Abstract

In this work we demonstrate a low-frequency acoustic sensor structure based on extrinsic Fabry-Pérot interferometer (EFPI) cavity. The cavity is fabricated through micromachining techniques in a square silicon substrate with 4 mm side length and 400 μm thickness, which gives the sensor relative compact size. In the assembling process of the lead-in fiber, a D-shaped ceramic ferrule is designed to achieve the open cavity structure, which can balance the environmental pressure inside and outside the cavity and thus giving the sensor potentials of resisting strong pressure variations in some harsh application environments. Experimentally, sensor response to low-frequency acoustic waves from 0.1 Hz to 250 Hz is measured and demonstrated. A flat response region between 0.5 Hz to 250 Hz with sensitivity fluctuation of 0.8 dB is realized. Pressure resistant test of 25 MPa is also conducted on the sensor and exhibited to prove the function of the open cavity structure.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing

Wenjun Ni, Ping Lu, Xin Fu, Wei Zhang, Perry Ping Shum, Handong Sun, Chunyong Yang, Deming Liu, and Jiangshan Zhang
Opt. Express 26(16) 20758-20767 (2018)

Fiber-optic Fabry–Perot pressure sensor based on low-temperature co-fired ceramic technology for high-temperature applications

Jia Liu, Pinggang Jia, Huixin Zhang, Xiaodan Tian, Hao Liang, Yingping Hong, Ting Liang, Wenyi Liu, and Jijun Xiong
Appl. Opt. 57(15) 4211-4215 (2018)

Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter

Yiping Wang, Xiaoqi Ni, Ming Wang, Yifeng Cui, and Qingyun Shi
Opt. Express 25(2) 644-653 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Schimmel and J. Hübl, “Automatic detection of debris flows and debris floods based on a combination of infrasound and seismic signals,” Landslides 13(5), 1181–1196 (2016).
    [Crossref]
  2. R. Matoza, D. Fee, D. Green, A. Le Pichon, J. Vergoz, M. Haney, T. Mikesell, L. Franco, O. Valderrama, M. Kelley, K. McKee, and L. Ceranna, “Local, regional, and remote seismo-acoustic observations of the April 2015 VEI 4 eruption of Calbuco volcano, Chile,” J. Geophys. Res-Sol. Ea. 123(5), 3814–3827 (2018).
  3. Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” J. Asian Earth Sci. 41(4-5), 434–441 (2011).
    [Crossref]
  4. C. Talmadge, “Infrasound and low frequency sound emitted from tornados,” J. Acoust. Soc. Am. 141(5), 3567 (2017).
    [Crossref]
  5. Q. Xu, L. Zhang, and W. Liang, “Acoustic detection technology for gas pipeline leakage,” Process Saf. Environ. 91(4), 253–261 (2013).
    [Crossref]
  6. J. Xu, L. Headings, and M. Dapino, “High sensitivity polyvinylidene fluoride microphone based on area ratio amplification and minimal capacitance,” IEEE Sens. J. 15(5), 2839–2847 (2015).
  7. N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
    [Crossref]
  8. J. Ma, M. Zhao, X. Huang, H. Bae, Y. Chen, and M. Yu, “Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point,” Opt. Express 24(17), 19008–19019 (2016).
    [Crossref] [PubMed]
  9. X. Wang, L. Jin, J. Li, Y. Ran, and B. O. Guan, “Microfiber interferometric acoustic transducers,” Opt. Express 22(7), 8126–8135 (2014).
    [Crossref] [PubMed]
  10. D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
    [Crossref]
  11. Y. Zhao, M. Chen, F. Xia, and R. Lv, “Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber,” Sensor. Actuat. A 270, 162–169 (2018).
    [Crossref]
  12. Z. Gong, K. Chen, X. Zhou, Y. Yang, Z. Zhao, H. Zou, and Q. Yu, “High-sensitivity Fabry-Perot interferometric acoustic sensor for low-frequency acoustic pressure detections,” J. Lightwave Technol. 35(24), 5276–5279 (2017).
    [Crossref]
  13. W. Ni, P. Lu, X. Fu, W. Zhang, P. P. Shum, H. Sun, C. Yang, D. Liu, and J. Zhang, “Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing,” Opt. Express 26(16), 20758–20767 (2018).
    [Crossref] [PubMed]
  14. L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
    [Crossref]
  15. K. Chen, Z. Yu, Q. Yu, M. Guo, Z. Zhao, C. Qu, Z. Gong, and Y. Yang, “Fast demodulated white-light interferometry-based fiber-optic Fabry-Perot cantilever microphone,” Opt. Lett. 43(14), 3417–3420 (2018).
    [Crossref] [PubMed]
  16. B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
    [Crossref]
  17. B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
    [Crossref]
  18. F. Wang, Z. Shao, J. Xie, Z. Hu, H. Luo, and Y. Hu, “Extrinsic Fabry–Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm,” J. Lightwave Technol. 32(23), 4026–4034 (2014).
  19. Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
    [Crossref] [PubMed]
  20. Z. Li, Y. Tong, X. Fu, J. Wang, Q. Guo, H. Yu, and X. Bao, “Simultaneous distributed static and dynamic sensing based on ultra-short fiber Bragg gratings,” Opt. Express 26(13), 17437–17446 (2018).
    [Crossref] [PubMed]
  21. L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
    [Crossref]
  22. J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensor. Actuat. A 173(1), 97–101 (2012).
    [Crossref]
  23. Y. Ju, W. Zhang, C. Yang, S. L. Zhang, X. Ding, S. T. Wang, H. Zhou, G. Y. Feng, and S. H. Zhou, “Displacement and acoustic vibration sensor based on gold nanobipyramids doped PDMS micro-fiber,” Opt. Express 26(24), 31889–31897 (2018).
    [Crossref] [PubMed]
  24. Y. H. Tseng and J. S. Wang, “Single-crystalline tellurite optical fiber hydrophone,” Opt. Lett. 41(5), 970–973 (2016).
    [Crossref] [PubMed]
  25. C. Lyu, C. Wu, H. Y. Tam, C. Lu, and J. Ma, “Polarimetric heterodyning fiber laser sensor for directional acoustic signal measurement,” Opt. Express 21(15), 18273–18280 (2013).
    [Crossref] [PubMed]
  26. M. Han, T. Liu, L. Hu, and Q. Zhang, “Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection,” Opt. Express 21(24), 29269–29276 (2013).
    [Crossref] [PubMed]
  27. Z. Wang, W. Zhang, W. Huang, S. Feng, and F. Li, “Optoelectronic hybrid fiber laser sensor for simultaneous acoustic and magnetic measurement,” Opt. Express 23(19), 24383–24389 (2015).
    [Crossref] [PubMed]
  28. X. Bai, Y. Liang, H. Sun, L. Jin, J. Ma, B. O. Guan, and L. Wang, “Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy,” Opt. Express 25(15), 17616–17626 (2017).
    [Crossref] [PubMed]
  29. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
    [Crossref]
  30. X. Fu, P. Lu, W. Ni, H. Liao, D. Liu, and J. Zhang, “Phase demodulation of interferometric fiber sensor based on fast Fourier analysis,” Opt. Express 25(18), 21094–21106 (2017).
    [Crossref] [PubMed]
  31. B. Agarwal, L. Broutman, and K. Chandrashekhara, Analysis and performance of fiber composites (John Wiley & Sons, 2017).
  32. X. Fu, P. Lu, W. Ni, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Phase interrogation of diaphragm-based optical fiber acoustic sensor assisted by wavelength-scanned spectral coding,” IEEE Photonics J. 10(3), 1–11 (2018).
    [Crossref]

2018 (7)

R. Matoza, D. Fee, D. Green, A. Le Pichon, J. Vergoz, M. Haney, T. Mikesell, L. Franco, O. Valderrama, M. Kelley, K. McKee, and L. Ceranna, “Local, regional, and remote seismo-acoustic observations of the April 2015 VEI 4 eruption of Calbuco volcano, Chile,” J. Geophys. Res-Sol. Ea. 123(5), 3814–3827 (2018).

