Abstract

Optical recording of digital holograms by coherent light traditionally involves interference between object and reference waves, which complicates the image acquisition process and decreases the power efficiency. In this work, we take the coded aperture correlation holography technique one step forward to record coherent digital holograms of three-dimensional scenes, without wave interference and in a motionless working mode. In addition to the explicit benefits of integrating interferenceless holographic imaging system with coherent illumination, the suggested method enables fast image acquisition implied by its inherent high signal-to-noise ratio. Experimental validation for diffusely reflective objects is also provided, making this relatively simple system appropriate for studying and using the speckle phenomena in coherent digital holography.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH)

Mani R. Rai, A. Vijayakumar, and Joseph Rosen
Opt. Express 26(14) 18143-18154 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. K. Kim, Digital Holography and Microscopy: Principles, Techniques, and Applications (Springer Verlag, 2011).
  2. M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
    [Crossref]
  3. S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
    [Crossref]
  4. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006).
    [Crossref]
  5. A. Vijayakumar and J. Rosen, “Interferenceless coded aperture correlation holography – a new technique for recording incoherent digital holograms without two-wave interference,” Opt. Express 25(12), 13883–13896 (2017).
    [Crossref]
  6. M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
    [Crossref]
  7. M. R. Rai, A. Vijayakumar, and J. Rosen, “Single camera shot interferenceless coded aperture correlation holography,” Opt. Lett. 42(19), 3992–3995 (2017).
    [Crossref]
  8. M. R. Rai, A. Vijayakumar, and J. Rosen, “Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I- COACH),” Opt. Express 26(14), 18143–18154 (2018).
    [Crossref]
  9. M. R. Rai, A. Vijayakumar, and J. Rosen, “Extending the field of view by a scattering window in an I-COACH system,” Opt. Lett. 43(5), 1043–1046 (2018).
    [Crossref]
  10. A. Bulbul, A. Vijayakumar, and J. Rosen, “Partial aperture imaging by system with annular phase coded masks,” Opt. Express 25(26), 33315–33329 (2017).
    [Crossref]
  11. M. R. Rai, A. Vijayakumar, Y. Ogura, and J. Rosen, “Resolution enhancement in nonlinear interferenceless COACH with point response of subdiffraction limit patterns,” Opt. Express 27(2), 391–403 (2019).
    [Crossref]
  12. M. R. Rai, A. Vijayakumar, and J. Rosen, “Superresolution beyond the diffraction limit using phase spatial light modulator between incoherently illuminated objects and the entrance of an incoherent imaging system,” Opt. Lett. 44(7), 1572–1575 (2019).
    [Crossref]
  13. S. Mukherjee, A. Vijayakumar, and J. Rosen, “3D Imaging through Scatterers with Interferenceless Optical System,” Sci. Rep. 8(1), 1134 (2018).
    [Crossref]
  14. S. Mukherjee and J. Rosen, “Imaging through Scattering Medium by Adaptive Non-linear Digital Processing,” Sci. Rep. 8(1), 10517 (2018).
    [Crossref]
  15. B. E. A. Saleh and M. C. Teich, Fundamentals of Phtonics (John wiley & Sons, Inc., 2007), Chaps. 4 and 11.
  16. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
    [Crossref]
  17. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34(6), 767–769 (2009).
    [Crossref]
  18. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35(2), 227–246 (1972).
  19. J. W. Goodman, Speckle Phenomena in Optics (Roberts & Company, 2007).
  20. V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light: Sci. Appl. 7(1), 48–64 (2018).
    [Crossref]
  21. C. Gorecki, “Phase-correlation techniques for quasi real-time measurement of deformations with digital speckle interferometry,” Appl. Opt. 33(14), 2933–2938 (1994).
    [Crossref]
  22. P. Slangen, L. Berwart, C. Veuster, J. Gonlinval, and Y. Lion, “Digital speckle pattern interferometry: a fast procedure to detect and measure vibration mode shapes,” Opt. Lasers Eng. 25(4-5), 311–321 (1996).
    [Crossref]
  23. S. E. Skipetrov, J. Peuser, R. Cerbino, P. Zakharov, B. Weber, and F. Scheffold, “Noise in laser speckle correlation and imaging techniques,” Opt. Express 18(14), 14519–14534 (2010).
    [Crossref]

