Abstract

We propose a new confocal device for flow profiling in microcapillaries. A viewfinder system is developed using a visible light microscope, allowing focusing with high precision an 830 nm Fabry-Perot laser diode on a microchannel. By means of a novel confocal approach, the Doppler shift produced by the particles of a turbid liquid moving in the focal plane can be measured in real time using the well-known self-mixing effect. The resolution of this device is characterized in function of the full width at half maximum of the Gaussian frequency peak related to the self-mixing signal in the frequency domain. Velocity measurements for flow rates from 0.2 to 1.6 mL/min are presented, and the results demonstrate that the method reduces the phase noise and the effects of the out-of-focus particles, allowing straightforward flow profiling in microchannel structures.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood flows

M. H. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse
Appl. Opt. 33(24) 5628-5641 (1994)

Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography

Xiao-jun Wang, Thomas E. Milner, Zhongping Chen, and J. Stuart Nelson
Appl. Opt. 36(1) 144-149 (1997)

Detection and counting of a submicrometer particle in liquid flow by self-mixing microchip Yb:YAG laser velocimetry

Takayuki Ohtomo, Seiichi Sudo, and Kenju Otsuka
Appl. Opt. 55(27) 7574-7582 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
    [Crossref]
  2. H. Jelínková, Lasers for Medical Applications: Diagnostics, Therapy and Surgery (Woodhead Publishing, 2013).
  3. J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
    [Crossref]
  4. W. H. Stevenson, “Laser Doppler velocimetry: A status report,” Proc. IEEE 70(6), 652–658 (1982).
    [Crossref]
  5. M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. Educ. 1(7), 723–726 (1968).
    [Crossref]
  6. S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt. 25(9), 1417–1419 (1986).
    [Crossref] [PubMed]
  7. M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
    [Crossref]
  8. Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakic, “Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect,” Proc. SPIE 6038, 60381O (2005).
    [Crossref]
  9. S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
    [Crossref]
  10. L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. 53(1), 223–232 (2004).
    [Crossref]
  11. J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yañez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors (Basel) 16(5), 694 (2016).
    [Crossref] [PubMed]
  12. F. F. Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel, “Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue,” Appl. Opt. 31(27), 5844–5851 (1992).
    [Crossref] [PubMed]
  13. M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: A theoretical and experimental study,” IEEE Sens. J. 12(3), 552–557 (2012).
    [Crossref]
  14. S. Cattini, M. Norgia, A. Pesatori, and L. Rovati, “Blood flow measurement in extracorporeal circulation using self-mixing laser diode,” Proc. SPIE 7572, 75720A (2010).
    [Crossref]
  15. J. Herbert, K. Bertling, T. Taimre, A. D. Rakić, and S. Wilson, “Microparticle discrimination using laser feedback interferometry,” Opt. Express 26(20), 25778–25792 (2018).
    [Crossref] [PubMed]
  16. L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
    [Crossref]
  17. H. Nobach, E. Müller, and C. Tropea, “Efficient estimation of power spectral density from laser Doppler anemometer data,” Exp. Fluids 24, 499–509 (1998).
    [Crossref]
  18. L. Rovati, S. Cattini, and N. Palanisamy, “Measurement of the fluid-velocity profile using a self-mixing superluminescent diode,” Meas. Sci. Technol. 22(2), 025402 (2011).
    [Crossref]
  19. J. B. Roberts and D. B. S. Ajmani, “Spectral analysis of randomly sampled signals using a correlation-based slotting technique,” Proc. IEEE 133(2), 153–162 (1986).
  20. R. J. Adrian and C. S. Yao, “Power spectra of fluid velocities measured by laser Doppler velocimetry,” Exp. Fluids 5(1), 17–28 (1986).
    [Crossref]
  21. S. Cattini and L. Rovati, “A simple and robust optical scheme for self-mixing low-coherence flowmeters,” Proc. SPIE 8951, 895102 (2014).
    [Crossref]
  22. M. Nikolić, Y. L. Lim, K. Bertling, T. Taimre, and A. D. Rakić, “Multiple signal classification for self-mixing flowmetry,” Appl. Opt. 54(9), 2193–2198 (2015).
    [Crossref] [PubMed]
  23. M. Minsky, Microscopy apparatus, US patent US3013467A (1961).
  24. P. M. Conn, Confocal Microscopy, Volume 307. Methods in Enzymology (Academic, 1999).
  25. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006).
  26. R. F. Guthoff, C. Baudouin, and J. Stave, Atlas of Confocal Laser Scanning In-vivo Microscopy in Opthalmology: Principles and Applications in Diagnostic and Therapeutic Ophthalmology (Springer, 2006).
  27. B. Matsumoto, Methods in Cell Biology, Volume 70. Cell Biological Applications of Confocal Microscopy (Academic, 2002).
  28. T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, 1996).
  29. S. W. Paddock, Methods in Molecular Biology, Volume 122. Confocal Microscopy Methods and Protocols (Humana, 1999).
  30. S. Kimura and T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt. 30(16), 2143–2150 (1991).
    [Crossref] [PubMed]
  31. L. Ginlünas, R. Juškaitis, and S. V. Shatalin, “Scanning fibre-optic microscope,” Electron. Lett. 27(9), 724–726 (1991).
    [Crossref]
  32. M. H. Koelink, F. F. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. Dassel, and J. G. Aarnoudse, “Fiber-coupled self-mixing diode-laser Doppler velocimeter: Technical aspects and flow velocity profile disturbances in water and blood flows,” Appl. Opt. 33(24), 5628–5641 (1994).
    [Crossref] [PubMed]
  33. M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comput. 30(4), 441–446 (1992).
    [Crossref] [PubMed]
  34. F. F. M. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, “Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis,” Appl. Opt. 41(4), 658–667 (2002).
    [Crossref] [PubMed]
  35. R. Juškaitis, T. Wilson, and F. Reinholz, “Spatial filtering by laser detection in confocal microscopy,” Opt. Lett. 18(14), 1135–1137 (1993).
    [Crossref] [PubMed]
  36. A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A Compact Laser Imaging System for Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry,” IEEE Photonics J. 8(5), 1–9 (2016).
    [Crossref]
  37. A. Mowla, K. Bertling, S. J. Wilson, and A. D. Rakić, “Dual-Modality Confocal Laser Feedback Tomography for Highly Scattering Medium,” IEEE Sens. J. 19, 6134–6140 (2019).
    [Crossref]
  38. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
    [Crossref]
  39. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
    [Crossref]
  40. T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
    [Crossref]
  41. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
    [Crossref]
  42. T. Taimre and A. D. Rakić, “On the nature of Acket’s characteristic parameter C in semiconductor lasers,” Appl. Opt. 53(5), 1001–1006 (2014).
    [Crossref] [PubMed]
  43. D. W. Piston, “Choosing objective lenses: the importance of numerical aperture and magnification in digital optical microscopy,” Biol. Bull. 195(1), 1–4 (1998).
    [Crossref] [PubMed]
  44. A. Mowla, M. Nikolić, T. Taimre, J. R. Tucker, Y. L. Lim, K. Bertling, and A. D. Rakić, “Effect of the optical system on the Doppler spectrum in laser-feedback interferometry,” Appl. Opt. 54(1), 18–26 (2015).
    [Crossref] [PubMed]
  45. C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11(11), 936–944 (1972).
    [PubMed]
  46. I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13(1), 014015 (2008).
    [Crossref] [PubMed]

