref]

2008 (2)

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[Crossref] [PubMed]

Y. Wang, J. Fonseca-Campos, W.-G. Liang, C.-Q. Xu, and I. Vargas-Baca, “Noise analysis of Second-Harmonic Generation in Undoped and MgO-Doped Periodically Poled Lithium Niobate,” Adv. Optoelectron. 2008(428971), 1–10 (2008).
[Crossref]

2007 (1)

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Concentration dependence of fluorescence and lasing efficiency in Cr2+:ZnSe lasers,” Opt. Mater. 29(6), 703–708 (2007).
[Crossref]

2006 (1)

2005 (1)

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe Thin Disk Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

2002 (1)

J. Piprek, J. K. White, and A. J. SpringThorpe, “What Limits the Maximum Output Power of Long-Wavelength AlGaInAs/InP Laser Diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).
[Crossref]

2001 (2)

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, M. Mond, E. Heumann, G. Huber, H. Kretschmann, and S. Kück, “Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals,” Appl. Phys. B 72(2), 253–255 (2001).
[Crossref]

R. P. Scott, C. Langrock, and B. H. Kolner, “High-Dynamic-Range Laser Amplitude and Phase Noise Measurement Techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
[Crossref]

2000 (1)

H.-Y. N. Holman, M. C. Martin, E. A. Blakely, K. Bjornstad, and W. R. McKinney, “IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy,” Biopolymers 57(6), 329–335 (2000).
[Crossref] [PubMed]

1997 (2)

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, “Demonstrations of diode-pumped and grating-tuned ZnSe:Cr2+ lasers,” OSA Trends in Optics and Photonics: Advanced Solid State Lasers 10, 208–210 (1997).
[Crossref]

C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, H.-A. Bachor, and I. Freitag, “Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source,” J. Opt. Soc. Am. B 14(11), 2936–2945 (1997).
[Crossref]

1992 (1)

M. Kot and K. Ždánský, “Measurement of radiative and nonradiative recombination rate in InGaAsP-InP LED’s,” IEEE J. Quantum Electron. 28(8), 1746–1750 (1992).
[Crossref]

1984 (1)

H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and Its Wavelength and Temperature Derivatives,” J. Phys. Chem. Ref. Data 13(1), 103–150 (1984).
[Crossref]

1983 (1)

1981 (1)

P. Dutta and P. M. Horn, “Low-frequency fluctuations in solids: 1/f noise,” Rev. Mod. Phys. 53(3), 497–516 (1981).
[Crossref]

Amezcua-Correa, R.

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, and J. Limpert, “Watt-scale super-octave mid-infrared intrapulse difference frequency generation,” Light Sci. Appl. 7(1), 94 (2018).
[Crossref] [PubMed]

Andersen, P. E.

M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity noise transfer through a diode-pumped titanium sapphire laser system,” IEEE J. Quantum Electron. 54(1), 1700209 (2018).
[Crossref]

Antonio-Lopez, J.

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, and J. Limpert, “Watt-scale super-octave mid-infrared intrapulse difference frequency generation,” Light Sci. Appl. 7(1), 94 (2018).
[Crossref] [PubMed]

Apolonski, A.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Arisholm, G.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref] [PubMed]

Bachor, H.-A.

Backus, S.

Baker, M. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Bassan, P.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Bauer, D.

J. Zhang, K. F. Mak, N. Nagl, M. Seidel, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1,” Light Sci. Appl. 7(2), 17180 (2018).
[Crossref] [PubMed]

Beach, R. J.

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, “Demonstrations of diode-pumped and grating-tuned ZnSe:Cr2+ lasers,” OSA Trends in Optics and Photonics: Advanced Solid State Lasers 10, 208–210 (1997).
[Crossref]

Bechtel, H. A.

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7191–7196 (2014).
[Crossref] [PubMed]

Becker, T.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Bernhardt, B.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Berry, P. A.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe Thin Disk Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Bhargava, R.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Biegert, J.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Bjornstad, K.

H.-Y. N. Holman, M. C. Martin, E. A. Blakely, K. Bjornstad, and W. R. McKinney, “IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy,” Biopolymers 57(6), 329–335 (2000).
[Crossref] [PubMed]

Blake, G. A.

Blakely, E. A.

H.-Y. N. Holman, M. C. Martin, E. A. Blakely, K. Bjornstad, and W. R. McKinney, “IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy,” Biopolymers 57(6), 329–335 (2000).
[Crossref] [PubMed]

Butler, H. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Cocker, T. L.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8(11), 841–845 (2014).
[Crossref]

Coluccelli, N.

Cossel, K. C.

Danzmann, K.

Demirbas, U.

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Concentration dependence of fluorescence and lasing efficiency in Cr2+:ZnSe lasers,” Opt. Mater. 29(6), 703–708 (2007).
[Crossref]

Dergachev, A.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Diddams, S. A.

Dorling, K. M.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Duncan, W. D.