Y. Zhao, M. Chen, F. Xia, and R. Lv, “Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber,” Sensor. Actuat. A 270, 162–169 (2018).
[Crossref]

K. Chen, Z. Yu, Q. Yu, M. Guo, Z. Zhao, C. Qu, Z. Gong, and Y. Yang, “Fast demodulated white-light interferometry-based fiber-optic Fabry-Perot cantilever microphone,” Opt. Lett. 43(14), 3417–3420 (2018).
[Crossref] [PubMed]

W. Ni, P. Lu, X. Fu, W. Zhang, P. P. Shum, H. Sun, C. Yang, D. Liu, and J. Zhang, “Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing,” Opt. Express 26(16), 20758–20767 (2018).
[Crossref] [PubMed]

Z. Li, Y. Tong, X. Fu, J. Wang, Q. Guo, H. Yu, and X. Bao, “Simultaneous distributed static and dynamic sensing based on ultra-short fiber Bragg gratings,” Opt. Express 26(13), 17437–17446 (2018).
[Crossref] [PubMed]

Y. Ju, W. Zhang, C. Yang, S. L. Zhang, X. Ding, S. T. Wang, H. Zhou, G. Y. Feng, and S. H. Zhou, “Displacement and acoustic vibration sensor based on gold nanobipyramids doped PDMS micro-fiber,” Opt. Express 26(24), 31889–31897 (2018).
[Crossref] [PubMed]

X. Fu, P. Lu, W. Ni, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Phase interrogation of diaphragm-based optical fiber acoustic sensor assisted by wavelength-scanned spectral coding,” IEEE Photonics J. 10(3), 1–11 (2018).
[Crossref]

2017 (5)

2016 (7)

J. Ma, M. Zhao, X. Huang, H. Bae, Y. Chen, and M. Yu, “Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point,” Opt. Express 24(17), 19008–19019 (2016).
[Crossref] [PubMed]

A. Schimmel and J. Hübl, “Automatic detection of debris flows and debris floods based on a combination of infrasound and seismic signals,” Landslides 13(5), 1181–1196 (2016).
[Crossref]

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
[Crossref]

Y. H. Tseng and J. S. Wang, “Single-crystalline tellurite optical fiber hydrophone,” Opt. Lett. 41(5), 970–973 (2016).
[Crossref] [PubMed]

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

2015 (2)

Z. Wang, W. Zhang, W. Huang, S. Feng, and F. Li, “Optoelectronic hybrid fiber laser sensor for simultaneous acoustic and magnetic measurement,” Opt. Express 23(19), 24383–24389 (2015).
[Crossref] [PubMed]

J. Xu, L. Headings, and M. Dapino, “High sensitivity polyvinylidene fluoride microphone based on area ratio amplification and minimal capacitance,” IEEE Sens. J. 15(5), 2839–2847 (2015).

2014 (2)

2013 (3)

2012 (2)

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensor. Actuat. A 173(1), 97–101 (2012).
[Crossref]

Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
[Crossref] [PubMed]

2011 (1)

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” J. Asian Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

2004 (1)

N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
[Crossref]

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Baborowski, J.

N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
[Crossref]

Bae, H.

Bai, X.

Bao, X.

Ceranna, L.

R. Matoza, D. Fee, D. Green, A. Le Pichon, J. Vergoz, M. Haney, T. Mikesell, L. Franco, O. Valderrama, M. Kelley, K. McKee, and L. Ceranna, “Local, regional, and remote seismo-acoustic observations of the April 2015 VEI 4 eruption of Calbuco volcano, Chile,” J. Geophys. Res-Sol. Ea. 123(5), 3814–3827 (2018).

Chen, K.

Chen, M.

Y. Zhao, M. Chen, F. Xia, and R. Lv, “Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber,” Sensor. Actuat. A 270, 162–169 (2018).
[Crossref]

Chen, W.

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” J. Asian Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

Chen, Y.

Choubey, R. K.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Cui, X.

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” J. Asian Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

Dapino, M.

J. Xu, L. Headings, and M. Dapino, “High sensitivity polyvinylidene fluoride microphone based on area ratio amplification and minimal capacitance,” IEEE Sens. J. 15(5), 2839–2847 (2015).