2019 (1)

A. Mowla, K. Bertling, S. J. Wilson, and A. D. Rakić, “Dual-Modality Confocal Laser Feedback Tomography for Highly Scattering Medium,” IEEE Sens. J. 19, 6134–6140 (2019).
[Crossref]

2018 (1)

2016 (2)

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yañez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors (Basel) 16(5), 694 (2016).
[Crossref] [PubMed]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A Compact Laser Imaging System for Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry,” IEEE Photonics J. 8(5), 1–9 (2016).
[Crossref]

2015 (3)

2014 (2)

T. Taimre and A. D. Rakić, “On the nature of Acket’s characteristic parameter C in semiconductor lasers,” Appl. Opt. 53(5), 1001–1006 (2014).
[Crossref] [PubMed]

S. Cattini and L. Rovati, “A simple and robust optical scheme for self-mixing low-coherence flowmeters,” Proc. SPIE 8951, 895102 (2014).
[Crossref]

2013 (1)

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

2012 (1)

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: A theoretical and experimental study,” IEEE Sens. J. 12(3), 552–557 (2012).
[Crossref]

2011 (1)

L. Rovati, S. Cattini, and N. Palanisamy, “Measurement of the fluid-velocity profile using a self-mixing superluminescent diode,” Meas. Sci. Technol. 22(2), 025402 (2011).
[Crossref]

2010 (1)

