Abstract

Tm:LuYO3 mixed ceramic was successfully fabricated by the solid-state reactive sintering method. The absorption cross section and emission cross section were studied at room temperature. The fluorescence lifetime of 3F4 energy level was fitted to be 2.6 ms. A continuous-wave (CW) laser operation of Tm:LuYO3 ceramic, pumped at 796 nm, was realized with the output power of 1.2 W and slope efficiency of 25.1%. A mode-locking (ML) laser operation of Tm:LuYO3 ceramic was demonstrated for the first time with pulse duration of 41 ps and pulse repetition frequency of 139.3 MHz.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
First laser oscillation of diode-pumped Tm3+-doped LuScO3 mixed sesquioxide ceramic

Xiaodong Xu, Zongwen Hu, Dongzhen Li, Peng Liu, Jian Zhang, Bin Xu, and Jun Xu
Opt. Express 25(13) 15322-15329 (2017)

Synthesis, spectroscopy, and efficient laser operation of “mixed” sesquioxide Tm:(Lu,Sc)2O3 transparent ceramics

Wei Jing, Pavel Loiko, Josep Maria Serres, Yicheng Wang, Elena Vilejshikova, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, Hui Huang, Valentin Petrov, and Xavier Mateos
Opt. Mater. Express 7(11) 4192-4202 (2017)

11 W continuous-wave laser operation at 2.09 μm in Tm:Lu1.6Sc0.4O3 mixed sesquioxide ceramics pumped by a 796 nm laser diode

Zhendong Hao, Liangliang Zhang, Yunpeng Wang, Hao Wu, Guo-Hui Pan, Huajun Wu, Xia Zhang, Dongxu Zhao, and Jiahua Zhang
Opt. Mater. Express 8(11) 3615-3621 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Gibert, D. Edouart, C. Cénac, and F. L. Mounier, “2-µm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B: Lasers Opt. 116(4), 967–976 (2014).
    [Crossref]
  2. W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium-doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
    [Crossref]
  3. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm: YAG and Tm: YSGG cw lasers,” Opt. Lett. 15(9), 486–488 (1990).
    [Crossref]
  4. P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3: Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
    [Crossref]
  5. W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 µm Tm: YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
    [Crossref]
  6. Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
    [Crossref]
  7. Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
    [Crossref]
  8. J. Lan, X. Zhang, Z. Zhou, B. Xu, H. Xu, Z. Cai, N. Chen, J. Wang, X. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm: CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
    [Crossref]
  9. M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B: Lasers Opt. 91(1), 71–74 (2008).
    [Crossref]
  10. P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
    [Crossref]
  11. A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and cw operation of a 1.85 µm Tm: KY3F10 laser,” Appl. Phys. B: Lasers Opt. 72(8), 909–912 (2001).
    [Crossref]
  12. R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B: Lasers Opt. 102(3), 509–514 (2011).
    [Crossref]
  13. A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express 20(17), 19349–19354 (2012).
    [Crossref]
  14. O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2(2), 183–189 (2012).
    [Crossref]
  15. P. A. Ryabochkina, A. N. Chabushkin, Y. L. Kopylov, V. V. Balashov, and K. V. Lopukhin, “Two-micron lasing in diode-pumped Tm:Y2O3 ceramics,” Quantum Electron. 46(7), 597–600 (2016).
    [Crossref]
  16. H. Wang, H. Huang, P. Liu, L. Jin, D. Shen, J. Zhang, and D. Tang, “Diode-pumped continuous-wave and Q-switched Tm:Y2O3 ceramic laser around 2050 nm,” Opt. Mater. Express 7(2), 296–303 (2017).
    [Crossref]
  17. X. Xu, Z. Hu, D. Li, P. Liu, J. Zhang, B. Xu, and J. Xu, “First laser oscillation of diode-pumped Tm3+-doped LuScO3 mixed sesquioxide ceramic,” Opt. Express 25(13), 15322–15329 (2017).
    [Crossref]
  18. W. Jing, P. Loiko, J. M. Serres, Y. Wang, E. Vilejshikova, M. Aguiló, F. Diaz, U. Griebner, H. Huang, V. Petrov, and X. Mateos, “Synthesis, spectroscopy, and efficient laser operation of “mixed” sesquioxide Tm:(Lu, Sc)2O3 transparent ceramics,” Opt. Mater. Express 7(11), 4192–4202 (2017).
    [Crossref]
  19. Z. Zhou, X. Guan, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, P. Liu, D. Li, J. Zhang, and J. Xu, “Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05 µm source operating in continuous-wave and passive Q-switching regimes,” Opt. Lett. 42(19), 3781–3784 (2017).
    [Crossref]
  20. D. Yan, X. Xu, H. Lu, Y. Wang, P. Liu, and J. Zhang, “Fabrication and properties of Y2O3 transparent ceramic by sintering aid combinations,” Ceram. Int. 42(15), 16640–16643 (2016).
    [Crossref]
  21. A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
    [Crossref]
  22. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  23. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  24. J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378 (2014).
    [Crossref]
  25. B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
    [Crossref]
  26. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
    [Crossref]
  27. K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
    [Crossref]
  28. W. Zhao, W. Zhou, X. Huang, G. Wang, Y. Yu, L. Li, J. Huang, J. Du, H. Yu, Z. Lv, and Y. H. Chen, “Optical spectroscopy of Tm3+ in a locally disordered Li2Gd4(MoO4)7 crystal: A candidate for tunable and ultrafast pulse lasers,” J. Alloys Compd. 515, 74–79 (2012).
    [Crossref]
  29. M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 µm emission,” J. Lumin. 132(7), 1830–1835 (2012).
    [Crossref]
  30. K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
    [Crossref]
  31. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5(7), 1412–1423 (1988).
    [Crossref]
  32. D. Mao, B. Jiang, W. Zhang, and J. Zhao, “Pulse-state switchable fiber laser mode-locked by carbon nanotubes,” IEEE Photonics Technol. Lett. 27(3), 1 (2015).
    [Crossref]
  33. G. J. Quarles, A. Rosenbaum, C. L. Marquardt, and L. Esterowitz, “Efficient room-temperature operation of a flash-lamp-pumped, Cr,Tm:YAG laser at 2.01 µm,” Opt. Lett. 15(1), 42–44 (1990).
    [Crossref]
  34. G. J. Quarles, A. Rosenbaum, C. L. Marquardt, and L. Esterowitz, “High-efficiency 2.09 µm flashlamp-pumped laser,” Appl. Phys. Lett. 55(11), 1062–1064 (1989).
    [Crossref]

