Abstract

Difference frequency generation under mixing of repetitively-pulsed CO- and CO2-laser radiation in AgGaSe2, BaGa2GeSe6 and PbIn6Te10 nonlinear crystals was studied. Efficiency and refractive indices were examined for this frequency conversion into the long-wave domain of ∼12-20 µm in the mid-IR. The highest frequency conversion efficiency of 10−4 was obtained for a relatively new PbIn6Te10 crystal, which is an order of magnitude higher than previous results.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Crystal growth and characterization of new quaternary chalcogenide nonlinear crystals for the mid-IR: BaGa2GeS6 and BaGa2GeSe6

Valeriy V. Badikov, Dmitrii V. Badikov, Vladimir B. Laptev, Konstantin V. Mitin, Galina S. Shevyrdyaeva, Nadezhda I. Shchebetova, and Valentin Petrov
Opt. Mater. Express 6(9) 2933-2938 (2016)

Laser-induced damage threshold of BaGa4Se7 and BaGa2GeSe6 nonlinear crystals at 1.053  μm

Nadezhda Y. Kostyukova, Andrey A. Boyko, Evgenii Y. Erushin, Anton I. Kostyukov, Valeriy V. Badikov, Dmitrii V. Badikov, and Dmitry B. Kolker
J. Opt. Soc. Am. B 36(8) 2260-2265 (2019)

Verification of an integral figure of merit for mid-IR nonlinear crystals

A. A. Ionin, I. O. Kinyaevskiy, A. M. Sagitova, and Y. M. Andreev
Appl. Opt. 58(10) 2485-2489 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared coherent sources and applications (Springer, 2007).
  2. M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23(4), 5167–5182 (2015).
    [Crossref]
  3. C. W. Chen, Y.-K. Hsu, J. Y. Huang, C.-S. Chang, J.-Y. Zhang, and C.-L. Pan, “Generation properties of coherent infrared radiation in the optical absorption region of GaSe crystal,” Opt. Express 14(22), 10636–10644 (2006).
    [Crossref]
  4. T. Deutsch, “New infrared laser transitions in HCl, HBr, DCl, and DBr,” IEEE J. Quantum Electron. 3(10), 419–421 (1967).
    [Crossref]
  5. B. N. Carnio, K. T. Zawilski, P. G. Schunemann, and A. Y. Elezzabi, “Optical rectification in a chalcopyrite AgGaSe2 crystal for broadband terahertz radiation generation,” Opt. Lett. 44(11), 2867–2870 (2019).
    [Crossref]
  6. H. P. Piyathilaka, R. Sooriyagoda, V. Dewasurendra, M. B. Johnson, K. T. Zawilski, P. G. Schunemann, and A. D. Bristow, “Terahertz generation by optical rectification in chalcopyrite crystals ZnGeP2, CdGeP2 and CdSiP2,” Opt. Express 27(12), 16958–16965 (2019).
    [Crossref]
  7. A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, A. Y. Kozlov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A.A. Kotkov, and A. Y. Kozlov, “Frequency Tunable CO Laser Operating on the Highest Vibrational Transition with Wavelength of 8.7 Micron,” Opt. Lett. 42(3), 498–501 (2017).
    [Crossref]
  8. M. Endo and R. F. Walter, Gas lasers (Taylor & Francis, 2007).
  9. S. Y. Tochitsky, C. Sung, S. E. Trubnick, C. Joshi, and K. L. Vodopyanov, “High-power tunable, 0.5-3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines,” J. Opt. Soc. Am. B 24(9), 2509–2516 (2007).
    [Crossref]
  10. S. Y. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, “Generation of megawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs,” J. Appl. Phys. 98(2), 026101 (2005).
    [Crossref]
  11. H. Kildal and J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching, and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9(3), 315–318 (1973).
    [Crossref]
  12. H. Kildal and J. C. Mikkelsen, “Efficient doubling and CW difference frequency mixing in the infrared using the chalcopyrite CdGeAs2,” Opt. Commun. 10(4), 306–309 (1974).
    [Crossref]
  13. O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, “Ultra-broadband hybrid infrared laser system,” Opt. Commun. 363, 26–30 (2016).
    [Crossref]
  14. A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. Y. Kozlov, O. A. Rulev, A. M. Sagitova, L. V. Seleznev, and D. V. Sinitsyn, “Q-switched repetitively pulsed cryogenic slab RF discharge CO laser with active medium comprising air,” Appl. Phys. B: Lasers Opt. 124(9), 173 (2018).
    [Crossref]
  15. A. P. Mineev, S. M. Nefedov, P. P. Pashinin, P. A. Goncharov, V. V. Kiselev, and P. A. Drozdovet, “Experimental research of RF-excited planar CO-laser operation at room temperature,” J. Aerospace Defense 2(18), 61–68 (2018) (in Russian).
  16. C. Shi, M. Ermold, G. Oulundsen, and L. Newman, “CO2 and CO laser comparison of glass and ceramic processing,” Proc. SPIE 10911, 20 (2019).
    [Crossref]
  17. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  18. Y. M. Andreev, O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, “Frequency conversion of mode-locked and Q-switched CO laser radiation with efficiency up to 37%,” Opt. Lett. 40(13), 2997–3000 (2015).
    [Crossref]
  19. H. Komine, J. M. Fukumoto, W. H. Long, and E. A. Stappaerts, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE J. Sel. Top. Quantum Electron. 1(1), 44–49 (1995).
    [Crossref]
  20. H. W. Wang and M. H. Lu, “The refractive index of extraordinary wave for AgGaSe2 crystal in 11–16 µm range,” Opt. Commun. 192(3-6), 357–363 (2001).
    [Crossref]
  21. S. Avanesov, V. Badikov, A. Tyazhev, D. Badikov, V. Panyutin, G. Marchev, G. Shevyrdyaeva, K. Mitin, F. Noack, P. Vinogradova, N. Schebetova, V. Petrov, and A. Kwasniewski, “PbIn6Te10: new nonlinear crystal for three-wave interactions with transmission extending from 1.7 to 25 µm,” Opt. Mater. Express 1(7), 1286–1291 (2011).
    [Crossref]
  22. Y. M. Andreev, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, G. V. Lanskii, and V. A. Svetlichnyi, “Optical properties of PbIn6Te10 in the long-wave IR,” Laser Phys. Lett. 13(12), 125405 (2016).
    [Crossref]
  23. V. V. Badikov, D. V. Badikov, V. B. Laptev, K. V. Mitin, G. S. Shevyrdyaeva, N. I. Shchebetova, and V. Petrov, “Crystal growth and characterization of new quaternary chalcogenide nonlinear crystals for the mid-IR: BaGa2GeS6 and BaGa2GeSe6,” Opt. Mater. Express 6(9), 2933–2938 (2016).
    [Crossref]
  24. K. Kato, K. Miyata, V. V. Badikov, and V. Petrov, “Phase-matching properties of BaGa2GeSe6 for three-wave interactions in the 0.778–10.5910 µm spectral range,” Appl. Opt. 57(26), 7440–7443 (2018).
    [Crossref]
  25. D. V. Badikov, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, K. V. Mitin, D. V. Mokrousova, and V. A. Mojaeva, “Sum-frequency generation of Q-switched CO laser radiation in BaGa2GeSe6 and GaSe nonlinear crystals,” Opt. Quantum Electron. 50(6), 243 (2018).
    [Crossref]
  26. A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, V. V. Badikov, and K. V. Mitin, “Frequency conversion of molecular gas lasers in PbIn6Te10 crystal within mid-IR range,” Opt. Lett. 41(10), 2390–2393 (2016).
    [Crossref]
  27. G. Stibenz, M. Beutler, I. Rimke, V. Badikov, D. Badikov, and V. Petrov, “Femtosecond mid-IR difference-frequency generation in BaGa2GeSe6 from a 40 MHz optical parametric oscillator pumped at 1035 nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper STh4F.5.
  28. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Berlin Springer, 1997).
  29. A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, D. S. Kryuchkov, A. M. Sagitova, and E. S. Sunchugasheva, “Spectral characteristics of multi-line Q-switched CO laser radiation frequency converted in ZnGeP2,” Appl. Phys. B: Lasers Opt. 123(9), 234 (2017).
    [Crossref]