Durfee, C.

Durfee, C. G.

Dutta, P.

P. Dutta and P. M. Horn, “Low-frequency fluctuations in solids: 1/f noise,” Rev. Mod. Phys. 53(3), 497–516 (1981).
[Crossref]

Eisele, M.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8(11), 841–845 (2014).
[Crossref]

Ellis, G. J.

G. J. Ellis and M. C. Martin, “Opportunities and challenges for polymer science using synchrotron-based infrared spectroscopy,” Eur. Polym. J. 81, 505–531 (2016).
[Crossref]

Ercolani, D.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8(11), 841–845 (2014).
[Crossref]

F. Mak, K.

J. Zhang, K. F. Mak, N. Nagl, M. Seidel, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1,” Light Sci. Appl. 7(2), 17180 (2018).
[Crossref] [PubMed]

Fedorov, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Fedorov, V. V.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
[Crossref]

I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “InP diode-pumped Cr:ZnS and Cr:ZnSe highly-efficient, widely-tunable, mid-IR lasers,” Proc. SPIE 7578, 75781K (2010).
[Crossref]

Fernandez, T. T.

Fielden, P. R.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Fill, E.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Finneran, I. A.

Fogarty, S. W.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Fonseca-Campos, J.

Y. Wang, J. Fonseca-Campos, W.-G. Liang, C.-Q. Xu, and I. Vargas-Baca, “Noise analysis of Second-Harmonic Generation in Undoped and MgO-Doped Periodically Poled Lithium Niobate,” Adv. Optoelectron. 2008(428971), 1–10 (2008).
[Crossref]

Freitag, I.

Fullwood, N. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Gaida, C.

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, and J. Limpert, “Watt-scale super-octave mid-infrared intrapulse difference frequency generation,” Light Sci. Appl. 7(1), 94 (2018).
[Crossref] [PubMed]

Galzerano, G.

Gambetta, A.

Gapontsev, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7(7), 2636–2650 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref] [PubMed]

S. Vasilyev, M. Mirov, and V. Gapontsev, “High Power Kerr-Lens Mode-Locked Femtosecond mid-IR Laser with Efficient Second Harmonic Generation in Polycrystalline Cr2+:ZnS and Cr2+:ZnSe,” in Advanced Solid State Lasers OSA Technical Digest (online), (2014).

Gapontsev, V. P.

Gardner, P.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Garlick, J.

Gebhardt, M.

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, and J. Limpert, “Watt-scale super-octave mid-infrared intrapulse difference frequency generation,” Light Sci. Appl. 7(1), 94 (2018).
[Crossref] [PubMed]

Giessen, H.

Gürel, K.

Haas, J.

J. Haas and B. Mizaikoff, “Advances in Mid-Infrared Spectroscopy for Chemical Analysis,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 45–68 (2016).
[Crossref] [PubMed]

Habel, F.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref] [PubMed]

Hakobyan, S.

Hänsch, T. W.

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Hansen, A. K.

M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity noise transfer through a diode-pumped titanium sapphire laser system,” IEEE J. Quantum Electron. 54(1), 1700209 (2018).
[Crossref]

Harb, C. C.

Hartung, A.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref] [PubMed]

Heuermann, T.

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, and J. Limpert, “Watt-scale super-octave mid-infrared intrapulse difference frequency generation,” Light Sci. Appl. 7(1), 94 (2018).
[Crossref] [PubMed]

Heumann, E.

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, M. Mond, E. Heumann, G. Huber, H. Kretschmann, and S. Kück, “Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals,” Appl. Phys. B 72(2), 253–255 (2001).
[Crossref]

Heurs, M.

Heys, K. A.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Hill, S.

Hoffmann, M.

Holman, H.-Y. N.

H.-Y. N. Holman, M. C. Martin, E. A. Blakely, K. Bjornstad, and W. R. McKinney, “IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy,” Biopolymers 57(6), 329–335 (2000).
[Crossref] [PubMed]

Horn, P. M.

P. Dutta and P. M. Horn, “Low-frequency fluctuations in solids: 1/f noise,” Rev. Mod. Phys. 53(3), 497–516 (1981).
[Crossref]

Hosokawa, S.

Huber, G.

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, M. Mond, E. Heumann, G. Huber, H. Kretschmann, and S. Kück, “Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals,” Appl. Phys. B 72(2), 253–255 (2001).
[Crossref]

Huber, M. A.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8(11), 841–845 (2014).
[Crossref]

Huber, R.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8(11), 841–845 (2014).
[Crossref]

Hughes, C.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Huntington, E. H.

Hussain, S. A.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref] [PubMed]

Jacquet, P.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Jauregui, C.

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, and J. Limpert, “Watt-scale super-octave mid-infrared intrapulse difference frequency generation,” Light Sci. Appl. 7(1), 94 (2018).
[Crossref] [PubMed]

Jensen, O. B.