2017 (6)

2016 (3)

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3: Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
[Crossref]

P. A. Ryabochkina, A. N. Chabushkin, Y. L. Kopylov, V. V. Balashov, and K. V. Lopukhin, “Two-micron lasing in diode-pumped Tm:Y2O3 ceramics,” Quantum Electron. 46(7), 597–600 (2016).
[Crossref]

D. Yan, X. Xu, H. Lu, Y. Wang, P. Liu, and J. Zhang, “Fabrication and properties of Y2O3 transparent ceramic by sintering aid combinations,” Ceram. Int. 42(15), 16640–16643 (2016).
[Crossref]

2015 (1)

D. Mao, B. Jiang, W. Zhang, and J. Zhao, “Pulse-state switchable fiber laser mode-locked by carbon nanotubes,” IEEE Photonics Technol. Lett. 27(3), 1 (2015).
[Crossref]

2014 (3)

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378 (2014).
[Crossref]

F. Gibert, D. Edouart, C. Cénac, and F. L. Mounier, “2-µm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B: Lasers Opt. 116(4), 967–976 (2014).
[Crossref]

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium-doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

2013 (1)

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

2012 (5)

W. Zhao, W. Zhou, X. Huang, G. Wang, Y. Yu, L. Li, J. Huang, J. Du, H. Yu, Z. Lv, and Y. H. Chen, “Optical spectroscopy of Tm3+ in a locally disordered Li2Gd4(MoO4)7 crystal: A candidate for tunable and ultrafast pulse lasers,” J. Alloys Compd. 515, 74–79 (2012).
[Crossref]

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 µm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2(2), 183–189 (2012).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 µm Tm: YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref]

A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express 20(17), 19349–19354 (2012).
[Crossref]

2011 (1)

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B: Lasers Opt. 102(3), 509–514 (2011).
[Crossref]

2008 (1)

M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B: Lasers Opt. 91(1), 71–74 (2008).
[Crossref]