2019 (3)

2018 (4)

K. Kato, K. Miyata, V. V. Badikov, and V. Petrov, “Phase-matching properties of BaGa2GeSe6 for three-wave interactions in the 0.778–10.5910 µm spectral range,” Appl. Opt. 57(26), 7440–7443 (2018).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. Y. Kozlov, O. A. Rulev, A. M. Sagitova, L. V. Seleznev, and D. V. Sinitsyn, “Q-switched repetitively pulsed cryogenic slab RF discharge CO laser with active medium comprising air,” Appl. Phys. B: Lasers Opt. 124(9), 173 (2018).
[Crossref]

A. P. Mineev, S. M. Nefedov, P. P. Pashinin, P. A. Goncharov, V. V. Kiselev, and P. A. Drozdovet, “Experimental research of RF-excited planar CO-laser operation at room temperature,” J. Aerospace Defense 2(18), 61–68 (2018) (in Russian).

D. V. Badikov, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, K. V. Mitin, D. V. Mokrousova, and V. A. Mojaeva, “Sum-frequency generation of Q-switched CO laser radiation in BaGa2GeSe6 and GaSe nonlinear crystals,” Opt. Quantum Electron. 50(6), 243 (2018).
[Crossref]

2017 (2)

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, D. S. Kryuchkov, A. M. Sagitova, and E. S. Sunchugasheva, “Spectral characteristics of multi-line Q-switched CO laser radiation frequency converted in ZnGeP2,” Appl. Phys. B: Lasers Opt. 123(9), 234 (2017).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, A. Y. Kozlov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A.A. Kotkov, and A. Y. Kozlov, “Frequency Tunable CO Laser Operating on the Highest Vibrational Transition with Wavelength of 8.7 Micron,” Opt. Lett. 42(3), 498–501 (2017).
[Crossref]

2016 (4)

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, V. V. Badikov, and K. V. Mitin, “Frequency conversion of molecular gas lasers in PbIn6Te10 crystal within mid-IR range,” Opt. Lett. 41(10), 2390–2393 (2016).
[Crossref]