M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity noise transfer through a diode-pumped titanium sapphire laser system,” IEEE J. Quantum Electron. 54(1), 1700209 (2018).
[Crossref]

Kaminskii, A. A.

Kapteyn, H.

Karpowicz, N.

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Keiber, S.

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Kessel, A.

Kirchner, M.

Klauk, H.

Kolner, B. H.

R. P. Scott, C. Langrock, and B. H. Kolner, “High-Dynamic-Range Laser Amplitude and Phase Noise Measurement Techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
[Crossref]

Kot, M.

M. Kot and K. Ždánský, “Measurement of radiative and nonradiative recombination rate in InGaAsP-InP LED’s,” IEEE J. Quantum Electron. 28(8), 1746–1750 (1992).
[Crossref]

Krausz, F.

N. Nagl, K. F. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44(10), 2390–2393 (2019).
[Crossref] [PubMed]

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref] [PubMed]

J. Zhang, K. F. Mak, N. Nagl, M. Seidel, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1,” Light Sci. Appl. 7(2), 17180 (2018).
[Crossref] [PubMed]

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Kretschmann, H.

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, M. Mond, E. Heumann, G. Huber, H. Kretschmann, and S. Kück, “Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals,” Appl. Phys. B 72(2), 253–255 (2001).
[Crossref]

Krupke, W. F.

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, “Demonstrations of diode-pumped and grating-tuned ZnSe:Cr2+ lasers,” OSA Trends in Optics and Photonics: Advanced Solid State Lasers 10, 208–210 (1997).
[Crossref]

Kück, S.

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, M. Mond, E. Heumann, G. Huber, H. Kretschmann, and S. Kück, “Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals,” Appl. Phys. B 72(2), 253–255 (2001).
[Crossref]

Kuleshov, N. V.

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, M. Mond, E. Heumann, G. Huber, H. Kretschmann, and S. Kück, “Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals,” Appl. Phys. B 72(2), 253–255 (2001).
[Crossref]

Kurt, A.

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Concentration dependence of fluorescence and lasing efficiency in Cr2+:ZnSe lasers,” Opt. Mater. 29(6), 703–708 (2007).
[Crossref]

Kwee, P.

Langrock, C.

R. P. Scott, C. Langrock, and B. H. Kolner, “High-Dynamic-Range Laser Amplitude and Phase Noise Measurement Techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
[Crossref]

Laporta, P.

Lasch, P.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Lemons, R.

Levchenko, V. I.

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, M. Mond, E. Heumann, G. Huber, H. Kretschmann, and S. Kück, “Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals,” Appl. Phys. B 72(2), 253–255 (2001).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and Its Wavelength and Temperature Derivatives,” J. Phys. Chem. Ref. Data 13(1), 103–150 (1984).
[Crossref]

Liang, W.-G.

Y. Wang, J. Fonseca-Campos, W.-G. Liang, C.-Q. Xu, and I. Vargas-Baca, “Noise analysis of Second-Harmonic Generation in Undoped and MgO-Doped Periodically Poled Lithium Niobate,” Adv. Optoelectron. 2008(428971), 1–10 (2008).
[Crossref]

Lilienfein, N.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Limpert, J.

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, and J. Limpert, “Watt-scale super-octave mid-infrared intrapulse difference frequency generation,” Light Sci. Appl. 7(1), 94 (2018).
[Crossref] [PubMed]

Loparo, Z. E.

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12(4), 209–214 (2018).
[Crossref]

Mak, K. F.

Marti, D.

M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity noise transfer through a diode-pumped titanium sapphire laser system,” IEEE J. Quantum Electron. 54(1), 1700209 (2018).
[Crossref]

Martin, F. L.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Martin, M. C.

G. J. Ellis and M. C. Martin, “Opportunities and challenges for polymer science using synchrotron-based infrared spectroscopy,” Eur. Polym. J. 81, 505–531 (2016).
[Crossref]

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7191–7196 (2014).
[Crossref] [PubMed]

H.-Y. N. Holman, M. C. Martin, E. A. Blakely, K. Bjornstad, and W. R. McKinney, “IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy,” Biopolymers 57(6), 329–335 (2000).
[Crossref] [PubMed]

Martin-Hirsch, P. L.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Martyshkin, D.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
[Crossref]

McClelland, D. E.

McKay, J. B.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe Thin Disk Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

McKinney, W. R.

H.-Y. N. Holman, M. C. Martin, E. A. Blakely, K. Bjornstad, and W. R. McKinney, “IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy,” Biopolymers 57(6), 329–335 (2000).
[Crossref] [PubMed]

Mirov, M.