2005 (1)

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

2004 (2)

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

2001 (1)

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and cw operation of a 1.85 µm Tm: KY3F10 laser,” Appl. Phys. B: Lasers Opt. 72(8), 909–912 (2001).
[Crossref]

1998 (1)

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

1993 (1)

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
[Crossref]

1990 (2)

1989 (1)

G. J. Quarles, A. Rosenbaum, C. L. Marquardt, and L. Esterowitz, “High-efficiency 2.09 µm flashlamp-pumped laser,” Appl. Phys. Lett. 55(11), 1062–1064 (1989).
[Crossref]

1988 (1)

1982 (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Aggarwal, I.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium-doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Aguiló, M.

Antipov, O. L.

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Baer, C. R. E.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B: Lasers Opt. 102(3), 509–514 (2011).
[Crossref]

Bai, G.

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 µm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

Baker, C.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium-doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Balashov, V. V.

P. A. Ryabochkina, A. N. Chabushkin, Y. L. Kopylov, V. V. Balashov, and K. V. Lopukhin, “Two-micron lasing in diode-pumped Tm:Y2O3 ceramics,” Quantum Electron. 46(7), 597–600 (2016).
[Crossref]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

Bartolo, B. D.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

Beil, K.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B: Lasers Opt. 102(3), 509–514 (2011).
[Crossref]

Bowman, S. R.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium-doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Braud, A.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and cw operation of a 1.85 µm Tm: KY3F10 laser,” Appl. Phys. B: Lasers Opt. 72(8), 909–912 (2001).
[Crossref]

Cai, Z.

J. Lan, X. Zhang, Z. Zhou, B. Xu, H. Xu, Z. Cai, N. Chen, J. Wang, X. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm: CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Z. Zhou, X. Guan, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, P. Liu, D. Li, J. Zhang, and J. Xu, “Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05 µm source operating in continuous-wave and passive Q-switching regimes,” Opt. Lett. 42(19), 3781–3784 (2017).
[Crossref]

Camy, P.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

Cénac, C.

F. Gibert, D. Edouart, C. Cénac, and F. L. Mounier, “2-µm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B: Lasers Opt. 116(4), 967–976 (2014).
[Crossref]

Chabushkin, A. N.

P. A. Ryabochkina, A. N. Chabushkin, Y. L. Kopylov, V. V. Balashov, and K. V. Lopukhin, “Two-micron lasing in diode-pumped Tm:Y2O3 ceramics,” Quantum Electron. 46(7), 597–600 (2016).
[Crossref]

Chen, N.

J. Lan, X. Zhang, Z. Zhou, B. Xu, H. Xu, Z. Cai, N. Chen, J. Wang, X. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm: CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Chen, Y. H.

W. Zhao, W. Zhou, X. Huang, G. Wang, Y. Yu, L. Li, J. Huang, J. Du, H. Yu, Z. Lv, and Y. H. Chen, “Optical spectroscopy of Tm3+ in a locally disordered Li2Gd4(MoO4)7 crystal: A candidate for tunable and ultrafast pulse lasers,” J. Alloys Compd. 515, 74–79 (2012).
[Crossref]

Di, J.

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378 (2014).
[Crossref]

Diaz, F.

Doualan, J. L.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and cw operation of a 1.85 µm Tm: KY3F10 laser,” Appl. Phys. B: Lasers Opt. 72(8), 909–912 (2001).
[Crossref]

Du, J.

W. Zhao, W. Zhou, X. Huang, G. Wang, Y. Yu, L. Li, J. Huang, J. Du, H. Yu, Z. Lv, and Y. H. Chen, “Optical spectroscopy of Tm3+ in a locally disordered Li2Gd4(MoO4)7 crystal: A candidate for tunable and ultrafast pulse lasers,” J. Alloys Compd. 515, 74–79 (2012).
[Crossref]

Edouart, D.

F. Gibert, D. Edouart, C. Cénac, and F. L. Mounier, “2-µm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B: Lasers Opt. 116(4), 967–976 (2014).
[Crossref]

Esterowitz, L.

Fagundes-Peters, D.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Fredrich-Thornton, S. T.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B: Lasers Opt. 102(3), 509–514 (2011).
[Crossref]

Gao, W. L.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 µm Tm: YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref]

Gibert, F.