S. Cattini, M. Norgia, A. Pesatori, and L. Rovati, “Blood flow measurement in extracorporeal circulation using self-mixing laser diode,” Proc. SPIE 7572, 75720A (2010).
[Crossref]

2008 (1)

I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13(1), 014015 (2008).
[Crossref] [PubMed]

2007 (1)

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[Crossref]

2005 (1)

Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakic, “Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect,” Proc. SPIE 6038, 60381O (2005).
[Crossref]

2004 (1)

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. 53(1), 223–232 (2004).
[Crossref]

2002 (1)

1998 (2)

D. W. Piston, “Choosing objective lenses: the importance of numerical aperture and magnification in digital optical microscopy,” Biol. Bull. 195(1), 1–4 (1998).
[Crossref] [PubMed]

H. Nobach, E. Müller, and C. Tropea, “Efficient estimation of power spectral density from laser Doppler anemometer data,” Exp. Fluids 24, 499–509 (1998).
[Crossref]

1995 (2)

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[Crossref]

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[Crossref]

1994 (1)

1993 (1)

1992 (2)

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comput. 30(4), 441–446 (1992).
[Crossref] [PubMed]

F. F. Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel, “Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue,” Appl. Opt. 31(27), 5844–5851 (1992).
[Crossref] [PubMed]

1991 (2)

S. Kimura and T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt. 30(16), 2143–2150 (1991).
[Crossref] [PubMed]

L. Ginlünas, R. Juškaitis, and S. V. Shatalin, “Scanning fibre-optic microscope,” Electron. Lett. 27(9), 724–726 (1991).
[Crossref]

1986 (3)

J. B. Roberts and D. B. S. Ajmani, “Spectral analysis of randomly sampled signals using a correlation-based slotting technique,” Proc. IEEE 133(2), 153–162 (1986).

R. J. Adrian and C. S. Yao, “Power spectra of fluid velocities measured by laser Doppler velocimetry,” Exp. Fluids 5(1), 17–28 (1986).
[Crossref]

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt. 25(9), 1417–1419 (1986).
[Crossref] [PubMed]

1982 (2)

W. H. Stevenson, “Laser Doppler velocimetry: A status report,” Proc. IEEE 70(6), 652–658 (1982).
[Crossref]

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

1972 (1)

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11(11), 936–944 (1972).
[PubMed]

1968 (1)

M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. Educ. 1(7), 723–726 (1968).
[Crossref]

1965 (1)

J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
[Crossref]

1960 (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Aarnoudse, J. G.

Adrian, R. J.

R. J. Adrian and C. S. Yao, “Power spectra of fluid velocities measured by laser Doppler velocimetry,” Exp. Fluids 5(1), 17–28 (1986).
[Crossref]

Ajmani, D. B. S.

J. B. Roberts and D. B. S. Ajmani, “Spectral analysis of randomly sampled signals using a correlation-based slotting technique,” Proc. IEEE 133(2), 153–162 (1986).

Atashkhooei, R.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yañez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors (Basel) 16(5), 694 (2016).
[Crossref] [PubMed]

Azcona, F. J.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yañez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors (Basel) 16(5), 694 (2016).
[Crossref] [PubMed]

Benedek, G. B.

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11(11), 936–944 (1972).
[PubMed]

Bernal, O.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yañez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors (Basel) 16(5), 694 (2016).
[Crossref] [PubMed]

Bertling, K.

A. Mowla, K. Bertling, S. J. Wilson, and A. D. Rakić, “Dual-Modality Confocal Laser Feedback Tomography for Highly Scattering Medium,” IEEE Sens. J. 19, 6134–6140 (2019).
[Crossref]

J. Herbert, K. Bertling, T. Taimre, A. D. Rakić, and S. Wilson, “Microparticle discrimination using laser feedback interferometry,” Opt. Express 26(20), 25778–25792 (2018).
[Crossref] [PubMed]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A Compact Laser Imaging System for Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry,” IEEE Photonics J. 8(5), 1–9 (2016).
[Crossref]

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
[Crossref]

M. Nikolić, Y. L. Lim, K. Bertling, T. Taimre, and A. D. Rakić, “Multiple signal classification for self-mixing flowmetry,” Appl. Opt. 54(9), 2193–2198 (2015).
[Crossref] [PubMed]

A. Mowla, M. Nikolić, T. Taimre, J. R. Tucker, Y. L. Lim, K. Bertling, and A. D. Rakić, “Effect of the optical system on the Doppler spectrum in laser-feedback interferometry,” Appl. Opt. 54(1), 18–26 (2015).
[Crossref] [PubMed]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakic, “Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect,” Proc. SPIE 6038, 60381O (2005).
[Crossref]

Bosch, T.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yañez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors (Basel) 16(5), 694 (2016).
[Crossref] [PubMed]

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
[Crossref]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. 53(1), 223–232 (2004).
[Crossref]

Campagnolo, L.