S. Vasilyev, I. S. Moskalev, V. O. Smolski, J. M. Peppers, M. Mirov, A. V. Muraviev, K. Zawilski, P. G. Schunemann, S. B. Mirov, K. L. Vodopyanov, and V. P. Gapontsev, “Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-µm pulses,” Optica 6(1), 111–114 (2019).
[Crossref]

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7(7), 2636–2650 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref] [PubMed]

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
[Crossref]

S. Vasilyev, M. Mirov, and V. Gapontsev, “High Power Kerr-Lens Mode-Locked Femtosecond mid-IR Laser with Efficient Second Harmonic Generation in Polycrystalline Cr2+:ZnS and Cr2+:ZnSe,” in Advanced Solid State Lasers OSA Technical Digest (online), (2014).

Mirov, S.

Mirov, S. B.

Mizaikoff, B.

J. Haas and B. Mizaikoff, “Advances in Mid-Infrared Spectroscopy for Chemical Analysis,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 45–68 (2016).
[Crossref] [PubMed]

Mond, M.

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, M. Mond, E. Heumann, G. Huber, H. Kretschmann, and S. Kück, “Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals,” Appl. Phys. B 72(2), 253–255 (2001).
[Crossref]

Mörz, F.

Moskalev, I.

Moskalev, I. S.

S. Vasilyev, I. S. Moskalev, V. O. Smolski, J. M. Peppers, M. Mirov, A. V. Muraviev, K. Zawilski, P. G. Schunemann, S. B. Mirov, K. L. Vodopyanov, and V. P. Gapontsev, “Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-µm pulses,” Optica 6(1), 111–114 (2019).
[Crossref]

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
[Crossref]

I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “InP diode-pumped Cr:ZnS and Cr:ZnSe highly-efficient, widely-tunable, mid-IR lasers,” Proc. SPIE 7578, 75781K (2010).
[Crossref]

Muller, E. A.

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7191–7196 (2014).
[Crossref] [PubMed]

Muraviev, A. V.

S. Vasilyev, I. S. Moskalev, V. O. Smolski, J. M. Peppers, M. Mirov, A. V. Muraviev, K. Zawilski, P. G. Schunemann, S. B. Mirov, K. L. Vodopyanov, and V. P. Gapontsev, “Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-µm pulses,” Optica 6(1), 111–114 (2019).
[Crossref]

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12(4), 209–214 (2018).
[Crossref]

Murnane, M.

Nagl, N.

Neubrech, F.

Newbury, N. R.

Obinaju, B.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Olmon, R. L.

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7191–7196 (2014).
[Crossref] [PubMed]

Paasch-Colberg, T.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Page, R. H.

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, “Demonstrations of diode-pumped and grating-tuned ZnSe:Cr2+ lasers,” OSA Trends in Optics and Photonics: Advanced Solid State Lasers 10, 208–210 (1997).
[Crossref]

Payne, S. A.

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, “Demonstrations of diode-pumped and grating-tuned ZnSe:Cr2+ lasers,” OSA Trends in Optics and Photonics: Advanced Solid State Lasers 10, 208–210 (1997).
[Crossref]

Peppers, J.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Peppers, J. M.

Pervak, V.

Q. Wang, J. Zhang, A. Kessel, N. Nagl, V. Pervak, O. Pronin, and K. F. Mak, “Broadband mid-infrared coverage (2-17 μm) with few-cycle pulses via cascaded parametric processes,” Opt. Lett. 44(10), 2566–2569 (2019).
[Crossref] [PubMed]

N. Nagl, K. F. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44(10), 2390–2393 (2019).
[Crossref] [PubMed]

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref] [PubMed]

J. Zhang, K. F. Mak, N. Nagl, M. Seidel, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1,” Light Sci. Appl. 7(2), 17180 (2018).
[Crossref] [PubMed]

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Pescher, M.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Peterson, R. D.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe Thin Disk Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Picqué, N.

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Piprek, J.

J. Piprek, J. K. White, and A. J. SpringThorpe, “What Limits the Maximum Output Power of Long-Wavelength AlGaInAs/InP Laser Diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).
[Crossref]

Plankl, M.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8(11), 841–845 (2014).
[Crossref]

Podlipensky, A. V.

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, M. Mond, E. Heumann, G. Huber, H. Kretschmann, and S. Kück, “Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals,” Appl. Phys. B 72(2), 253–255 (2001).
[Crossref]

Pronin, O.

Q. Wang, J. Zhang, A. Kessel, N. Nagl, V. Pervak, O. Pronin, and K. F. Mak, “Broadband mid-infrared coverage (2-17 μm) with few-cycle pulses via cascaded parametric processes,” Opt. Lett. 44(10), 2566–2569 (2019).
[Crossref] [PubMed]

N. Nagl, K. F. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44(10), 2390–2393 (2019).
[Crossref] [PubMed]

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref] [PubMed]

J. Zhang, K. F. Mak, N. Nagl, M. Seidel, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1,” Light Sci. Appl. 7(2), 17180 (2018).
[Crossref] [PubMed]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Pupeza, I.

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, and J. Limpert, “Watt-scale super-octave mid-infrared intrapulse difference frequency generation,” Light Sci. Appl. 7(1), 94 (2018).
[Crossref] [PubMed]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Ralph, T. C.