F. Gibert, D. Edouart, C. Cénac, and F. L. Mounier, “2-µm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B: Lasers Opt. 116(4), 967–976 (2014).
[Crossref]

Giesen, A.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Griebner, U.

Guan, X.

Guo, Y.

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 µm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

Heckl, O. H.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B: Lasers Opt. 102(3), 509–514 (2011).
[Crossref]

Hu, L.

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 µm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

Hu, Z.

Huang, H.

Huang, J.

W. Zhao, W. Zhou, X. Huang, G. Wang, Y. Yu, L. Li, J. Huang, J. Du, H. Yu, Z. Lv, and Y. H. Chen, “Optical spectroscopy of Tm3+ in a locally disordered Li2Gd4(MoO4)7 crystal: A candidate for tunable and ultrafast pulse lasers,” J. Alloys Compd. 515, 74–79 (2012).
[Crossref]

Huang, X.

Z. Zhou, X. Guan, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, P. Liu, D. Li, J. Zhang, and J. Xu, “Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05 µm source operating in continuous-wave and passive Q-switching regimes,” Opt. Lett. 42(19), 3781–3784 (2017).
[Crossref]

W. Zhao, W. Zhou, X. Huang, G. Wang, Y. Yu, L. Li, J. Huang, J. Du, H. Yu, Z. Lv, and Y. H. Chen, “Optical spectroscopy of Tm3+ in a locally disordered Li2Gd4(MoO4)7 crystal: A candidate for tunable and ultrafast pulse lasers,” J. Alloys Compd. 515, 74–79 (2012).
[Crossref]

Huber, G.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B: Lasers Opt. 102(3), 509–514 (2011).
[Crossref]

Hunt, M.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium-doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Jiang, B.

D. Mao, B. Jiang, W. Zhang, and J. Zhao, “Pulse-state switchable fiber laser mode-locked by carbon nanotubes,” IEEE Photonics Technol. Lett. 27(3), 1 (2015).
[Crossref]

Jin, L.

Jing, W.

Johannsen, J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Keller, U.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B: Lasers Opt. 102(3), 509–514 (2011).
[Crossref]

Kim, W.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium-doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Kisel’, V. E.

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Kopylov, Y. L.

P. A. Ryabochkina, A. N. Chabushkin, Y. L. Kopylov, V. V. Balashov, and K. V. Lopukhin, “Two-micron lasing in diode-pumped Tm:Y2O3 ceramics,” Quantum Electron. 46(7), 597–600 (2016).
[Crossref]

Kränkel, C.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B: Lasers Opt. 102(3), 509–514 (2011).
[Crossref]

Kuleshov, N. V.

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Lagatsky, A. A.

Lan, J.

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

J. Lan, X. Zhang, Z. Zhou, B. Xu, H. Xu, Z. Cai, N. Chen, J. Wang, X. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm: CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Li, D.

Li, L.

W. Zhao, W. Zhou, X. Huang, G. Wang, Y. Yu, L. Li, J. Huang, J. Du, H. Yu, Z. Lv, and Y. H. Chen, “Optical spectroscopy of Tm3+ in a locally disordered Li2Gd4(MoO4)7 crystal: A candidate for tunable and ultrafast pulse lasers,” J. Alloys Compd. 515, 74–79 (2012).
[Crossref]

Li, M.

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 µm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

Liu, J. G.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

Liu, P.

Loiko, P.

Lopukhin, K. V.

P. A. Ryabochkina, A. N. Chabushkin, Y. L. Kopylov, V. V. Balashov, and K. V. Lopukhin, “Two-micron lasing in diode-pumped Tm:Y2O3 ceramics,” Quantum Electron. 46(7), 597–600 (2016).
[Crossref]

Lu, H.

D. Yan, X. Xu, H. Lu, Y. Wang, P. Liu, and J. Zhang, “Fabrication and properties of Y2O3 transparent ceramic by sintering aid combinations,” Ceram. Int. 42(15), 16640–16643 (2016).
[Crossref]

Luo, D. W.

Lv, Z.