V. V. Badikov, D. V. Badikov, V. B. Laptev, K. V. Mitin, G. S. Shevyrdyaeva, N. I. Shchebetova, and V. Petrov, “Crystal growth and characterization of new quaternary chalcogenide nonlinear crystals for the mid-IR: BaGa2GeS6 and BaGa2GeSe6,” Opt. Mater. Express 6(9), 2933–2938 (2016).
[Crossref]

Y. M. Andreev, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, G. V. Lanskii, and V. A. Svetlichnyi, “Optical properties of PbIn6Te10 in the long-wave IR,” Laser Phys. Lett. 13(12), 125405 (2016).
[Crossref]

O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, “Ultra-broadband hybrid infrared laser system,” Opt. Commun. 363, 26–30 (2016).
[Crossref]

2015 (2)

2011 (1)

2007 (1)

2006 (1)

2005 (1)

S. Y. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, “Generation of megawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs,” J. Appl. Phys. 98(2), 026101 (2005).
[Crossref]

2001 (1)

H. W. Wang and M. H. Lu, “The refractive index of extraordinary wave for AgGaSe2 crystal in 11–16 µm range,” Opt. Commun. 192(3-6), 357–363 (2001).
[Crossref]

1995 (1)

H. Komine, J. M. Fukumoto, W. H. Long, and E. A. Stappaerts, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE J. Sel. Top. Quantum Electron. 1(1), 44–49 (1995).
[Crossref]

1974 (1)

H. Kildal and J. C. Mikkelsen, “Efficient doubling and CW difference frequency mixing in the infrared using the chalcopyrite CdGeAs2,” Opt. Commun. 10(4), 306–309 (1974).
[Crossref]

1973 (1)

H. Kildal and J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching, and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9(3), 315–318 (1973).
[Crossref]

1967 (1)

T. Deutsch, “New infrared laser transitions in HCl, HBr, DCl, and DBr,” IEEE J. Quantum Electron. 3(10), 419–421 (1967).
[Crossref]

Andreev, Y. M.

Y. M. Andreev, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, G. V. Lanskii, and V. A. Svetlichnyi, “Optical properties of PbIn6Te10 in the long-wave IR,” Laser Phys. Lett. 13(12), 125405 (2016).
[Crossref]

Y. M. Andreev, O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, “Frequency conversion of mode-locked and Q-switched CO laser radiation with efficiency up to 37%,” Opt. Lett. 40(13), 2997–3000 (2015).
[Crossref]

Avanesov, S.

Badikov, D.

S. Avanesov, V. Badikov, A. Tyazhev, D. Badikov, V. Panyutin, G. Marchev, G. Shevyrdyaeva, K. Mitin, F. Noack, P. Vinogradova, N. Schebetova, V. Petrov, and A. Kwasniewski, “PbIn6Te10: new nonlinear crystal for three-wave interactions with transmission extending from 1.7 to 25 µm,” Opt. Mater. Express 1(7), 1286–1291 (2011).
[Crossref]

G. Stibenz, M. Beutler, I. Rimke, V. Badikov, D. Badikov, and V. Petrov, “Femtosecond mid-IR difference-frequency generation in BaGa2GeSe6 from a 40 MHz optical parametric oscillator pumped at 1035 nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper STh4F.5.

Badikov, D. V.

D. V. Badikov, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, K. V. Mitin, D. V. Mokrousova, and V. A. Mojaeva, “Sum-frequency generation of Q-switched CO laser radiation in BaGa2GeSe6 and GaSe nonlinear crystals,” Opt. Quantum Electron. 50(6), 243 (2018).
[Crossref]

V. V. Badikov, D. V. Badikov, V. B. Laptev, K. V. Mitin, G. S. Shevyrdyaeva, N. I. Shchebetova, and V. Petrov, “Crystal growth and characterization of new quaternary chalcogenide nonlinear crystals for the mid-IR: BaGa2GeS6 and BaGa2GeSe6,” Opt. Mater. Express 6(9), 2933–2938 (2016).
[Crossref]

Badikov, V.

S. Avanesov, V. Badikov, A. Tyazhev, D. Badikov, V. Panyutin, G. Marchev, G. Shevyrdyaeva, K. Mitin, F. Noack, P. Vinogradova, N. Schebetova, V. Petrov, and A. Kwasniewski, “PbIn6Te10: new nonlinear crystal for three-wave interactions with transmission extending from 1.7 to 25 µm,” Opt. Mater. Express 1(7), 1286–1291 (2011).
[Crossref]

G. Stibenz, M. Beutler, I. Rimke, V. Badikov, D. Badikov, and V. Petrov, “Femtosecond mid-IR difference-frequency generation in BaGa2GeSe6 from a 40 MHz optical parametric oscillator pumped at 1035 nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper STh4F.5.

Badikov, V. V.