Raschke, M. B.

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7191–7196 (2014).
[Crossref] [PubMed]

Resan, B.

Rohrbacher, A.

Sánchez, D.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Saraceno, C. J.

Schaffers, K. I.

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, “Demonstrations of diode-pumped and grating-tuned ZnSe:Cr2+ lasers,” OSA Trends in Optics and Photonics: Advanced Solid State Lasers 10, 208–210 (1997).
[Crossref]

Schepler, K. L.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe Thin Disk Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Schilt, S.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schmidt, D.

Schülzgen, A.

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, and J. Limpert, “Watt-scale super-octave mid-infrared intrapulse difference frequency generation,” Light Sci. Appl. 7(1), 94 (2018).
[Crossref] [PubMed]

Schunemann, P. G.

Schwarz, A.

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Schweinberger, W.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Scott, R. P.

R. P. Scott, C. Langrock, and B. H. Kolner, “High-Dynamic-Range Laser Amplitude and Phase Noise Measurement Techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
[Crossref]

Sederberg, S.

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Seidel, M.

J. Zhang, K. F. Mak, N. Nagl, M. Seidel, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1,” Light Sci. Appl. 7(2), 17180 (2018).
[Crossref] [PubMed]

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref] [PubMed]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Seifert, F.

Semenyshyn, R.

Sennaroglu, A.

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Concentration dependence of fluorescence and lasing efficiency in Cr2+:ZnSe lasers,” Opt. Mater. 29(6), 703–708 (2007).
[Crossref]

Shcherbitsky, V. G.

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, M. Mond, E. Heumann, G. Huber, H. Kretschmann, and S. Kück, “Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals,” Appl. Phys. B 72(2), 253–255 (2001).
[Crossref]

Shea, K.

Shirakawa, A.

Skidmore, J. A.

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, “Demonstrations of diode-pumped and grating-tuned ZnSe:Cr2+ lasers,” OSA Trends in Optics and Photonics: Advanced Solid State Lasers 10, 208–210 (1997).
[Crossref]

Smolski, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7(7), 2636–2650 (2017).
[Crossref]

Smolski, V. O.

Sockalingum, G. D.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Somer, M.

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Concentration dependence of fluorescence and lasing efficiency in Cr2+:ZnSe lasers,” Opt. Mater. 29(6), 703–708 (2007).
[Crossref]

Sorba, L.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8(11), 841–845 (2014).
[Crossref]

Sorokin, E.

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 273–291 (2015).
[Crossref]

N. Tolstik, E. Sorokin, and I. T. Sorokina, “Kerr-lens mode-locked Cr:ZnS laser,” Opt. Lett. 38(3), 299–301 (2013).
[Crossref] [PubMed]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Sorokina, I. T.

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 273–291 (2015).
[Crossref]

N. Tolstik, E. Sorokin, and I. T. Sorokina, “Kerr-lens mode-locked Cr:ZnS laser,” Opt. Lett. 38(3), 299–301 (2013).
[Crossref] [PubMed]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

SpringThorpe, A. J.

J. Piprek, J. K. White, and A. J. SpringThorpe, “What Limits the Maximum Output Power of Long-Wavelength AlGaInAs/InP Laser Diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).
[Crossref]

Squier, J. A.

Steinle, T.

Steinmann, A.

Storz, T.

Strong, R. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Stutzki, F.

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, and J. Limpert, “Watt-scale super-octave mid-infrared intrapulse difference frequency generation,” Light Sci. Appl. 7(1), 94 (2018).
[Crossref] [PubMed]

Südmeyer, T.

Sulé-Suso, J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Sumpf, B.

M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity noise transfer through a diode-pumped titanium sapphire laser system,” IEEE J. Quantum Electron. 54(1), 1700209 (2018).
[Crossref]

Sutter, D.

J. Zhang, K. F. Mak, N. Nagl, M. Seidel, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1,” Light Sci. Appl. 7(2), 17180 (2018).
[Crossref] [PubMed]

Taft, G.

Tawfieq, M.

M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity noise transfer through a diode-pumped titanium sapphire laser system,” IEEE J. Quantum Electron. 54(1), 1700209 (2018).
[Crossref]

Thon, R.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Tokurakawa, M.

Tolstik, N.

Trevisan, J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Trubetskov, M.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref] [PubMed]

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Tünnermann, A.

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, and J. Limpert, “Watt-scale super-octave mid-infrared intrapulse difference frequency generation,” Light Sci. Appl. 7(1), 94 (2018).
[Crossref] [PubMed]

Ueda, K.

Vargas-Baca, I.

Y. Wang, J. Fonseca-Campos, W.-G. Liang, C.-Q. Xu, and I. Vargas-Baca, “Noise analysis of Second-Harmonic Generation in Undoped and MgO-Doped Periodically Poled Lithium Niobate,” Adv. Optoelectron. 2008(428971), 1–10 (2008).
[Crossref]

Vasilyev, S.