W. Zhao, W. Zhou, X. Huang, G. Wang, Y. Yu, L. Li, J. Huang, J. Du, H. Yu, Z. Lv, and Y. H. Chen, “Optical spectroscopy of Tm3+ in a locally disordered Li2Gd4(MoO4)7 crystal: A candidate for tunable and ultrafast pulse lasers,” J. Alloys Compd. 515, 74–79 (2012).
[Crossref]

Ma, J.

Mandrik, A. V.

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Mao, D.

D. Mao, B. Jiang, W. Zhang, and J. Zhao, “Pulse-state switchable fiber laser mode-locked by carbon nanotubes,” IEEE Photonics Technol. Lett. 27(3), 1 (2015).
[Crossref]

Marquardt, C. L.

G. J. Quarles, A. Rosenbaum, C. L. Marquardt, and L. Esterowitz, “Efficient room-temperature operation of a flash-lamp-pumped, Cr,Tm:YAG laser at 2.01 µm,” Opt. Lett. 15(1), 42–44 (1990).
[Crossref]

G. J. Quarles, A. Rosenbaum, C. L. Marquardt, and L. Esterowitz, “High-efficiency 2.09 µm flashlamp-pumped laser,” Appl. Phys. Lett. 55(11), 1062–1064 (1989).
[Crossref]

Mateos, X.

Ménard, V.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

Moncorgé, R.

J. Lan, X. Zhang, Z. Zhou, B. Xu, H. Xu, Z. Cai, N. Chen, J. Wang, X. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm: CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and cw operation of a 1.85 µm Tm: KY3F10 laser,” Appl. Phys. B: Lasers Opt. 72(8), 909–912 (2001).
[Crossref]

Mond, M.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Mounier, F. L.

F. Gibert, D. Edouart, C. Cénac, and F. L. Mounier, “2-µm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B: Lasers Opt. 116(4), 967–976 (2014).
[Crossref]

Novikov, A. A.

Obara, M.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Ohta, K.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
[Crossref]

Petermann, K.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B: Lasers Opt. 102(3), 509–514 (2011).
[Crossref]

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Peters, R.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B: Lasers Opt. 102(3), 509–514 (2011).
[Crossref]

Peters, V.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Petrov, V.

Pollnau, M.

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3: Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
[Crossref]

Qian, L. J.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 µm Tm: YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref]

Qin, Z. P.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

Quarles, G. J.

G. J. Quarles, A. Rosenbaum, C. L. Marquardt, and L. Esterowitz, “Efficient room-temperature operation of a flash-lamp-pumped, Cr,Tm:YAG laser at 2.01 µm,” Opt. Lett. 15(1), 42–44 (1990).
[Crossref]

G. J. Quarles, A. Rosenbaum, C. L. Marquardt, and L. Esterowitz, “High-efficiency 2.09 µm flashlamp-pumped laser,” Appl. Phys. Lett. 55(11), 1062–1064 (1989).
[Crossref]

Renard, S.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

Risk, W. P.

Romero, J. J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Rosenbaum, A.

G. J. Quarles, A. Rosenbaum, C. L. Marquardt, and L. Esterowitz, “Efficient room-temperature operation of a flash-lamp-pumped, Cr,Tm:YAG laser at 2.01 µm,” Opt. Lett. 15(1), 42–44 (1990).
[Crossref]

G. J. Quarles, A. Rosenbaum, C. L. Marquardt, and L. Esterowitz, “High-efficiency 2.09 µm flashlamp-pumped laser,” Appl. Phys. Lett. 55(11), 1062–1064 (1989).
[Crossref]

Ryabochkina, P. A.

P. A. Ryabochkina, A. N. Chabushkin, Y. L. Kopylov, V. V. Balashov, and K. V. Lopukhin, “Two-micron lasing in diode-pumped Tm:Y2O3 ceramics,” Quantum Electron. 46(7), 597–600 (2016).
[Crossref]

Sadowski, B.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium-doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Sai, Q.

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378 (2014).
[Crossref]

Saito, H.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
[Crossref]

Sanghera, J.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium-doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Saraceno, C. J.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B: Lasers Opt. 102(3), 509–514 (2011).
[Crossref]

Schellhorn, M.

M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B: Lasers Opt. 91(1), 71–74 (2008).
[Crossref]

Serres, J. M.

Shaw, B.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium-doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Shcherbitskii, V. G.

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Shen, D.

Sibbett, W.

Soulard, R.