K. Kato, K. Miyata, V. V. Badikov, and V. Petrov, “Phase-matching properties of BaGa2GeSe6 for three-wave interactions in the 0.778–10.5910 µm spectral range,” Appl. Opt. 57(26), 7440–7443 (2018).
[Crossref]

D. V. Badikov, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, K. V. Mitin, D. V. Mokrousova, and V. A. Mojaeva, “Sum-frequency generation of Q-switched CO laser radiation in BaGa2GeSe6 and GaSe nonlinear crystals,” Opt. Quantum Electron. 50(6), 243 (2018).
[Crossref]

Y. M. Andreev, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, G. V. Lanskii, and V. A. Svetlichnyi, “Optical properties of PbIn6Te10 in the long-wave IR,” Laser Phys. Lett. 13(12), 125405 (2016).
[Crossref]

V. V. Badikov, D. V. Badikov, V. B. Laptev, K. V. Mitin, G. S. Shevyrdyaeva, N. I. Shchebetova, and V. Petrov, “Crystal growth and characterization of new quaternary chalcogenide nonlinear crystals for the mid-IR: BaGa2GeS6 and BaGa2GeSe6,” Opt. Mater. Express 6(9), 2933–2938 (2016).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, V. V. Badikov, and K. V. Mitin, “Frequency conversion of molecular gas lasers in PbIn6Te10 crystal within mid-IR range,” Opt. Lett. 41(10), 2390–2393 (2016).
[Crossref]

Beutler, M.

G. Stibenz, M. Beutler, I. Rimke, V. Badikov, D. Badikov, and V. Petrov, “Femtosecond mid-IR difference-frequency generation in BaGa2GeSe6 from a 40 MHz optical parametric oscillator pumped at 1035 nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper STh4F.5.

Bristow, A. D.

Budilova, O. V.

O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, “Ultra-broadband hybrid infrared laser system,” Opt. Commun. 363, 26–30 (2016).
[Crossref]

Y. M. Andreev, O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, “Frequency conversion of mode-locked and Q-switched CO laser radiation with efficiency up to 37%,” Opt. Lett. 40(13), 2997–3000 (2015).
[Crossref]

Carnio, B. N.

Chang, C.-S.

Chen, C. W.

De Natale, P.

Deutsch, T.

T. Deutsch, “New infrared laser transitions in HCl, HBr, DCl, and DBr,” IEEE J. Quantum Electron. 3(10), 419–421 (1967).
[Crossref]

Dewasurendra, V.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Berlin Springer, 1997).

Drozdovet, P. A.

A. P. Mineev, S. M. Nefedov, P. P. Pashinin, P. A. Goncharov, V. V. Kiselev, and P. A. Drozdovet, “Experimental research of RF-excited planar CO-laser operation at room temperature,” J. Aerospace Defense 2(18), 61–68 (2018) (in Russian).

Ebrahim-Zadeh, M.

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared coherent sources and applications (Springer, 2007).

Elezzabi, A. Y.

Endo, M.

M. Endo and R. F. Walter, Gas lasers (Taylor & Francis, 2007).

Ermold, M.

C. Shi, M. Ermold, G. Oulundsen, and L. Newman, “CO2 and CO laser comparison of glass and ceramic processing,” Proc. SPIE 10911, 20 (2019).
[Crossref]

Fukumoto, J. M.

H. Komine, J. M. Fukumoto, W. H. Long, and E. A. Stappaerts, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE J. Sel. Top. Quantum Electron. 1(1), 44–49 (1995).
[Crossref]

Goncharov, P. A.

A. P. Mineev, S. M. Nefedov, P. P. Pashinin, P. A. Goncharov, V. V. Kiselev, and P. A. Drozdovet, “Experimental research of RF-excited planar CO-laser operation at room temperature,” J. Aerospace Defense 2(18), 61–68 (2018) (in Russian).

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Berlin Springer, 1997).

Hsu, Y.-K.

Huang, J. Y.

Ionin, A. A.

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. Y. Kozlov, O. A. Rulev, A. M. Sagitova, L. V. Seleznev, and D. V. Sinitsyn, “Q-switched repetitively pulsed cryogenic slab RF discharge CO laser with active medium comprising air,” Appl. Phys. B: Lasers Opt. 124(9), 173 (2018).
[Crossref]

D. V. Badikov, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, K. V. Mitin, D. V. Mokrousova, and V. A. Mojaeva, “Sum-frequency generation of Q-switched CO laser radiation in BaGa2GeSe6 and GaSe nonlinear crystals,” Opt. Quantum Electron. 50(6), 243 (2018).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, D. S. Kryuchkov, A. M. Sagitova, and E. S. Sunchugasheva, “Spectral characteristics of multi-line Q-switched CO laser radiation frequency converted in ZnGeP2,” Appl. Phys. B: Lasers Opt. 123(9), 234 (2017).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, A. Y. Kozlov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A.A. Kotkov, and A. Y. Kozlov, “Frequency Tunable CO Laser Operating on the Highest Vibrational Transition with Wavelength of 8.7 Micron,” Opt. Lett. 42(3), 498–501 (2017).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, A. Y. Kozlov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A.A. Kotkov, and A. Y. Kozlov, “Frequency Tunable CO Laser Operating on the Highest Vibrational Transition with Wavelength of 8.7 Micron,” Opt. Lett. 42(3), 498–501 (2017).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, V. V. Badikov, and K. V. Mitin, “Frequency conversion of molecular gas lasers in PbIn6Te10 crystal within mid-IR range,” Opt. Lett. 41(10), 2390–2393 (2016).
[Crossref]

Y. M. Andreev, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, G. V. Lanskii, and V. A. Svetlichnyi, “Optical properties of PbIn6Te10 in the long-wave IR,” Laser Phys. Lett. 13(12), 125405 (2016).
[Crossref]

O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, “Ultra-broadband hybrid infrared laser system,” Opt. Commun. 363, 26–30 (2016).
[Crossref]

Y. M. Andreev, O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, “Frequency conversion of mode-locked and Q-switched CO laser radiation with efficiency up to 37%,” Opt. Lett. 40(13), 2997–3000 (2015).
[Crossref]

Johnson, M. B.