S. Vasilyev, I. S. Moskalev, V. O. Smolski, J. M. Peppers, M. Mirov, A. V. Muraviev, K. Zawilski, P. G. Schunemann, S. B. Mirov, K. L. Vodopyanov, and V. P. Gapontsev, “Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-µm pulses,” Optica 6(1), 111–114 (2019).
[Crossref]

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7(7), 2636–2650 (2017).
[Crossref]

V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6 μm,” Opt. Lett. 40(12), 2906–2908 (2015).
[Crossref] [PubMed]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref] [PubMed]

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
[Crossref]

S. Vasilyev, M. Mirov, and V. Gapontsev, “High Power Kerr-Lens Mode-Locked Femtosecond mid-IR Laser with Efficient Second Harmonic Generation in Polycrystalline Cr2+:ZnS and Cr2+:ZnSe,” in Advanced Solid State Lasers OSA Technical Digest (online), (2014).

Viti, L.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8(11), 841–845 (2014).
[Crossref]

Vitiello, M. S.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8(11), 841–845 (2014).
[Crossref]

Vodopyanov, K. L.

Walsh, M. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Wang, Q.

Wang, Y.

Y. Wang, T. T. Fernandez, N. Coluccelli, A. Gambetta, P. Laporta, and G. Galzerano, “47-fs Kerr-lens mode-locked Cr:ZnSe laser with high spectral purity,” Opt. Express 25(21), 25193–25200 (2017).
[Crossref] [PubMed]

Y. Wang, J. Fonseca-Campos, W.-G. Liang, C.-Q. Xu, and I. Vargas-Baca, “Noise analysis of Second-Harmonic Generation in Undoped and MgO-Doped Periodically Poled Lithium Niobate,” Adv. Optoelectron. 2008(428971), 1–10 (2008).
[Crossref]

Waxman, E. M.

Wei, Z.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Weingarten, K.

White, J. K.

J. Piprek, J. K. White, and A. J. SpringThorpe, “What Limits the Maximum Output Power of Long-Wavelength AlGaInAs/InP Laser Diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).
[Crossref]

Williams, G. P.

Willke, B.

Wittwer, V. J.

Wood, B. R.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Xiao, X.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref] [PubMed]

Xu, C.-Q.

Y. Wang, J. Fonseca-Campos, W.-G. Liang, C.-Q. Xu, and I. Vargas-Baca, “Noise analysis of Second-Harmonic Generation in Undoped and MgO-Doped Periodically Poled Lithium Niobate,” Adv. Optoelectron. 2008(428971), 1–10 (2008).
[Crossref]

Yagi, H.

Yakimovich, V. N.

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, M. Mond, E. Heumann, G. Huber, H. Kretschmann, and S. Kück, “Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals,” Appl. Phys. B 72(2), 253–255 (2001).
[Crossref]

Yanagitani, T.

Ye, J.

Zawilski, K.

Zawilski, K. T.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref] [PubMed]

Ždánský, K.

M. Kot and K. Ždánský, “Measurement of radiative and nonradiative recombination rate in InGaAsP-InP LED’s,” IEEE J. Quantum Electron. 28(8), 1746–1750 (1992).
[Crossref]

Zhang, J.

Q. Wang, J. Zhang, A. Kessel, N. Nagl, V. Pervak, O. Pronin, and K. F. Mak, “Broadband mid-infrared coverage (2-17 μm) with few-cycle pulses via cascaded parametric processes,” Opt. Lett. 44(10), 2566–2569 (2019).
[Crossref] [PubMed]

J. Zhang, K. F. Mak, N. Nagl, M. Seidel, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1,” Light Sci. Appl. 7(2), 17180 (2018).
[Crossref] [PubMed]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Znakovskaya, I.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Zschieschang, U.

Adv. Optoelectron. (1)

Y. Wang, J. Fonseca-Campos, W.-G. Liang, C.-Q. Xu, and I. Vargas-Baca, “Noise analysis of Second-Harmonic Generation in Undoped and MgO-Doped Periodically Poled Lithium Niobate,” Adv. Optoelectron. 2008(428971), 1–10 (2008).
[Crossref]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

J. Haas and B. Mizaikoff, “Advances in Mid-Infrared Spectroscopy for Chemical Analysis,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 45–68 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (2)

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, M. Mond, E. Heumann, G. Huber, H. Kretschmann, and S. Kück, “Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals,” Appl. Phys. B 72(2), 253–255 (2001).
[Crossref]

Biopolymers (1)

H.-Y. N. Holman, M. C. Martin, E. A. Blakely, K. Bjornstad, and W. R. McKinney, “IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy,” Biopolymers 57(6), 329–335 (2000).
[Crossref] [PubMed]

Eur. Polym. J. (1)