J. Lan, X. Zhang, Z. Zhou, B. Xu, H. Xu, Z. Cai, N. Chen, J. Wang, X. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm: CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Stoneman, R. C.

Südmeyer, T.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B: Lasers Opt. 102(3), 509–514 (2011).
[Crossref]

Tang, D.

Tang, D. Y.

Tigreat, P. Y.

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and cw operation of a 1.85 µm Tm: KY3F10 laser,” Appl. Phys. B: Lasers Opt. 72(8), 909–912 (2001).
[Crossref]

Tu, C.

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Vilejshikova, E.

Villalobos, G.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium-doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

Wang, G.

W. Zhao, W. Zhou, X. Huang, G. Wang, Y. Yu, L. Li, J. Huang, J. Du, H. Yu, Z. Lv, and Y. H. Chen, “Optical spectroscopy of Tm3+ in a locally disordered Li2Gd4(MoO4)7 crystal: A candidate for tunable and ultrafast pulse lasers,” J. Alloys Compd. 515, 74–79 (2012).
[Crossref]

Wang, H.

Wang, J.

J. Lan, X. Zhang, Z. Zhou, B. Xu, H. Xu, Z. Cai, N. Chen, J. Wang, X. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm: CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Wang, Y.

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

W. Jing, P. Loiko, J. M. Serres, Y. Wang, E. Vilejshikova, M. Aguiló, F. Diaz, U. Griebner, H. Huang, V. Petrov, and X. Mateos, “Synthesis, spectroscopy, and efficient laser operation of “mixed” sesquioxide Tm:(Lu, Sc)2O3 transparent ceramics,” Opt. Mater. Express 7(11), 4192–4202 (2017).
[Crossref]

D. Yan, X. Xu, H. Lu, Y. Wang, P. Liu, and J. Zhang, “Fabrication and properties of Y2O3 transparent ceramic by sintering aid combinations,” Ceram. Int. 42(15), 16640–16643 (2016).
[Crossref]

Xia, C.

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378 (2014).
[Crossref]

Xie, G. Q.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 µm Tm: YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref]

Xu, B.

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

J. Lan, X. Zhang, Z. Zhou, B. Xu, H. Xu, Z. Cai, N. Chen, J. Wang, X. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm: CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

X. Xu, Z. Hu, D. Li, P. Liu, J. Zhang, B. Xu, and J. Xu, “First laser oscillation of diode-pumped Tm3+-doped LuScO3 mixed sesquioxide ceramic,” Opt. Express 25(13), 15322–15329 (2017).
[Crossref]

Z. Zhou, X. Guan, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, P. Liu, D. Li, J. Zhang, and J. Xu, “Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05 µm source operating in continuous-wave and passive Q-switching regimes,” Opt. Lett. 42(19), 3781–3784 (2017).
[Crossref]

Xu, H.

Z. Zhou, X. Guan, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, P. Liu, D. Li, J. Zhang, and J. Xu, “Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05 µm source operating in continuous-wave and passive Q-switching regimes,” Opt. Lett. 42(19), 3781–3784 (2017).
[Crossref]

J. Lan, X. Zhang, Z. Zhou, B. Xu, H. Xu, Z. Cai, N. Chen, J. Wang, X. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm: CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Xu, J.

X. Xu, Z. Hu, D. Li, P. Liu, J. Zhang, B. Xu, and J. Xu, “First laser oscillation of diode-pumped Tm3+-doped LuScO3 mixed sesquioxide ceramic,” Opt. Express 25(13), 15322–15329 (2017).
[Crossref]

Z. Zhou, X. Guan, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, P. Liu, D. Li, J. Zhang, and J. Xu, “Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05 µm source operating in continuous-wave and passive Q-switching regimes,” Opt. Lett. 42(19), 3781–3784 (2017).
[Crossref]

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378 (2014).
[Crossref]

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

Xu, X.