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Cattini, S.

S. Cattini and L. Rovati, “A simple and robust optical scheme for self-mixing low-coherence flowmeters,” Proc. SPIE 8951, 895102 (2014).
[Crossref]

L. Rovati, S. Cattini, and N. Palanisamy, “Measurement of the fluid-velocity profile using a self-mixing superluminescent diode,” Meas. Sci. Technol. 22(2), 025402 (2011).
[Crossref]

S. Cattini, M. Norgia, A. Pesatori, and L. Rovati, “Blood flow measurement in extracorporeal circulation using self-mixing laser diode,” Proc. SPIE 7572, 75720A (2010).
[Crossref]

Caum, J.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yañez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors (Basel) 16(5), 694 (2016).
[Crossref] [PubMed]

Dassel, A. C.

Dassel, A. C. M.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comput. 30(4), 441–446 (1992).
[Crossref] [PubMed]

F. F. Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel, “Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue,” Appl. Opt. 31(27), 5844–5851 (1992).
[Crossref] [PubMed]

de Mul, F. F.

de Mul, F. F. M.

F. F. M. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, “Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis,” Appl. Opt. 41(4), 658–667 (2002).
[Crossref] [PubMed]

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comput. 30(4), 441–446 (1992).
[Crossref] [PubMed]

Donati, S.

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[Crossref]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[Crossref]

Foreman, J. W.

J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
[Crossref]

Fredriksson, I.

I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13(1), 014015 (2008).
[Crossref] [PubMed]

George, E. W.

J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
[Crossref]

Ginlünas, L.

L. Ginlünas, R. Juškaitis, and S. V. Shatalin, “Scanning fibre-optic microscope,” Electron. Lett. 27(9), 724–726 (1991).
[Crossref]

Giuliani, G.

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[Crossref]

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. 53(1), 223–232 (2004).
[Crossref]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[Crossref]

Graaff, R.

Greve, J.

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

Herbert, J.

Jha, A.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yañez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors (Basel) 16(5), 694 (2016).
[Crossref] [PubMed]

Juškaitis, R.

R. Juškaitis, T. Wilson, and F. Reinholz, “Spatial filtering by laser detection in confocal microscopy,” Opt. Lett. 18(14), 1135–1137 (1993).
[Crossref] [PubMed]

L. Ginlünas, R. Juškaitis, and S. V. Shatalin, “Scanning fibre-optic microscope,” Electron. Lett. 27(9), 724–726 (1991).
[Crossref]

Kimura, S.

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Koelink, M. H.

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Larsson, M.

I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13(1), 014015 (2008).
[Crossref] [PubMed]

Lewis, R. D.

J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
[Crossref]

Lim, Y. L.

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A Compact Laser Imaging System for Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry,” IEEE Photonics J. 8(5), 1–9 (2016).
[Crossref]

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
[Crossref]

M. Nikolić, Y. L. Lim, K. Bertling, T. Taimre, and A. D. Rakić, “Multiple signal classification for self-mixing flowmetry,” Appl. Opt. 54(9), 2193–2198 (2015).
[Crossref] [PubMed]

A. Mowla, M. Nikolić, T. Taimre, J. R. Tucker, Y. L. Lim, K. Bertling, and A. D. Rakić, “Effect of the optical system on the Doppler spectrum in laser-feedback interferometry,” Appl. Opt. 54(1), 18–26 (2015).
[Crossref] [PubMed]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakic, “Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect,” Proc. SPIE 6038, 60381O (2005).
[Crossref]

Loubière, K.

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Luna-Arriaga, A.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yañez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors (Basel) 16(5), 694 (2016).
[Crossref] [PubMed]

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Merlo, S.

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[Crossref]

Mochizuki, A.

Moes, P.

Mowla, A.