G. J. Ellis and M. C. Martin, “Opportunities and challenges for polymer science using synchrotron-based infrared spectroscopy,” Eur. Polym. J. 81, 505–531 (2016).
[Crossref]

IEEE J. Quantum Electron. (3)

M. Kot and K. Ždánský, “Measurement of radiative and nonradiative recombination rate in InGaAsP-InP LED’s,” IEEE J. Quantum Electron. 28(8), 1746–1750 (1992).
[Crossref]

J. Piprek, J. K. White, and A. J. SpringThorpe, “What Limits the Maximum Output Power of Long-Wavelength AlGaInAs/InP Laser Diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).
[Crossref]

M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity noise transfer through a diode-pumped titanium sapphire laser system,” IEEE J. Quantum Electron. 54(1), 1700209 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

R. P. Scott, C. Langrock, and B. H. Kolner, “High-Dynamic-Range Laser Amplitude and Phase Noise Measurement Techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
[Crossref]

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
[Crossref]

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe Thin Disk Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 273–291 (2015).
[Crossref]

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and Its Wavelength and Temperature Derivatives,” J. Phys. Chem. Ref. Data 13(1), 103–150 (1984).
[Crossref]

Light Sci. Appl. (2)

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, and J. Limpert, “Watt-scale super-octave mid-infrared intrapulse difference frequency generation,” Light Sci. Appl. 7(1), 94 (2018).
[Crossref] [PubMed]

J. Zhang, K. F. Mak, N. Nagl, M. Seidel, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1,” Light Sci. Appl. 7(2), 17180 (2018).
[Crossref] [PubMed]

Nat. Photonics (6)

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8(11), 841–845 (2014).
[Crossref]

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12(4), 209–214 (2018).
[Crossref]

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
[Crossref]

Nat. Protoc. (1)

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Opt. Express (6)

F. Mörz, R. Semenyshyn, T. Steinle, F. Neubrech, U. Zschieschang, H. Klauk, A. Steinmann, and H. Giessen, “Nearly diffraction limited FTIR mapping using an ultrastable broadband femtosecond laser tunable from 1.33 to 8 µm,” Opt. Express 25(26), 32355–32363 (2017).
[Crossref]

Y. Wang, T. T. Fernandez, N. Coluccelli, A. Gambetta, P. Laporta, and G. Galzerano, “47-fs Kerr-lens mode-locked Cr:ZnSe laser with high spectral purity,” Opt. Express 25(21), 25193–25200 (2017).
[Crossref] [PubMed]

C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express 20(13), 13677–13683 (2012).
[Crossref] [PubMed]

S. Backus, M. Kirchner, R. Lemons, D. Schmidt, C. Durfee, M. Murnane, and H. Kapteyn, “Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system,” Opt. Express 25(4), 3666–3674 (2017).
[Crossref] [PubMed]

K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, “Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power,” Opt. Express 23(23), 30043–30048 (2015).
[Crossref] [PubMed]

S. Backus, M. Kirchner, C. Durfee, M. Murnane, and H. Kapteyn, “Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode,” Opt. Express 25(11), 12469–12477 (2017).
[Crossref] [PubMed]

Opt. Lett. (7)

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[Crossref] [PubMed]

F. Seifert, P. Kwee, M. Heurs, B. Willke, and K. Danzmann, “Laser power stabilization for second-generation gravitational wave detectors,” Opt. Lett. 31(13), 2000–2002 (2006).
[Crossref] [PubMed]

N. Nagl, K. F. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44(10), 2390–2393 (2019).
[Crossref] [PubMed]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref] [PubMed]

Q. Wang, J. Zhang, A. Kessel, N. Nagl, V. Pervak, O. Pronin, and K. F. Mak, “Broadband mid-infrared coverage (2-17 μm) with few-cycle pulses via cascaded parametric processes,” Opt. Lett. 44(10), 2566–2569 (2019).
[Crossref] [PubMed]

N. Tolstik, E. Sorokin, and I. T. Sorokina, “Kerr-lens mode-locked Cr:ZnS laser,” Opt. Lett. 38(3), 299–301 (2013).
[Crossref] [PubMed]

V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6 μm,” Opt. Lett. 40(12), 2906–2908 (2015).
[Crossref] [PubMed]

Opt. Mater. (1)

A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Concentration dependence of fluorescence and lasing efficiency in Cr2+:ZnSe lasers,” Opt. Mater. 29(6), 703–708 (2007).
[Crossref]

Opt. Mater. Express (1)

Optica (1)

OSA Trends in Optics and Photonics: Advanced Solid State Lasers (1)

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, “Demonstrations of diode-pumped and grating-tuned ZnSe:Cr2+ lasers,” OSA Trends in Optics and Photonics: Advanced Solid State Lasers 10, 208–210 (1997).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7191–7196 (2014).
[Crossref] [PubMed]

Proc. SPIE (1)