Joshi, C.

S. Y. Tochitsky, C. Sung, S. E. Trubnick, C. Joshi, and K. L. Vodopyanov, “High-power tunable, 0.5-3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines,” J. Opt. Soc. Am. B 24(9), 2509–2516 (2007).
[Crossref]

S. Y. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, “Generation of megawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs,” J. Appl. Phys. 98(2), 026101 (2005).
[Crossref]

Kato, K.

Kildal, H.

H. Kildal and J. C. Mikkelsen, “Efficient doubling and CW difference frequency mixing in the infrared using the chalcopyrite CdGeAs2,” Opt. Commun. 10(4), 306–309 (1974).
[Crossref]

H. Kildal and J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching, and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9(3), 315–318 (1973).
[Crossref]

Kinyaevskiy, I. O.

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. Y. Kozlov, O. A. Rulev, A. M. Sagitova, L. V. Seleznev, and D. V. Sinitsyn, “Q-switched repetitively pulsed cryogenic slab RF discharge CO laser with active medium comprising air,” Appl. Phys. B: Lasers Opt. 124(9), 173 (2018).
[Crossref]

D. V. Badikov, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, K. V. Mitin, D. V. Mokrousova, and V. A. Mojaeva, “Sum-frequency generation of Q-switched CO laser radiation in BaGa2GeSe6 and GaSe nonlinear crystals,” Opt. Quantum Electron. 50(6), 243 (2018).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, D. S. Kryuchkov, A. M. Sagitova, and E. S. Sunchugasheva, “Spectral characteristics of multi-line Q-switched CO laser radiation frequency converted in ZnGeP2,” Appl. Phys. B: Lasers Opt. 123(9), 234 (2017).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, A. Y. Kozlov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A.A. Kotkov, and A. Y. Kozlov, “Frequency Tunable CO Laser Operating on the Highest Vibrational Transition with Wavelength of 8.7 Micron,” Opt. Lett. 42(3), 498–501 (2017).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, A. Y. Kozlov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A.A. Kotkov, and A. Y. Kozlov, “Frequency Tunable CO Laser Operating on the Highest Vibrational Transition with Wavelength of 8.7 Micron,” Opt. Lett. 42(3), 498–501 (2017).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, V. V. Badikov, and K. V. Mitin, “Frequency conversion of molecular gas lasers in PbIn6Te10 crystal within mid-IR range,” Opt. Lett. 41(10), 2390–2393 (2016).
[Crossref]

Y. M. Andreev, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, G. V. Lanskii, and V. A. Svetlichnyi, “Optical properties of PbIn6Te10 in the long-wave IR,” Laser Phys. Lett. 13(12), 125405 (2016).
[Crossref]

O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, “Ultra-broadband hybrid infrared laser system,” Opt. Commun. 363, 26–30 (2016).
[Crossref]

Y. M. Andreev, O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, “Frequency conversion of mode-locked and Q-switched CO laser radiation with efficiency up to 37%,” Opt. Lett. 40(13), 2997–3000 (2015).
[Crossref]

Kiselev, V. V.

A. P. Mineev, S. M. Nefedov, P. P. Pashinin, P. A. Goncharov, V. V. Kiselev, and P. A. Drozdovet, “Experimental research of RF-excited planar CO-laser operation at room temperature,” J. Aerospace Defense 2(18), 61–68 (2018) (in Russian).

Klimachev, Y. M.

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. Y. Kozlov, O. A. Rulev, A. M. Sagitova, L. V. Seleznev, and D. V. Sinitsyn, “Q-switched repetitively pulsed cryogenic slab RF discharge CO laser with active medium comprising air,” Appl. Phys. B: Lasers Opt. 124(9), 173 (2018).
[Crossref]

D. V. Badikov, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, K. V. Mitin, D. V. Mokrousova, and V. A. Mojaeva, “Sum-frequency generation of Q-switched CO laser radiation in BaGa2GeSe6 and GaSe nonlinear crystals,” Opt. Quantum Electron. 50(6), 243 (2018).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, D. S. Kryuchkov, A. M. Sagitova, and E. S. Sunchugasheva, “Spectral characteristics of multi-line Q-switched CO laser radiation frequency converted in ZnGeP2,” Appl. Phys. B: Lasers Opt. 123(9), 234 (2017).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, A. Y. Kozlov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A.A. Kotkov, and A. Y. Kozlov, “Frequency Tunable CO Laser Operating on the Highest Vibrational Transition with Wavelength of 8.7 Micron,” Opt. Lett. 42(3), 498–501 (2017).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, A. Y. Kozlov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A.A. Kotkov, and A. Y. Kozlov, “Frequency Tunable CO Laser Operating on the Highest Vibrational Transition with Wavelength of 8.7 Micron,” Opt. Lett. 42(3), 498–501 (2017).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, V. V. Badikov, and K. V. Mitin, “Frequency conversion of molecular gas lasers in PbIn6Te10 crystal within mid-IR range,” Opt. Lett. 41(10), 2390–2393 (2016).
[Crossref]

Y. M. Andreev, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, G. V. Lanskii, and V. A. Svetlichnyi, “Optical properties of PbIn6Te10 in the long-wave IR,” Laser Phys. Lett. 13(12), 125405 (2016).
[Crossref]

O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, “Ultra-broadband hybrid infrared laser system,” Opt. Commun. 363, 26–30 (2016).
[Crossref]

Y. M. Andreev, O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, “Frequency conversion of mode-locked and Q-switched CO laser radiation with efficiency up to 37%,” Opt. Lett. 40(13), 2997–3000 (2015).
[Crossref]

Komine, H.