A. Mowla, K. Bertling, S. J. Wilson, and A. D. Rakić, “Dual-Modality Confocal Laser Feedback Tomography for Highly Scattering Medium,” IEEE Sens. J. 19, 6134–6140 (2019).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A Compact Laser Imaging System for Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry,” IEEE Photonics J. 8(5), 1–9 (2016).
[Crossref]

A. Mowla, M. Nikolić, T. Taimre, J. R. Tucker, Y. L. Lim, K. Bertling, and A. D. Rakić, “Effect of the optical system on the Doppler spectrum in laser-feedback interferometry,” Appl. Opt. 54(1), 18–26 (2015).
[Crossref] [PubMed]

Mul, F. F.

Müller, E.

H. Nobach, E. Müller, and C. Tropea, “Efficient estimation of power spectral density from laser Doppler anemometer data,” Exp. Fluids 24, 499–509 (1998).
[Crossref]

Nikolic, M.

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
[Crossref]

M. Nikolić, Y. L. Lim, K. Bertling, T. Taimre, and A. D. Rakić, “Multiple signal classification for self-mixing flowmetry,” Appl. Opt. 54(9), 2193–2198 (2015).
[Crossref] [PubMed]

A. Mowla, M. Nikolić, T. Taimre, J. R. Tucker, Y. L. Lim, K. Bertling, and A. D. Rakić, “Effect of the optical system on the Doppler spectrum in laser-feedback interferometry,” Appl. Opt. 54(1), 18–26 (2015).
[Crossref] [PubMed]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Nobach, H.

H. Nobach, E. Müller, and C. Tropea, “Efficient estimation of power spectral density from laser Doppler anemometer data,” Exp. Fluids 24, 499–509 (1998).
[Crossref]

Norgia, M.

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: A theoretical and experimental study,” IEEE Sens. J. 12(3), 552–557 (2012).
[Crossref]

S. Cattini, M. Norgia, A. Pesatori, and L. Rovati, “Blood flow measurement in extracorporeal circulation using self-mixing laser diode,” Proc. SPIE 7572, 75720A (2010).
[Crossref]

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[Crossref]

Palanisamy, N.

L. Rovati, S. Cattini, and N. Palanisamy, “Measurement of the fluid-velocity profile using a self-mixing superluminescent diode,” Meas. Sci. Technol. 22(2), 025402 (2011).
[Crossref]

Perchoux, J.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yañez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors (Basel) 16(5), 694 (2016).
[Crossref] [PubMed]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Pesatori, A.

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: A theoretical and experimental study,” IEEE Sens. J. 12(3), 552–557 (2012).
[Crossref]

S. Cattini, M. Norgia, A. Pesatori, and L. Rovati, “Blood flow measurement in extracorporeal circulation using self-mixing laser diode,” Proc. SPIE 7572, 75720A (2010).
[Crossref]

Petermann, K.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[Crossref]

Petoukhova, A. L.

Piston, D. W.

D. W. Piston, “Choosing objective lenses: the importance of numerical aperture and magnification in digital optical microscopy,” Biol. Bull. 195(1), 1–4 (1998).
[Crossref] [PubMed]

Plantier, G.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. 53(1), 223–232 (2004).
[Crossref]

Prat, L.

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Prow, T. W.

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A Compact Laser Imaging System for Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry,” IEEE Photonics J. 8(5), 1–9 (2016).
[Crossref]

Quotb, A.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yañez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors (Basel) 16(5), 694 (2016).
[Crossref] [PubMed]

Rakic, A. D.

A. Mowla, K. Bertling, S. J. Wilson, and A. D. Rakić, “Dual-Modality Confocal Laser Feedback Tomography for Highly Scattering Medium,” IEEE Sens. J. 19, 6134–6140 (2019).
[Crossref]

J. Herbert, K. Bertling, T. Taimre, A. D. Rakić, and S. Wilson, “Microparticle discrimination using laser feedback interferometry,” Opt. Express 26(20), 25778–25792 (2018).
[Crossref] [PubMed]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A Compact Laser Imaging System for Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry,” IEEE Photonics J. 8(5), 1–9 (2016).
[Crossref]

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
[Crossref]

M. Nikolić, Y. L. Lim, K. Bertling, T. Taimre, and A. D. Rakić, “Multiple signal classification for self-mixing flowmetry,” Appl. Opt. 54(9), 2193–2198 (2015).
[Crossref] [PubMed]

A. Mowla, M. Nikolić, T. Taimre, J. R. Tucker, Y. L. Lim, K. Bertling, and A. D. Rakić, “Effect of the optical system on the Doppler spectrum in laser-feedback interferometry,” Appl. Opt. 54(1), 18–26 (2015).
[Crossref] [PubMed]

T. Taimre and A. D. Rakić, “On the nature of Acket’s characteristic parameter C in semiconductor lasers,” Appl. Opt. 53(5), 1001–1006 (2014).
[Crossref] [PubMed]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakic, “Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect,” Proc. SPIE 6038, 60381O (2005).
[Crossref]

Ramírez-Miquet, E. E.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yañez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors (Basel) 16(5), 694 (2016).
[Crossref] [PubMed]

Reinholz, F.