2019 (2)

2018 (5)

S. Mukherjee, A. Vijayakumar, and J. Rosen, “3D Imaging through Scatterers with Interferenceless Optical System,” Sci. Rep. 8(1), 1134 (2018).
[Crossref]

S. Mukherjee and J. Rosen, “Imaging through Scattering Medium by Adaptive Non-linear Digital Processing,” Sci. Rep. 8(1), 10517 (2018).
[Crossref]

M. R. Rai, A. Vijayakumar, and J. Rosen, “Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I- COACH),” Opt. Express 26(14), 18143–18154 (2018).
[Crossref]

M. R. Rai, A. Vijayakumar, and J. Rosen, “Extending the field of view by a scattering window in an I-COACH system,” Opt. Lett. 43(5), 1043–1046 (2018).
[Crossref]

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light: Sci. Appl. 7(1), 48–64 (2018).
[Crossref]

2017 (4)

2013 (1)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

2010 (2)

2009 (2)

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[Crossref]

N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34(6), 767–769 (2009).
[Crossref]

2006 (1)

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006).
[Crossref]

1996 (1)

P. Slangen, L. Berwart, C. Veuster, J. Gonlinval, and Y. Lion, “Digital speckle pattern interferometry: a fast procedure to detect and measure vibration mode shapes,” Opt. Lasers Eng. 25(4-5), 311–321 (1996).
[Crossref]

1994 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35(2), 227–246 (1972).

Berwart, L.

P. Slangen, L. Berwart, C. Veuster, J. Gonlinval, and Y. Lion, “Digital speckle pattern interferometry: a fast procedure to detect and measure vibration mode shapes,” Opt. Lasers Eng. 25(4-5), 311–321 (1996).
[Crossref]

Bianco, V.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light: Sci. Appl. 7(1), 48–64 (2018).
[Crossref]

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Bulbul, A.

Cerbino, R.

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Depeursinge, C.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Distante, C.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light: Sci. Appl. 7(1), 48–64 (2018).
[Crossref]

Erlinger, A.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[Crossref]

Ferraro, P.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light: Sci. Appl. 7(1), 48–64 (2018).
[Crossref]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
[Crossref]

Finizio, A.

Frauel, Y.

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006).
[Crossref]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35(2), 227–246 (1972).

Gonlinval, J.

P. Slangen, L. Berwart, C. Veuster, J. Gonlinval, and Y. Lion, “Digital speckle pattern interferometry: a fast procedure to detect and measure vibration mode shapes,” Opt. Lasers Eng. 25(4-5), 311–321 (1996).
[Crossref]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics (Roberts & Company, 2007).

Gorecki, C.

Javidi, B.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light: Sci. Appl. 7(1), 48–64 (2018).
[Crossref]

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006).
[Crossref]

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Kim, M. K.

M. K. Kim, Digital Holography and Microscopy: Principles, Techniques, and Applications (Springer Verlag, 2011).

Kumar, M.

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
[Crossref]

Leo, M.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light: Sci. Appl. 7(1), 48–64 (2018).
[Crossref]

Lion, Y.

P. Slangen, L. Berwart, C. Veuster, J. Gonlinval, and Y. Lion, “Digital speckle pattern interferometry: a fast procedure to detect and measure vibration mode shapes,” Opt. Lasers Eng. 25(4-5), 311–321 (1996).
[Crossref]

Magistretti, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Marquet, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Matoba, O.

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006).
[Crossref]

Memmolo, P.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light: Sci. Appl. 7(1), 48–64 (2018).
[Crossref]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
[Crossref]

Montresor, S.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light: Sci. Appl. 7(1), 48–64 (2018).
[Crossref]

Mukherjee, S.

S. Mukherjee, A. Vijayakumar, and J. Rosen, “3D Imaging through Scatterers with Interferenceless Optical System,” Sci. Rep. 8(1), 1134 (2018).
[Crossref]

S. Mukherjee and J. Rosen, “Imaging through Scattering Medium by Adaptive Non-linear Digital Processing,” Sci. Rep. 8(1), 10517 (2018).
[Crossref]

Näsänen, R.

Naughton, T. J.

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
[Crossref]

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006).
[Crossref]

Ogura, Y.