J. Lan, X. Zhang, Z. Zhou, B. Xu, H. Xu, Z. Cai, N. Chen, J. Wang, X. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm: CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

X. Xu, Z. Hu, D. Li, P. Liu, J. Zhang, B. Xu, and J. Xu, “First laser oscillation of diode-pumped Tm3+-doped LuScO3 mixed sesquioxide ceramic,” Opt. Express 25(13), 15322–15329 (2017).
[Crossref]

Z. Zhou, X. Guan, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, P. Liu, D. Li, J. Zhang, and J. Xu, “Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05 µm source operating in continuous-wave and passive Q-switching regimes,” Opt. Lett. 42(19), 3781–3784 (2017).
[Crossref]

D. Yan, X. Xu, H. Lu, Y. Wang, P. Liu, and J. Zhang, “Fabrication and properties of Y2O3 transparent ceramic by sintering aid combinations,” Ceram. Int. 42(15), 16640–16643 (2016).
[Crossref]

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378 (2014).
[Crossref]

Xu, X. D.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

Yan, D.

D. Yan, X. Xu, H. Lu, Y. Wang, P. Liu, and J. Zhang, “Fabrication and properties of Y2O3 transparent ceramic by sintering aid combinations,” Ceram. Int. 42(15), 16640–16643 (2016).
[Crossref]

Yang, H.

Yasyukevich, A. S.

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Yu, H.

W. Zhao, W. Zhou, X. Huang, G. Wang, Y. Yu, L. Li, J. Huang, J. Du, H. Yu, Z. Lv, and Y. H. Chen, “Optical spectroscopy of Tm3+ in a locally disordered Li2Gd4(MoO4)7 crystal: A candidate for tunable and ultrafast pulse lasers,” J. Alloys Compd. 515, 74–79 (2012).
[Crossref]

Yu, Y.

W. Zhao, W. Zhou, X. Huang, G. Wang, Y. Yu, L. Li, J. Huang, J. Du, H. Yu, Z. Lv, and Y. H. Chen, “Optical spectroscopy of Tm3+ in a locally disordered Li2Gd4(MoO4)7 crystal: A candidate for tunable and ultrafast pulse lasers,” J. Alloys Compd. 515, 74–79 (2012).
[Crossref]

Yuan, P.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 µm Tm: YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref]

Zakharov, N. G.

Zhang, J.

Zhang, W.

D. Mao, B. Jiang, W. Zhang, and J. Zhao, “Pulse-state switchable fiber laser mode-locked by carbon nanotubes,” IEEE Photonics Technol. Lett. 27(3), 1 (2015).
[Crossref]

Zhang, X.

J. Lan, X. Zhang, Z. Zhou, B. Xu, H. Xu, Z. Cai, N. Chen, J. Wang, X. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm: CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Zhao, J.

D. Mao, B. Jiang, W. Zhang, and J. Zhao, “Pulse-state switchable fiber laser mode-locked by carbon nanotubes,” IEEE Photonics Technol. Lett. 27(3), 1 (2015).
[Crossref]

Zhao, W.

W. Zhao, W. Zhou, X. Huang, G. Wang, Y. Yu, L. Li, J. Huang, J. Du, H. Yu, Z. Lv, and Y. H. Chen, “Optical spectroscopy of Tm3+ in a locally disordered Li2Gd4(MoO4)7 crystal: A candidate for tunable and ultrafast pulse lasers,” J. Alloys Compd. 515, 74–79 (2012).
[Crossref]

Zhou, D.

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378 (2014).
[Crossref]

Zhou, D. H.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

Zhou, W.

W. Zhao, W. Zhou, X. Huang, G. Wang, Y. Yu, L. Li, J. Huang, J. Du, H. Yu, Z. Lv, and Y. H. Chen, “Optical spectroscopy of Tm3+ in a locally disordered Li2Gd4(MoO4)7 crystal: A candidate for tunable and ultrafast pulse lasers,” J. Alloys Compd. 515, 74–79 (2012).
[Crossref]

Zhou, Z.

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

J. Lan, X. Zhang, Z. Zhou, B. Xu, H. Xu, Z. Cai, N. Chen, J. Wang, X. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm: CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Z. Zhou, X. Guan, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, P. Liu, D. Li, J. Zhang, and J. Xu, “Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05 µm source operating in continuous-wave and passive Q-switching regimes,” Opt. Lett. 42(19), 3781–3784 (2017).
[Crossref]

Zinoviev, A. P.