Rio, P.

Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakic, “Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect,” Proc. SPIE 6038, 60381O (2005).
[Crossref]

Riva, C.

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11(11), 936–944 (1972).
[PubMed]

Roberts, J. B.

J. B. Roberts and D. B. S. Ajmani, “Spectral analysis of randomly sampled signals using a correlation-based slotting technique,” Proc. IEEE 133(2), 153–162 (1986).

Ross, B.

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11(11), 936–944 (1972).
[PubMed]

Rovati, L.

S. Cattini and L. Rovati, “A simple and robust optical scheme for self-mixing low-coherence flowmeters,” Proc. SPIE 8951, 895102 (2014).
[Crossref]

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: A theoretical and experimental study,” IEEE Sens. J. 12(3), 552–557 (2012).
[Crossref]

L. Rovati, S. Cattini, and N. Palanisamy, “Measurement of the fluid-velocity profile using a self-mixing superluminescent diode,” Meas. Sci. Technol. 22(2), 025402 (2011).
[Crossref]

S. Cattini, M. Norgia, A. Pesatori, and L. Rovati, “Blood flow measurement in extracorporeal circulation using self-mixing laser diode,” Proc. SPIE 7572, 75720A (2010).
[Crossref]

Royo, S.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yañez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors (Basel) 16(5), 694 (2016).
[Crossref] [PubMed]

Rudd, M. J.

M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. Educ. 1(7), 723–726 (1968).
[Crossref]

Scalise, L.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. 53(1), 223–232 (2004).
[Crossref]

F. F. M. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, “Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis,” Appl. Opt. 41(4), 658–667 (2002).
[Crossref] [PubMed]

Scholten, F. G.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comput. 30(4), 441–446 (1992).
[Crossref] [PubMed]

Shatalin, S. V.

L. Ginlünas, R. Juškaitis, and S. V. Shatalin, “Scanning fibre-optic microscope,” Electron. Lett. 27(9), 724–726 (1991).
[Crossref]

Shinohara, S.

Slot, M.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comput. 30(4), 441–446 (1992).
[Crossref] [PubMed]

Steenbergen, W.

Stevenson, W. H.

W. H. Stevenson, “Laser Doppler velocimetry: A status report,” Proc. IEEE 70(6), 652–658 (1982).
[Crossref]

Strömberg, T.

I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13(1), 014015 (2008).
[Crossref] [PubMed]

Sumi, M.

Taimre, T.

Tropea, C.

H. Nobach, E. Müller, and C. Tropea, “Efficient estimation of power spectral density from laser Doppler anemometer data,” Exp. Fluids 24, 499–509 (1998).
[Crossref]

Tucker, J. R.

A. Mowla, M. Nikolić, T. Taimre, J. R. Tucker, Y. L. Lim, K. Bertling, and A. D. Rakić, “Effect of the optical system on the Doppler spectrum in laser-feedback interferometry,” Appl. Opt. 54(1), 18–26 (2015).
[Crossref] [PubMed]

Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakic, “Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect,” Proc. SPIE 6038, 60381O (2005).
[Crossref]

Tuynman, F. H. B.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comput. 30(4), 441–446 (1992).
[Crossref] [PubMed]

van Herwijnen, M.

Weijers, A. L.

Wilson, S.

Wilson, S. J.

A. Mowla, K. Bertling, S. J. Wilson, and A. D. Rakić, “Dual-Modality Confocal Laser Feedback Tomography for Highly Scattering Medium,” IEEE Sens. J. 19, 6134–6140 (2019).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A Compact Laser Imaging System for Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry,” IEEE Photonics J. 8(5), 1–9 (2016).
[Crossref]

Wilson, T.

Yañez, C.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yañez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors (Basel) 16(5), 694 (2016).
[Crossref] [PubMed]

Yao, C. S.

R. J. Adrian and C. S. Yao, “Power spectra of fluid velocities measured by laser Doppler velocimetry,” Exp. Fluids 5(1), 17–28 (1986).
[Crossref]

Yoshida, H.