Ding, X.

Fee, D.

R. Matoza, D. Fee, D. Green, A. Le Pichon, J. Vergoz, M. Haney, T. Mikesell, L. Franco, O. Valderrama, M. Kelley, K. McKee, and L. Ceranna, “Local, regional, and remote seismo-acoustic observations of the April 2015 VEI 4 eruption of Calbuco volcano, Chile,” J. Geophys. Res-Sol. Ea. 123(5), 3814–3827 (2018).

Feng, G. Y.

Feng, S.

Forster, M.

N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
[Crossref]

Franco, L.

R. Matoza, D. Fee, D. Green, A. Le Pichon, J. Vergoz, M. Haney, T. Mikesell, L. Franco, O. Valderrama, M. Kelley, K. McKee, and L. Ceranna, “Local, regional, and remote seismo-acoustic observations of the April 2015 VEI 4 eruption of Calbuco volcano, Chile,” J. Geophys. Res-Sol. Ea. 123(5), 3814–3827 (2018).

Fu, X.

Gaudron, J. O.

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensor. Actuat. A 173(1), 97–101 (2012).
[Crossref]

Gong, Z.

Grattan, K. T. V.

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensor. Actuat. A 173(1), 97–101 (2012).
[Crossref]

Green, D.

R. Matoza, D. Fee, D. Green, A. Le Pichon, J. Vergoz, M. Haney, T. Mikesell, L. Franco, O. Valderrama, M. Kelley, K. McKee, and L. Ceranna, “Local, regional, and remote seismo-acoustic observations of the April 2015 VEI 4 eruption of Calbuco volcano, Chile,” J. Geophys. Res-Sol. Ea. 123(5), 3814–3827 (2018).

Guan, B. O.

Guo, M.

Guo, Q.

Han, M.

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

M. Han, T. Liu, L. Hu, and Q. Zhang, “Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection,” Opt. Express 21(24), 29269–29276 (2013).
[Crossref] [PubMed]

Haney, M.

R. Matoza, D. Fee, D. Green, A. Le Pichon, J. Vergoz, M. Haney, T. Mikesell, L. Franco, O. Valderrama, M. Kelley, K. McKee, and L. Ceranna, “Local, regional, and remote seismo-acoustic observations of the April 2015 VEI 4 eruption of Calbuco volcano, Chile,” J. Geophys. Res-Sol. Ea. 123(5), 3814–3827 (2018).

Headings, L.

J. Xu, L. Headings, and M. Dapino, “High sensitivity polyvinylidene fluoride microphone based on area ratio amplification and minimal capacitance,” IEEE Sens. J. 15(5), 2839–2847 (2015).

Hu, L.

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

M. Han, T. Liu, L. Hu, and Q. Zhang, “Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection,” Opt. Express 21(24), 29269–29276 (2013).
[Crossref] [PubMed]

Hu, Y.

Hu, Z.

Huang, W.

Huang, X.

Hübl, J.

A. Schimmel and J. Hübl, “Automatic detection of debris flows and debris floods based on a combination of infrasound and seismic signals,” Landslides 13(5), 1181–1196 (2016).
[Crossref]

Jiang, X.

X. Fu, P. Lu, W. Ni, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Phase interrogation of diaphragm-based optical fiber acoustic sensor assisted by wavelength-scanned spectral coding,” IEEE Photonics J. 10(3), 1–11 (2018).
[Crossref]

Jin, A.

B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
[Crossref]

Jin, L.

Jin, P.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
[Crossref]

Ju, Y.

Kale, S. N.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Kelley, M.

R. Matoza, D. Fee, D. Green, A. Le Pichon, J. Vergoz, M. Haney, T. Mikesell, L. Franco, O. Valderrama, M. Kelley, K. McKee, and L. Ceranna, “Local, regional, and remote seismo-acoustic observations of the April 2015 VEI 4 eruption of Calbuco volcano, Chile,” J. Geophys. Res-Sol. Ea. 123(5), 3814–3827 (2018).

Le Pichon, A.