H. Komine, J. M. Fukumoto, W. H. Long, and E. A. Stappaerts, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE J. Sel. Top. Quantum Electron. 1(1), 44–49 (1995).
[Crossref]

Kotkov, A. A.

D. V. Badikov, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, K. V. Mitin, D. V. Mokrousova, and V. A. Mojaeva, “Sum-frequency generation of Q-switched CO laser radiation in BaGa2GeSe6 and GaSe nonlinear crystals,” Opt. Quantum Electron. 50(6), 243 (2018).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, A. Y. Kozlov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A.A. Kotkov, and A. Y. Kozlov, “Frequency Tunable CO Laser Operating on the Highest Vibrational Transition with Wavelength of 8.7 Micron,” Opt. Lett. 42(3), 498–501 (2017).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, V. V. Badikov, and K. V. Mitin, “Frequency conversion of molecular gas lasers in PbIn6Te10 crystal within mid-IR range,” Opt. Lett. 41(10), 2390–2393 (2016).
[Crossref]

Y. M. Andreev, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, G. V. Lanskii, and V. A. Svetlichnyi, “Optical properties of PbIn6Te10 in the long-wave IR,” Laser Phys. Lett. 13(12), 125405 (2016).
[Crossref]

O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, “Ultra-broadband hybrid infrared laser system,” Opt. Commun. 363, 26–30 (2016).
[Crossref]

Y. M. Andreev, O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, “Frequency conversion of mode-locked and Q-switched CO laser radiation with efficiency up to 37%,” Opt. Lett. 40(13), 2997–3000 (2015).
[Crossref]

Kotkov, A.A.

Kozlov, A. Y.

Kryuchkov, D. S.

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, D. S. Kryuchkov, A. M. Sagitova, and E. S. Sunchugasheva, “Spectral characteristics of multi-line Q-switched CO laser radiation frequency converted in ZnGeP2,” Appl. Phys. B: Lasers Opt. 123(9), 234 (2017).
[Crossref]

Kwasniewski, A.

Lanskii, G. V.

Y. M. Andreev, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, G. V. Lanskii, and V. A. Svetlichnyi, “Optical properties of PbIn6Te10 in the long-wave IR,” Laser Phys. Lett. 13(12), 125405 (2016).
[Crossref]

Laptev, V. B.

Long, W. H.

H. Komine, J. M. Fukumoto, W. H. Long, and E. A. Stappaerts, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE J. Sel. Top. Quantum Electron. 1(1), 44–49 (1995).
[Crossref]

Lu, M. H.

H. W. Wang and M. H. Lu, “The refractive index of extraordinary wave for AgGaSe2 crystal in 11–16 µm range,” Opt. Commun. 192(3-6), 357–363 (2001).
[Crossref]

Marchev, G.

Mikkelsen, J. C.

H. Kildal and J. C. Mikkelsen, “Efficient doubling and CW difference frequency mixing in the infrared using the chalcopyrite CdGeAs2,” Opt. Commun. 10(4), 306–309 (1974).
[Crossref]

H. Kildal and J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching, and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9(3), 315–318 (1973).
[Crossref]

Mineev, A. P.

A. P. Mineev, S. M. Nefedov, P. P. Pashinin, P. A. Goncharov, V. V. Kiselev, and P. A. Drozdovet, “Experimental research of RF-excited planar CO-laser operation at room temperature,” J. Aerospace Defense 2(18), 61–68 (2018) (in Russian).

Mitin, K.

Mitin, K. V.

Miyata, K.

Mojaeva, V. A.

D. V. Badikov, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, K. V. Mitin, D. V. Mokrousova, and V. A. Mojaeva, “Sum-frequency generation of Q-switched CO laser radiation in BaGa2GeSe6 and GaSe nonlinear crystals,” Opt. Quantum Electron. 50(6), 243 (2018).
[Crossref]

Mokrousova, D. V.

D. V. Badikov, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, K. V. Mitin, D. V. Mokrousova, and V. A. Mojaeva, “Sum-frequency generation of Q-switched CO laser radiation in BaGa2GeSe6 and GaSe nonlinear crystals,” Opt. Quantum Electron. 50(6), 243 (2018).
[Crossref]

Nefedov, S. M.

A. P. Mineev, S. M. Nefedov, P. P. Pashinin, P. A. Goncharov, V. V. Kiselev, and P. A. Drozdovet, “Experimental research of RF-excited planar CO-laser operation at room temperature,” J. Aerospace Defense 2(18), 61–68 (2018) (in Russian).

Newman, L.