Yu, Y.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. 53(1), 223–232 (2004).
[Crossref]

Adv. Opt. Photonics (1)

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
[Crossref]

Appl. Opt. (8)

T. Taimre and A. D. Rakić, “On the nature of Acket’s characteristic parameter C in semiconductor lasers,” Appl. Opt. 53(5), 1001–1006 (2014).
[Crossref] [PubMed]

A. Mowla, M. Nikolić, T. Taimre, J. R. Tucker, Y. L. Lim, K. Bertling, and A. D. Rakić, “Effect of the optical system on the Doppler spectrum in laser-feedback interferometry,” Appl. Opt. 54(1), 18–26 (2015).
[Crossref] [PubMed]

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt. 25(9), 1417–1419 (1986).
[Crossref] [PubMed]

F. F. Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel, “Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue,” Appl. Opt. 31(27), 5844–5851 (1992).
[Crossref] [PubMed]

M. Nikolić, Y. L. Lim, K. Bertling, T. Taimre, and A. D. Rakić, “Multiple signal classification for self-mixing flowmetry,” Appl. Opt. 54(9), 2193–2198 (2015).
[Crossref] [PubMed]

S. Kimura and T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt. 30(16), 2143–2150 (1991).
[Crossref] [PubMed]

M. H. Koelink, F. F. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. Dassel, and J. G. Aarnoudse, “Fiber-coupled self-mixing diode-laser Doppler velocimeter: Technical aspects and flow velocity profile disturbances in water and blood flows,” Appl. Opt. 33(24), 5628–5641 (1994).
[Crossref] [PubMed]

F. F. M. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, “Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis,” Appl. Opt. 41(4), 658–667 (2002).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
[Crossref]

Biol. Bull. (1)

D. W. Piston, “Choosing objective lenses: the importance of numerical aperture and magnification in digital optical microscopy,” Biol. Bull. 195(1), 1–4 (1998).
[Crossref] [PubMed]

Electron. Lett. (1)

L. Ginlünas, R. Juškaitis, and S. V. Shatalin, “Scanning fibre-optic microscope,” Electron. Lett. 27(9), 724–726 (1991).
[Crossref]

Exp. Fluids (2)

H. Nobach, E. Müller, and C. Tropea, “Efficient estimation of power spectral density from laser Doppler anemometer data,” Exp. Fluids 24, 499–509 (1998).
[Crossref]

R. J. Adrian and C. S. Yao, “Power spectra of fluid velocities measured by laser Doppler velocimetry,” Exp. Fluids 5(1), 17–28 (1986).
[Crossref]

IEEE J. Quantum Electron. (3)

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[Crossref]

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[Crossref]

IEEE Photonics J. (1)

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A Compact Laser Imaging System for Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry,” IEEE Photonics J. 8(5), 1–9 (2016).
[Crossref]

IEEE Sens. J. (2)

A. Mowla, K. Bertling, S. J. Wilson, and A. D. Rakić, “Dual-Modality Confocal Laser Feedback Tomography for Highly Scattering Medium,” IEEE Sens. J. 19, 6134–6140 (2019).
[Crossref]

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: A theoretical and experimental study,” IEEE Sens. J. 12(3), 552–557 (2012).
[Crossref]

IEEE Trans. Instrum. (1)

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. 53(1), 223–232 (2004).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[Crossref]

Invest. Ophthalmol. (1)

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11(11), 936–944 (1972).
[PubMed]

J. Biomed. Opt. (1)

I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13(1), 014015 (2008).
[Crossref] [PubMed]

J. Phys. Educ. (1)

M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. Educ. 1(7), 723–726 (1968).
[Crossref]

Meas. Sci. Technol. (1)

L. Rovati, S. Cattini, and N. Palanisamy, “Measurement of the fluid-velocity profile using a self-mixing superluminescent diode,” Meas. Sci. Technol. 22(2), 025402 (2011).
[Crossref]

Med. Biol. Eng. Comput. (1)

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comput. 30(4), 441–446 (1992).
[Crossref] [PubMed]

Microfluid. Nanofluidics (1)

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Nature (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. IEEE (2)

J. B. Roberts and D. B. S. Ajmani, “Spectral analysis of randomly sampled signals using a correlation-based slotting technique,” Proc. IEEE 133(2), 153–162 (1986).