R. Matoza, D. Fee, D. Green, A. Le Pichon, J. Vergoz, M. Haney, T. Mikesell, L. Franco, O. Valderrama, M. Kelley, K. McKee, and L. Ceranna, “Local, regional, and remote seismo-acoustic observations of the April 2015 VEI 4 eruption of Calbuco volcano, Chile,” J. Geophys. Res-Sol. Ea. 123(5), 3814–3827 (2018).

Ledermann, N.

N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
[Crossref]

Li, F.

Li, J.

X. Wang, L. Jin, J. Li, Y. Ran, and B. O. Guan, “Microfiber interferometric acoustic transducers,” Opt. Express 22(7), 8126–8135 (2014).
[Crossref] [PubMed]

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” J. Asian Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

Li, Z.

Liang, W.

Q. Xu, L. Zhang, and W. Liang, “Acoustic detection technology for gas pipeline leakage,” Process Saf. Environ. 91(4), 253–261 (2013).
[Crossref]

Liang, Y.

Liao, H.

X. Fu, P. Lu, W. Ni, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Phase interrogation of diaphragm-based optical fiber acoustic sensor assisted by wavelength-scanned spectral coding,” IEEE Photonics J. 10(3), 1–11 (2018).
[Crossref]

X. Fu, P. Lu, W. Ni, H. Liao, D. Liu, and J. Zhang, “Phase demodulation of interferometric fiber sensor based on fast Fourier analysis,” Opt. Express 25(18), 21094–21106 (2017).
[Crossref] [PubMed]

Lin, J.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
[Crossref]

Liu, B.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
[Crossref]

Liu, C.

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” J. Asian Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

Liu, D.

W. Ni, P. Lu, X. Fu, W. Zhang, P. P. Shum, H. Sun, C. Yang, D. Liu, and J. Zhang, “Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing,” Opt. Express 26(16), 20758–20767 (2018).
[Crossref] [PubMed]

X. Fu, P. Lu, W. Ni, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Phase interrogation of diaphragm-based optical fiber acoustic sensor assisted by wavelength-scanned spectral coding,” IEEE Photonics J. 10(3), 1–11 (2018).
[Crossref]

X. Fu, P. Lu, W. Ni, H. Liao, D. Liu, and J. Zhang, “Phase demodulation of interferometric fiber sensor based on fast Fourier analysis,” Opt. Express 25(18), 21094–21106 (2017).
[Crossref] [PubMed]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Liu, G.

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Liu, H.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
[Crossref]

Liu, J.

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” J. Asian Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

Liu, L.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Liu, T.

Lu, C.

Lu, P.

W. Ni, P. Lu, X. Fu, W. Zhang, P. P. Shum, H. Sun, C. Yang, D. Liu, and J. Zhang, “Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing,” Opt. Express 26(16), 20758–20767 (2018).
[Crossref] [PubMed]

X. Fu, P. Lu, W. Ni, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Phase interrogation of diaphragm-based optical fiber acoustic sensor assisted by wavelength-scanned spectral coding,” IEEE Photonics J. 10(3), 1–11 (2018).
[Crossref]

X. Fu, P. Lu, W. Ni, H. Liao, D. Liu, and J. Zhang, “Phase demodulation of interferometric fiber sensor based on fast Fourier analysis,” Opt. Express 25(18), 21094–21106 (2017).
[Crossref] [PubMed]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Luo, H.

Luo, X.

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Lv, R.

Y. Zhao, M. Chen, F. Xia, and R. Lv, “Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber,” Sensor. Actuat. A 270, 162–169 (2018).
[Crossref]

Lyu, C.

Ma, J.

Ma, Y.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Matoza, R.

R. Matoza, D. Fee, D. Green, A. Le Pichon, J. Vergoz, M. Haney, T. Mikesell, L. Franco, O. Valderrama, M. Kelley, K. McKee, and L. Ceranna, “Local, regional, and remote seismo-acoustic observations of the April 2015 VEI 4 eruption of Calbuco volcano, Chile,” J. Geophys. Res-Sol. Ea. 123(5), 3814–3827 (2018).

McKee, K.