C. Shi, M. Ermold, G. Oulundsen, and L. Newman, “CO2 and CO laser comparison of glass and ceramic processing,” Proc. SPIE 10911, 20 (2019).
[Crossref]

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Berlin Springer, 1997).

Noack, F.

Oulundsen, G.

C. Shi, M. Ermold, G. Oulundsen, and L. Newman, “CO2 and CO laser comparison of glass and ceramic processing,” Proc. SPIE 10911, 20 (2019).
[Crossref]

Pan, C.-L.

Panyutin, V.

Pashinin, P. P.

A. P. Mineev, S. M. Nefedov, P. P. Pashinin, P. A. Goncharov, V. V. Kiselev, and P. A. Drozdovet, “Experimental research of RF-excited planar CO-laser operation at room temperature,” J. Aerospace Defense 2(18), 61–68 (2018) (in Russian).

Petrov, V.

Piyathilaka, H. P.

Ralph, J. E.

S. Y. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, “Generation of megawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs,” J. Appl. Phys. 98(2), 026101 (2005).
[Crossref]

Rimke, I.

G. Stibenz, M. Beutler, I. Rimke, V. Badikov, D. Badikov, and V. Petrov, “Femtosecond mid-IR difference-frequency generation in BaGa2GeSe6 from a 40 MHz optical parametric oscillator pumped at 1035 nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper STh4F.5.

Rulev, O. A.

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. Y. Kozlov, O. A. Rulev, A. M. Sagitova, L. V. Seleznev, and D. V. Sinitsyn, “Q-switched repetitively pulsed cryogenic slab RF discharge CO laser with active medium comprising air,” Appl. Phys. B: Lasers Opt. 124(9), 173 (2018).
[Crossref]

Sagitova, A. M.

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. Y. Kozlov, O. A. Rulev, A. M. Sagitova, L. V. Seleznev, and D. V. Sinitsyn, “Q-switched repetitively pulsed cryogenic slab RF discharge CO laser with active medium comprising air,” Appl. Phys. B: Lasers Opt. 124(9), 173 (2018).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, D. S. Kryuchkov, A. M. Sagitova, and E. S. Sunchugasheva, “Spectral characteristics of multi-line Q-switched CO laser radiation frequency converted in ZnGeP2,” Appl. Phys. B: Lasers Opt. 123(9), 234 (2017).
[Crossref]

Scalari, G.

Schebetova, N.

Schunemann, P. G.

Seleznev, L. V.

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. Y. Kozlov, O. A. Rulev, A. M. Sagitova, L. V. Seleznev, and D. V. Sinitsyn, “Q-switched repetitively pulsed cryogenic slab RF discharge CO laser with active medium comprising air,” Appl. Phys. B: Lasers Opt. 124(9), 173 (2018).
[Crossref]

Shchebetova, N. I.

Shevyrdyaeva, G.

Shevyrdyaeva, G. S.

Shi, C.

C. Shi, M. Ermold, G. Oulundsen, and L. Newman, “CO2 and CO laser comparison of glass and ceramic processing,” Proc. SPIE 10911, 20 (2019).
[Crossref]

Sinitsyn, D. V.

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. Y. Kozlov, O. A. Rulev, A. M. Sagitova, L. V. Seleznev, and D. V. Sinitsyn, “Q-switched repetitively pulsed cryogenic slab RF discharge CO laser with active medium comprising air,” Appl. Phys. B: Lasers Opt. 124(9), 173 (2018).
[Crossref]

Sooriyagoda, R.

Sorokina, I. T.

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared coherent sources and applications (Springer, 2007).

Stappaerts, E. A.

H. Komine, J. M. Fukumoto, W. H. Long, and E. A. Stappaerts, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE J. Sel. Top. Quantum Electron. 1(1), 44–49 (1995).
[Crossref]

Stibenz, G.

G. Stibenz, M. Beutler, I. Rimke, V. Badikov, D. Badikov, and V. Petrov, “Femtosecond mid-IR difference-frequency generation in BaGa2GeSe6 from a 40 MHz optical parametric oscillator pumped at 1035 nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper STh4F.5.

Sunchugasheva, E. S.

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, D. S. Kryuchkov, A. M. Sagitova, and E. S. Sunchugasheva, “Spectral characteristics of multi-line Q-switched CO laser radiation frequency converted in ZnGeP2,” Appl. Phys. B: Lasers Opt. 123(9), 234 (2017).
[Crossref]

Sung, C.

S. Y. Tochitsky, C. Sung, S. E. Trubnick, C. Joshi, and K. L. Vodopyanov, “High-power tunable, 0.5-3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines,” J. Opt. Soc. Am. B 24(9), 2509–2516 (2007).
[Crossref]

S. Y. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, “Generation of megawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs,” J. Appl. Phys. 98(2), 026101 (2005).
[Crossref]

Svetlichnyi, V. A.

Y. M. Andreev, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, G. V. Lanskii, and V. A. Svetlichnyi, “Optical properties of PbIn6Te10 in the long-wave IR,” Laser Phys. Lett. 13(12), 125405 (2016).
[Crossref]

Tochitsky, S. Y.