Ozcan, A.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[Crossref]

Paturzo, M.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light: Sci. Appl. 7(1), 48–64 (2018).
[Crossref]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
[Crossref]

Pavillon, N.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Peuser, J.

Picart, P.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light: Sci. Appl. 7(1), 48–64 (2018).
[Crossref]

Rai, M. R.

Rinehart, M. T.

Rosen, J.

M. R. Rai, A. Vijayakumar, Y. Ogura, and J. Rosen, “Resolution enhancement in nonlinear interferenceless COACH with point response of subdiffraction limit patterns,” Opt. Express 27(2), 391–403 (2019).
[Crossref]

M. R. Rai, A. Vijayakumar, and J. Rosen, “Superresolution beyond the diffraction limit using phase spatial light modulator between incoherently illuminated objects and the entrance of an incoherent imaging system,” Opt. Lett. 44(7), 1572–1575 (2019).
[Crossref]

M. R. Rai, A. Vijayakumar, and J. Rosen, “Extending the field of view by a scattering window in an I-COACH system,” Opt. Lett. 43(5), 1043–1046 (2018).
[Crossref]

M. R. Rai, A. Vijayakumar, and J. Rosen, “Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I- COACH),” Opt. Express 26(14), 18143–18154 (2018).
[Crossref]

S. Mukherjee, A. Vijayakumar, and J. Rosen, “3D Imaging through Scatterers with Interferenceless Optical System,” Sci. Rep. 8(1), 1134 (2018).
[Crossref]

S. Mukherjee and J. Rosen, “Imaging through Scattering Medium by Adaptive Non-linear Digital Processing,” Sci. Rep. 8(1), 10517 (2018).
[Crossref]

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
[Crossref]

A. Vijayakumar and J. Rosen, “Interferenceless coded aperture correlation holography – a new technique for recording incoherent digital holograms without two-wave interference,” Opt. Express 25(12), 13883–13896 (2017).
[Crossref]

M. R. Rai, A. Vijayakumar, and J. Rosen, “Single camera shot interferenceless coded aperture correlation holography,” Opt. Lett. 42(19), 3992–3995 (2017).
[Crossref]

A. Bulbul, A. Vijayakumar, and J. Rosen, “Partial aperture imaging by system with annular phase coded masks,” Opt. Express 25(26), 33315–33329 (2017).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Phtonics (John wiley & Sons, Inc., 2007), Chaps. 4 and 11.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35(2), 227–246 (1972).

Scheffold, F.

Seo, S.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[Crossref]

Shaked, N. T.

Skipetrov, S. E.

Slangen, P.

P. Slangen, L. Berwart, C. Veuster, J. Gonlinval, and Y. Lion, “Digital speckle pattern interferometry: a fast procedure to detect and measure vibration mode shapes,” Opt. Lasers Eng. 25(4-5), 311–321 (1996).
[Crossref]

Su, T. W.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[Crossref]

Tajahuerce, E.

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006).
[Crossref]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Phtonics (John wiley & Sons, Inc., 2007), Chaps. 4 and 11.

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Tseng, D. K.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[Crossref]

Veuster, C.

P. Slangen, L. Berwart, C. Veuster, J. Gonlinval, and Y. Lion, “Digital speckle pattern interferometry: a fast procedure to detect and measure vibration mode shapes,” Opt. Lasers Eng. 25(4-5), 311–321 (1996).
[Crossref]

Vijayakumar, A.

M. R. Rai, A. Vijayakumar, Y. Ogura, and J. Rosen, “Resolution enhancement in nonlinear interferenceless COACH with point response of subdiffraction limit patterns,” Opt. Express 27(2), 391–403 (2019).
[Crossref]

M. R. Rai, A. Vijayakumar, and J. Rosen, “Superresolution beyond the diffraction limit using phase spatial light modulator between incoherently illuminated objects and the entrance of an incoherent imaging system,” Opt. Lett. 44(7), 1572–1575 (2019).
[Crossref]

M. R. Rai, A. Vijayakumar, and J. Rosen, “Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I- COACH),” Opt. Express 26(14), 18143–18154 (2018).
[Crossref]