R. Matoza, D. Fee, D. Green, A. Le Pichon, J. Vergoz, M. Haney, T. Mikesell, L. Franco, O. Valderrama, M. Kelley, K. McKee, and L. Ceranna, “Local, regional, and remote seismo-acoustic observations of the April 2015 VEI 4 eruption of Calbuco volcano, Chile,” J. Geophys. Res-Sol. Ea. 123(5), 3814–3827 (2018).

Mikesell, T.

R. Matoza, D. Fee, D. Green, A. Le Pichon, J. Vergoz, M. Haney, T. Mikesell, L. Franco, O. Valderrama, M. Kelley, K. McKee, and L. Ceranna, “Local, regional, and remote seismo-acoustic observations of the April 2015 VEI 4 eruption of Calbuco volcano, Chile,” J. Geophys. Res-Sol. Ea. 123(5), 3814–3827 (2018).

Muralt, P.

N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
[Crossref]

Ni, W.

Okabe, Y.

Pawar, D.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Pellaux, J.

N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
[Crossref]

Qu, C.

Ran, Y.

Rao, C. N.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Schimmel, A.

A. Schimmel and J. Hübl, “Automatic detection of debris flows and debris floods based on a combination of infrasound and seismic signals,” Landslides 13(5), 1181–1196 (2016).
[Crossref]

Shao, Z.

Shum, P. P.

Sun, H.

Sun, T.

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensor. Actuat. A 173(1), 97–101 (2012).
[Crossref]

Sun, Y.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Surre, F.

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensor. Actuat. A 173(1), 97–101 (2012).
[Crossref]

Talmadge, C.

C. Talmadge, “Infrasound and low frequency sound emitted from tornados,” J. Acoust. Soc. Am. 141(5), 3567 (2017).
[Crossref]

Tam, H. Y.

Tong, Y.

Tseng, Y. H.

Valderrama, O.

R. Matoza, D. Fee, D. Green, A. Le Pichon, J. Vergoz, M. Haney, T. Mikesell, L. Franco, O. Valderrama, M. Kelley, K. McKee, and L. Ceranna, “Local, regional, and remote seismo-acoustic observations of the April 2015 VEI 4 eruption of Calbuco volcano, Chile,” J. Geophys. Res-Sol. Ea. 123(5), 3814–3827 (2018).

Vergoz, J.

R. Matoza, D. Fee, D. Green, A. Le Pichon, J. Vergoz, M. Haney, T. Mikesell, L. Franco, O. Valderrama, M. Kelley, K. McKee, and L. Ceranna, “Local, regional, and remote seismo-acoustic observations of the April 2015 VEI 4 eruption of Calbuco volcano, Chile,” J. Geophys. Res-Sol. Ea. 123(5), 3814–3827 (2018).

Wang, F.

Wang, J.

Wang, J. S.

Wang, L.

Wang, S.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Wang, S. T.

Wang, X.

Wang, Z.

Wu, C.

Wu, Q.

Xia, F.

Y. Zhao, M. Chen, F. Xia, and R. Lv, “Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber,” Sensor. Actuat. A 270, 162–169 (2018).
[Crossref]

Xia, Y.

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” J. Asian Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

Xie, J.

Xu, H.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Xu, J.

J. Xu, L. Headings, and M. Dapino, “High sensitivity polyvinylidene fluoride microphone based on area ratio amplification and minimal capacitance,” IEEE Sens. J. 15(5), 2839–2847 (2015).

Xu, Q.

Q. Xu, L. Zhang, and W. Liang, “Acoustic detection technology for gas pipeline leakage,” Process Saf. Environ. 91(4), 253–261 (2013).
[Crossref]

Yan, L.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Yang, C.

Yang, Y.

Yao, Q.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Yu, H.

Yu, M.

Yu, Q.

Yu, Z.

Zhang, J.