S. Y. Tochitsky, C. Sung, S. E. Trubnick, C. Joshi, and K. L. Vodopyanov, “High-power tunable, 0.5-3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines,” J. Opt. Soc. Am. B 24(9), 2509–2516 (2007).
[Crossref]

S. Y. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, “Generation of megawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs,” J. Appl. Phys. 98(2), 026101 (2005).
[Crossref]

Trubnick, S. E.

Tyazhev, A.

Vinogradova, P.

Vitiello, M. S.

Vodopyanov, K. L.

Walter, R. F.

M. Endo and R. F. Walter, Gas lasers (Taylor & Francis, 2007).

Wang, H. W.

H. W. Wang and M. H. Lu, “The refractive index of extraordinary wave for AgGaSe2 crystal in 11–16 µm range,” Opt. Commun. 192(3-6), 357–363 (2001).
[Crossref]

Williams, B.

Zawilski, K. T.

Zhang, J.-Y.

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (2)

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, D. S. Kryuchkov, A. M. Sagitova, and E. S. Sunchugasheva, “Spectral characteristics of multi-line Q-switched CO laser radiation frequency converted in ZnGeP2,” Appl. Phys. B: Lasers Opt. 123(9), 234 (2017).
[Crossref]

A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. Y. Kozlov, O. A. Rulev, A. M. Sagitova, L. V. Seleznev, and D. V. Sinitsyn, “Q-switched repetitively pulsed cryogenic slab RF discharge CO laser with active medium comprising air,” Appl. Phys. B: Lasers Opt. 124(9), 173 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Deutsch, “New infrared laser transitions in HCl, HBr, DCl, and DBr,” IEEE J. Quantum Electron. 3(10), 419–421 (1967).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Komine, J. M. Fukumoto, W. H. Long, and E. A. Stappaerts, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE J. Sel. Top. Quantum Electron. 1(1), 44–49 (1995).
[Crossref]

J. Aerospace Defense (1)

A. P. Mineev, S. M. Nefedov, P. P. Pashinin, P. A. Goncharov, V. V. Kiselev, and P. A. Drozdovet, “Experimental research of RF-excited planar CO-laser operation at room temperature,” J. Aerospace Defense 2(18), 61–68 (2018) (in Russian).

J. Appl. Phys. (1)

S. Y. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, “Generation of megawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs,” J. Appl. Phys. 98(2), 026101 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

Y. M. Andreev, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, G. V. Lanskii, and V. A. Svetlichnyi, “Optical properties of PbIn6Te10 in the long-wave IR,” Laser Phys. Lett. 13(12), 125405 (2016).
[Crossref]

Opt. Commun. (4)

H. W. Wang and M. H. Lu, “The refractive index of extraordinary wave for AgGaSe2 crystal in 11–16 µm range,” Opt. Commun. 192(3-6), 357–363 (2001).
[Crossref]

H. Kildal and J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching, and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9(3), 315–318 (1973).
[Crossref]

H. Kildal and J. C. Mikkelsen, “Efficient doubling and CW difference frequency mixing in the infrared using the chalcopyrite CdGeAs2,” Opt. Commun. 10(4), 306–309 (1974).
[Crossref]

O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, “Ultra-broadband hybrid infrared laser system,” Opt. Commun. 363, 26–30 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. Express (2)

Opt. Quantum Electron. (1)

D. V. Badikov, V. V. Badikov, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, K. V. Mitin, D. V. Mokrousova, and V. A. Mojaeva, “Sum-frequency generation of Q-switched CO laser radiation in BaGa2GeSe6 and GaSe nonlinear crystals,” Opt. Quantum Electron. 50(6), 243 (2018).
[Crossref]

Proc. SPIE (1)

C. Shi, M. Ermold, G. Oulundsen, and L. Newman, “CO2 and CO laser comparison of glass and ceramic processing,” Proc. SPIE 10911, 20 (2019).
[Crossref]

Other (5)

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

M. Endo and R. F. Walter, Gas lasers (Taylor & Francis, 2007).

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared coherent sources and applications (Springer, 2007).

G. Stibenz, M. Beutler, I. Rimke, V. Badikov, D. Badikov, and V. Petrov, “Femtosecond mid-IR difference-frequency generation in BaGa2GeSe6 from a 40 MHz optical parametric oscillator pumped at 1035 nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper STh4F.5.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Berlin Springer, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Calculated FOM (a), angular (b) and spectral (c) acceptance for AGSe, BGGSe and PIT crystals.
Fig. 2.
Fig. 2. Optical scheme of the laser system. See text for details.
Fig. 3.
Fig. 3. Pulse waveforms of CO laser (1) and CO2 laser (2) pulses (a); spectra of CO2 laser (b) and spectrally filtered CO laser radiation (c); transmittance (Tr) of optical filter SP-5665 (c).
Fig. 4.
Fig. 4. DFG radiation peak power versus phase-matching angle for AGSe (a), BGGSe (b) and PIT (c) crystals; (d) DFG spectra measured at 36.3°, 38.8° and 41.3° phase-matching angles of PIT crystal; transmittance (Tr) of optical filter (LP-11450).
Fig. 5.
Fig. 5. Transmittance (dotted line), calculated (solid and dash lines) and measured (circles) phase-matching angles of AGSe (a), BGGSe (b) and PIT (c) crystals.

Tables (1)

Tables Icon

Table 1. Main properties of the crystals