M. R. Rai, A. Vijayakumar, and J. Rosen, “Extending the field of view by a scattering window in an I-COACH system,” Opt. Lett. 43(5), 1043–1046 (2018).
[Crossref]

S. Mukherjee, A. Vijayakumar, and J. Rosen, “3D Imaging through Scatterers with Interferenceless Optical System,” Sci. Rep. 8(1), 1134 (2018).
[Crossref]

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
[Crossref]

A. Vijayakumar and J. Rosen, “Interferenceless coded aperture correlation holography – a new technique for recording incoherent digital holograms without two-wave interference,” Opt. Express 25(12), 13883–13896 (2017).
[Crossref]

A. Bulbul, A. Vijayakumar, and J. Rosen, “Partial aperture imaging by system with annular phase coded masks,” Opt. Express 25(26), 33315–33329 (2017).
[Crossref]

M. R. Rai, A. Vijayakumar, and J. Rosen, “Single camera shot interferenceless coded aperture correlation holography,” Opt. Lett. 42(19), 3992–3995 (2017).
[Crossref]

Wax, A.

Weber, B.

Zakharov, P.

Appl. Opt. (1)

Lab Chip (1)

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[Crossref]

Light: Sci. Appl. (1)

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light: Sci. Appl. 7(1), 48–64 (2018).
[Crossref]

Nat. Photonics (1)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (1)

P. Slangen, L. Berwart, C. Veuster, J. Gonlinval, and Y. Lion, “Digital speckle pattern interferometry: a fast procedure to detect and measure vibration mode shapes,” Opt. Lasers Eng. 25(4-5), 311–321 (1996).
[Crossref]

Opt. Lett. (4)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35(2), 227–246 (1972).

Proc. IEEE (1)

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006).
[Crossref]

Sci. Rep. (3)

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
[Crossref]

S. Mukherjee, A. Vijayakumar, and J. Rosen, “3D Imaging through Scatterers with Interferenceless Optical System,” Sci. Rep. 8(1), 1134 (2018).
[Crossref]

S. Mukherjee and J. Rosen, “Imaging through Scattering Medium by Adaptive Non-linear Digital Processing,” Sci. Rep. 8(1), 10517 (2018).
[Crossref]

Other (3)