Appl. Phys. B: Lasers Opt. (4)

F. Gibert, D. Edouart, C. Cénac, and F. L. Mounier, “2-µm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B: Lasers Opt. 116(4), 967–976 (2014).
[Crossref]

M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B: Lasers Opt. 91(1), 71–74 (2008).
[Crossref]

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and cw operation of a 1.85 µm Tm: KY3F10 laser,” Appl. Phys. B: Lasers Opt. 72(8), 909–912 (2001).
[Crossref]

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B: Lasers Opt. 102(3), 509–514 (2011).
[Crossref]

Appl. Phys. Lett. (1)

G. J. Quarles, A. Rosenbaum, C. L. Marquardt, and L. Esterowitz, “High-efficiency 2.09 µm flashlamp-pumped laser,” Appl. Phys. Lett. 55(11), 1062–1064 (1989).
[Crossref]

Ceram. Int. (1)

D. Yan, X. Xu, H. Lu, Y. Wang, P. Liu, and J. Zhang, “Fabrication and properties of Y2O3 transparent ceramic by sintering aid combinations,” Ceram. Int. 42(15), 16640–16643 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. Mao, B. Jiang, W. Zhang, and J. Zhao, “Pulse-state switchable fiber laser mode-locked by carbon nanotubes,” IEEE Photonics Technol. Lett. 27(3), 1 (2015).
[Crossref]

J. Lan, X. Zhang, Z. Zhou, B. Xu, H. Xu, Z. Cai, N. Chen, J. Wang, X. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm: CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

J. Alloys Compd. (1)

W. Zhao, W. Zhou, X. Huang, G. Wang, Y. Yu, L. Li, J. Huang, J. Du, H. Yu, Z. Lv, and Y. H. Chen, “Optical spectroscopy of Tm3+ in a locally disordered Li2Gd4(MoO4)7 crystal: A candidate for tunable and ultrafast pulse lasers,” J. Alloys Compd. 515, 74–79 (2012).
[Crossref]

J. Appl. Phys. (2)

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
[Crossref]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

J. Appl. Spectrosc. (1)

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

J. Cryst. Growth (1)

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

J. Lumin. (1)

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8 µm emission,” J. Lumin. 132(7), 1830–1835 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3: Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
[Crossref]

Laser Phys. (1)

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

Mater. Res. Bull. (1)

J. Di, X. Xu, C. Xia, D. Zhou, Q. Sai, and J. Xu, “Growth, crystal structure and optical study of Tm:LuYSiO5 single crystal,” Mater. Res. Bull. 50, 374–378 (2014).
[Crossref]

Opt. Commun. (1)

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Opt. Mater. (1)

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Opt. Mater. Express (3)

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Proc. SPIE (1)

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium-doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Quantum Electron. (1)

P. A. Ryabochkina, A. N. Chabushkin, Y. L. Kopylov, V. V. Balashov, and K. V. Lopukhin, “Two-micron lasing in diode-pumped Tm:Y2O3 ceramics,” Quantum Electron. 46(7), 597–600 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Absorption spectrum of Tm:LuYO3 ceramic.
Fig. 2.
Fig. 2. Fluorescence spectrum and emission cross section of Tm:LuYO3 ceramic.
Fig. 3.
Fig. 3. Fluorescence decay curve of 3F4 energy level of Tm:LuYO3 ceramic.
Fig. 4.
Fig. 4. Experimental setup of Tm:LuYO3 ceramic laser in CW regime.
Fig. 5.
Fig. 5. Output power versus absorbed power of CW Tm:LuYO3 ceramic laser.
Fig. 6.
Fig. 6. Laser spectrum of CW Tm:LuYO3 ceramic.
Fig. 7.
Fig. 7. Experimental setup of Tm:LuYO3 ceramic laser in mode-locked regime.
Fig. 8.
Fig. 8. Output power versus absorbed power of mode-locked Tm:LuYO3 ceramic laser.
Fig. 9.
Fig. 9. Mode-locked pulse trains in the time scale of 20 ns/div and 40 µs/div, respectively.
Fig. 10.
Fig. 10. Fundamental and harmonic radio-frequency spectra of the mode-locked pulses.
Fig. 11.
Fig. 11. Autocorrelation trace of mode-locked Tm:LuYO3 laser.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ em ( λ )   =   1 8 π n 2 τ rad c σ abs ( λ ) e h c / ( k T λ ) λ 4 σ abs ( λ ) e h c / ( k T λ ) d λ .
η = η a η c λ p λ o T T + L ,