I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “InP diode-pumped Cr:ZnS and Cr:ZnSe highly-efficient, widely-tunable, mid-IR lasers,” Proc. SPIE 7578, 75781K (2010).
[Crossref]

Rev. Mod. Phys. (1)

P. Dutta and P. M. Horn, “Low-frequency fluctuations in solids: 1/f noise,” Rev. Mod. Phys. 53(3), 497–516 (1981).
[Crossref]

Sci. Adv. (1)

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref] [PubMed]

Other (7)

E. Sorokin and I. T. Sorokina, “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” in CLEO Europe - EQEC Conference, CLEO/Europe and EQEC 2009 Conference Digest (Optical Society of America), paper CF1_3 (2009).
[Crossref]

P. Hannaford, Femtosecond Laser Spectroscopy, 1 ed. (Springer-Verlag, 2005).

G. J. Wagner, A. M. Schober, G. T. Bennett, D. L. Bruns, J. H. Marquardt, and T. J. Carrig, “Multi-Watt Broadly-Tunable Diode-Pumped Cr:ZnSe Laser,” in 2012 Conference on Lasers and Electro-Optics (CLEO; Optical Society of America) paper CTu2D.2 (2012).

E. Slobodtchikov and P. F. Moulton, “Progress in ultrafast Cr:ZnSe lasers,” in Lasers, Sources, and Related Photonic Devices OSA Technical Digest (CD, Optical Society of America), paper AW5A.4 (2012)

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared Coherent Sources and Applications (Springer-Verlag, 2008).

J. Zhang, J. Brons, M. Seidel, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, “49-fs Yb:YAG thin-disk oscillator with distributed Kerr-lens mode-locking,” in 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (Optical Society of America), paper PD_A_1, (2015).

S. Vasilyev, M. Mirov, and V. Gapontsev, “High Power Kerr-Lens Mode-Locked Femtosecond mid-IR Laser with Efficient Second Harmonic Generation in Polycrystalline Cr2+:ZnS and Cr2+:ZnSe,” in Advanced Solid State Lasers OSA Technical Digest (online), (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the setup and simulated pump propagation. (a) Experimental setup. CM: curved mirror (CM1: ROC = 200 mm, CM2: ROC = 100 mm, A: aspheric lens (A1: f = 4.51 mm A2: f = 50 mm), C1: convex cylindrical lens (f = 400 mm), M: Brewster-oriented material (M1: 3 mm YAG, M2: 3 mm sapphire), TM: TOD mirror, OC: output coupler (34%), ZnSe: 5 mm AR-coated substrate used to re-compress the pulses. Non-labelled mirrors as well as the input coupler (IC) are highly-reflective coated (2.0 µm – 2.6 µm) and transmit the pump light. (b) Simulated pump propagation for the fast and slow axis. The theoretical pump spot diameter of 48 µm (fast) x 94 µm (slow), calculated from the measured beam divergences and radii, matches very well with the experimental results (50 µm x 90 µm).
Fig. 2
Fig. 2 Output characteristics of the oscillator. (a)-(b) Measured and retrieved FROG traces for temporal characterization. (c) Retrieved FROG results in the spectral domain, including the measured output spectrum in grey for comparison. (d) Temporal profile of the retrieved pulse, showing a FWHM pulse duration of 45 fs and the corresponding Fourier-transform limit of 41 fs in grey-scale. (e) Mode-locked output power stability over 3 hours, where the inset shows the corresponding beam profile and the M2-measurement for the horizontal/vertical axis.
Fig. 3
Fig. 3 Amplitude noise measurements. (a) The RIN and integrated noise are shown for the frequency-doubled (2f) diode-pumped laser pulses (blue) and the background (grey). The data was taken in a 1 MHz-span, with the integration starting at 1 MHz and ending at 20 Hz. For comparison, the corresponding data of the fundamental (f) is added when the oscillator was pumped by a commercial fiber laser. (b) The relative intensity noise was measured in a broader range up to 4 MHz, where the noise signal drops back to the background noise floor at frequencies around 2 MHz.
Fig. 4
Fig. 4 Theoretical dispersion curves of intracavity elements. The single-pass GDD of incorporated material as well as the dispersion introduced by one TOD mirror are shown along with the total dispersion per cavity round-trip.
Fig. 5
Fig. 5 Setup for measuring amplitude noise. LD: pump laser diode, ZnSe: 5 mm AR-coated substrate for pulse re-compression, L1: parabolic silver mirror (f = 7 mm), PPLN: periodically-poled lithium niobate for second-harmonic generation, L2: BK-7 lens (f = 15 mm), BP: bandpass filter at 1.2 µm (Thorlabs, FB1200-10), ND: neutral density filter wheel, M1: dielectric mirror (Thorlabs, BB1-E03), L3: AR-coated UVFS lens (f = 50 mm), PD: biased InGaAs photodetector, RF analyzer: radio-frequency spectrum analyzer for noise detection. Non-labelled mirrors are coated for high reflection.