B. E. A. Saleh and M. C. Teich, Fundamentals of Phtonics (John wiley & Sons, Inc., 2007), Chaps. 4 and 11.

J. W. Goodman, Speckle Phenomena in Optics (Roberts & Company, 2007).

M. K. Kim, Digital Holography and Microscopy: Principles, Techniques, and Applications (Springer Verlag, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Flow chart of the modified GSA used for synthesizing the pseudorandom CPM that generates the ensemble of dot pattern on the camera plane.
Fig. 2.
Fig. 2. Optical configuration of IC-COACH.
Fig. 3.
Fig. 3. Flow chart illustrating the suggested IC-COACH method.
Fig. 4.
Fig. 4. Experimental setup of IC-COACH with two independent illumination channels.
Fig. 5.
Fig. 5. (a)-(i) Image reconstructions of IC-COACH for various number of dots from 10 to 90 in interval of 10 dots. The product of SNR multiplied by the average of the horizontal and vertical visibilities for each reconstructed image is indicated by red below the images. Dashed red lines in Fig. 5(a) indicate the paths of calculating the visibilities for all the images of Figs. 5(a)–5(i).
Fig. 6.
Fig. 6. (a)-(c) Bi-polar object holograms (not all the dots are shown because of sampling limitations) and (d)-(f) the respective object reconstructions for point object located at different axial planes at (d) 0, (e) 5 and (f) 10 mm relative to L1 front focal plane. (g) Normalized intensity of the central peak of the point image as a function of the point object translation from the front focal plane of L1. The red line indicates the reconstructed image by IC-COACH and the black line is for the regular lens-based imaging system. Negative translation values correspond to the axial location greater than the focal distance of L1.
Fig. 7.
Fig. 7. Image reconstruction process of IC-COACH for different 3D object realizations indicated by the separation between two planes Δz. Upper two rows are the intensity on the image sensor for positive and negative CPMs. The third row is the bi-polar object hologram obtained by subtracting the second row from the first row. The lower two rows show the 3D image reconstruction at different planes obtained by a correlation with the corresponding PSH.
Fig. 8.
Fig. 8. Experimental setup of IC-COACH for imaging reflective objects.
Fig. 9.
Fig. 9. (a)-(j) Image reconstructions of reflective objects using IC-COACH for varying number of replications projected on the camera from 4 to 40, with interval of 4 replications. (k)-(m) Image reconstruction of different reflective objects using the CPM of optimal number of replications (N =8). (n)-(p) Lens-based images under incoherent white illumination of the three different reflective objects.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H O B J ( r ¯ ) = I O B J ( r ¯ , z ) t ( r ¯ , z ) d z ,
I I M G ( r ¯ , z j ) = H O B J ( r ¯ ) R ( r ¯ , z j ) ,
| A I n ( r ¯ ) f ( r ¯ ) | 2 | A I n ( r ¯ ) | 2 q ( r ¯ ) ,
| A I n ( r ¯ ) k a k δ ( r ¯ r ¯ k ) | 2 = | k a k A I n ( r ¯ r ¯ k ) | 2 = k a k 2 | A I n ( r ¯ r ¯ k ) | 2 = | A I n ( r ¯ ) | 2 k a k 2 δ ( r ¯ r ¯ k ) ,
I k = | O ( r ¯ R / r ¯ R M T M T ) | 2 i = 1 N a i 2 δ ( r ¯ R r ¯ k , i ) ,
I I M G = H O B J H P S H = | O ( r ¯ R / r ¯ R M T M T ) H P S F | 2 H P S H = | O ( r ¯ R / r ¯ R M T M T ) [ i = 1 N a i δ ( r ¯ R r ¯ 1 , i ) i = 1 N b i δ ( r ¯ R r ¯ 2 , i ) ] | 2 H P S H = | O ( r ¯ R / r ¯ R M T M T ) | 2 [ i = 1 N a i 2 δ ( r ¯ R r ¯ 1 , i ) i = 1 N b i 2 δ ( r ¯ R r ¯ 2 , i ) ] H P S H = F 1 { F [ | O ( r ¯ R / r ¯ R M T M T ) | 2 ] F [ i = 1 N a i 2 δ ( r ¯ R r ¯ 1 , i ) i = 1 N b i 2 δ ( r ¯ R r ¯ 2 , i ) ] exp ( j φ ) } = F 1 { F [ | O ( r ¯ R / r ¯ R M T M T ) | 2 ] | h | exp ( j φ ) exp ( j φ ) } = | O ( r ¯ R / r ¯ R M T M T ) | 2 F 1 { | h | } | O ( r ¯ R / r ¯ R M T M T ) | 2 ,
F { i = 1 N a i 2 δ ( r ¯ R r ¯ 1 , i ) i = 1 N b i 2 δ ( r ¯ R r ¯ 2 , i ) } = | h | exp ( j φ ) .
H O B J = q = 1 P { | O q ( r ¯ R / r ¯ R M T M T ) | 2 p = 1 P [ i = 1 N a p , i g q , p ( r ¯ R r ¯ 1 , p , i ) i = 1 N b p , i g q , p ( r ¯ R r ¯ 2 , p , i ) ] } ,
I I M G = H O B J H P S H , l = q = 1 P { | O q ( r ¯ R / r ¯ R M T M T ) | 2 p = 1 P [ i = 1 N a p , i g q , p ( r ¯ R r ¯ 1 , p , i ) i = 1 N b p , i g q , p ( r ¯ R r ¯ 2 , p , i ) ] } H P S H , l = q = 1 P | O q ( r ¯ R / r ¯ R M T M T ) | 2 [ i = 1 N a q , i δ ( r ¯ R r ¯ 1 , q , i ) i = 1 N b q , i δ ( r ¯ R r ¯ 2 , q , i ) ] H P S H , l + q = 1 P p q P | O q ( r ¯ R / r ¯ R M T M T ) | 2 [ i = 1 N a p , i g q , p ( r ¯ R r ¯ 1 , p , i ) i = 1 N b p , i g q , p ( r ¯ R r ¯ 2 , p , i ) ] H P S H , l | O l ( r ¯ R / r ¯ R M T M T ) | 2 + q l P | O q ( r ¯ R / r ¯ R M T M T ) | 2 g q , l ( r ¯ R ) .