W. H. Stevenson, “Laser Doppler velocimetry: A status report,” Proc. IEEE 70(6), 652–658 (1982).
[Crossref]

Proc. SPIE (3)

Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakic, “Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect,” Proc. SPIE 6038, 60381O (2005).
[Crossref]

S. Cattini and L. Rovati, “A simple and robust optical scheme for self-mixing low-coherence flowmeters,” Proc. SPIE 8951, 895102 (2014).
[Crossref]

S. Cattini, M. Norgia, A. Pesatori, and L. Rovati, “Blood flow measurement in extracorporeal circulation using self-mixing laser diode,” Proc. SPIE 7572, 75720A (2010).
[Crossref]

Sensors (Basel) (1)

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yañez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors (Basel) 16(5), 694 (2016).
[Crossref] [PubMed]

Other (8)

H. Jelínková, Lasers for Medical Applications: Diagnostics, Therapy and Surgery (Woodhead Publishing, 2013).

M. Minsky, Microscopy apparatus, US patent US3013467A (1961).

P. M. Conn, Confocal Microscopy, Volume 307. Methods in Enzymology (Academic, 1999).

J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006).

R. F. Guthoff, C. Baudouin, and J. Stave, Atlas of Confocal Laser Scanning In-vivo Microscopy in Opthalmology: Principles and Applications in Diagnostic and Therapeutic Ophthalmology (Springer, 2006).

B. Matsumoto, Methods in Cell Biology, Volume 70. Cell Biological Applications of Confocal Microscopy (Academic, 2002).

T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, 1996).

S. W. Paddock, Methods in Molecular Biology, Volume 122. Confocal Microscopy Methods and Protocols (Humana, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of a basic laser Doppler flowmeter based on SMI.
Fig. 2
Fig. 2 Scheme of a Fabry-Perot cavity model for a LD under optical feedback.
Fig. 3
Fig. 3 Comparison between two SMI signals: (a) shows the time-domain signal of an oscillating solid target and (c) its corresponding frequency-domain plot. In (b), the SMI signal was obtained from a turbid liquid flowing inside a pipe. Here, the signal varies in amplitude and frequency according the quantity and velocity of the particles crossing through the illumination volume in a given moment. This is evident in its frequency-domain plot, presented in (d).
Fig. 4
Fig. 4 Schematic diagram of the CSMI flowmeter.
Fig. 5
Fig. 5 Laser spots obtained using three different microscope objectives: (a) 10x, NA = 0.3; (b) 20x, NA = 0.42; and (c) 50x, NA = 0.55. Pinhole diameter from left to right: no pinhole, 1000 μm, 900 μm, 800 μm, 700 μm, 600 μm and 500 μm. Scale on the right shows size on the focal plane of the objective.
Fig. 6
Fig. 6 Comparison between two illumination volumes produced by a 50x microscope objective with NA = 0.55: (a) without pinhole; (b) using a pinhole of 900 μm in diameter. λ = 830 nm.
Fig. 7
Fig. 7 Comparison between seven frequency spectra obtained from a pumping rate of 0.7 mL/min using seven PH configurations. The FWHM corresponding to a non-confocal measurement (without PH) was 48.86 kHz. For a PH ø from 1000 to 500 μm, the FWHM was 21.12 kHz, 19.85 kHz, 14.93 kHz, 19.68 kHz, 19.17 kHz and 17.64 kHz, respectively.
Fig. 8
Fig. 8 Frequency spectra for several flow rates (0.2, 0.3, 0.5, 0.7, 0.9, 1, 1.2, 1.4 and 1.6 mL/min): (a) Non-confocal measurement; (b) PH ø = 900; (c) PH ø = 800 and (d) PH ø = 700.
Fig. 9
Fig. 9 (a) Plot of the theoretical maximum flow velocities and the experimental results; (b) Standard deviation (SD) obtained for each flow rate based in ninety-three measurements, thirty-one for each PH ø. AVG is the average for each flow rate measurement.
Fig. 10
Fig. 10 Plot of the theoretical Hagen-Poiseuille profile and the confocal measurements.

Tables (1)

Tables Icon

Table 1 Optical power measured from each configuration reported in Fig. 4

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V(r)= V max ( 1 r 2 R 2 ).
F D = 2nV(r)( cosθ ) λ .
Pτ= P 0 [ 1+mGτ ].
Gτ=cos( ω F t ).
ω F t= ω 0 tCsin( ω F t+arctanα ).
C=γ η L η l 1+ α 2 .
γ= r s r 2 ( 1 r 2 2 ).

Metrics