W. Ni, P. Lu, X. Fu, W. Zhang, P. P. Shum, H. Sun, C. Yang, D. Liu, and J. Zhang, “Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing,” Opt. Express 26(16), 20758–20767 (2018).
[Crossref] [PubMed]

X. Fu, P. Lu, W. Ni, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Phase interrogation of diaphragm-based optical fiber acoustic sensor assisted by wavelength-scanned spectral coding,” IEEE Photonics J. 10(3), 1–11 (2018).
[Crossref]

X. Fu, P. Lu, W. Ni, H. Liao, D. Liu, and J. Zhang, “Phase demodulation of interferometric fiber sensor based on fast Fourier analysis,” Opt. Express 25(18), 21094–21106 (2017).
[Crossref] [PubMed]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Zhang, L.

Q. Xu, L. Zhang, and W. Liang, “Acoustic detection technology for gas pipeline leakage,” Process Saf. Environ. 91(4), 253–261 (2013).
[Crossref]

Zhang, Q.

Zhang, S. L.

Zhang, W.

Zhao, M.

Zhao, Y.

Y. Zhao, M. Chen, F. Xia, and R. Lv, “Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber,” Sensor. Actuat. A 270, 162–169 (2018).
[Crossref]

Zhao, Z.

Zhou, H.

Zhou, S. H.

Zhou, X.

Zhu, Y.

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Zou, H.

Appl. Phys. Lett. (1)

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

IEEE Photonics J. (3)

X. Fu, P. Lu, W. Ni, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Phase interrogation of diaphragm-based optical fiber acoustic sensor assisted by wavelength-scanned spectral coding,” IEEE Photonics J. 10(3), 1–11 (2018).
[Crossref]

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

IEEE Sens. J. (1)

J. Xu, L. Headings, and M. Dapino, “High sensitivity polyvinylidene fluoride microphone based on area ratio amplification and minimal capacitance,” IEEE Sens. J. 15(5), 2839–2847 (2015).

J. Acoust. Soc. Am. (1)

C. Talmadge, “Infrasound and low frequency sound emitted from tornados,” J. Acoust. Soc. Am. 141(5), 3567 (2017).
[Crossref]

J. Asian Earth Sci. (1)

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” J. Asian Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

J. Geophys. Res-Sol. Ea. (1)

R. Matoza, D. Fee, D. Green, A. Le Pichon, J. Vergoz, M. Haney, T. Mikesell, L. Franco, O. Valderrama, M. Kelley, K. McKee, and L. Ceranna, “Local, regional, and remote seismo-acoustic observations of the April 2015 VEI 4 eruption of Calbuco volcano, Chile,” J. Geophys. Res-Sol. Ea. 123(5), 3814–3827 (2018).

J. Lightwave Technol. (2)

J. Micromech. Microeng. (1)

N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
[Crossref]

Landslides (1)

A. Schimmel and J. Hübl, “Automatic detection of debris flows and debris floods based on a combination of infrasound and seismic signals,” Landslides 13(5), 1181–1196 (2016).
[Crossref]

Microelectron. Eng. (1)

B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
[Crossref]

Opt. Commun. (1)

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Opt. Express (11)

W. Ni, P. Lu, X. Fu, W. Zhang, P. P. Shum, H. Sun, C. Yang, D. Liu, and J. Zhang, “Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing,” Opt. Express 26(16), 20758–20767 (2018).
[Crossref] [PubMed]

J. Ma, M. Zhao, X. Huang, H. Bae, Y. Chen, and M. Yu, “Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point,” Opt. Express 24(17), 19008–19019 (2016).
[Crossref] [PubMed]

X. Wang, L. Jin, J. Li, Y. Ran, and B. O. Guan, “Microfiber interferometric acoustic transducers,” Opt. Express 22(7), 8126–8135 (2014).
[Crossref] [PubMed]

X. Fu, P. Lu, W. Ni, H. Liao, D. Liu, and J. Zhang, “Phase demodulation of interferometric fiber sensor based on fast Fourier analysis,” Opt. Express 25(18), 21094–21106 (2017).
[Crossref] [PubMed]

Y. Ju, W. Zhang, C. Yang, S. L. Zhang, X. Ding, S. T. Wang, H. Zhou, G. Y. Feng, and S. H. Zhou, “Displacement and acoustic vibration sensor based on gold nanobipyramids doped PDMS micro-fiber,” Opt. Express 26(24), 31889–31897 (2018).
[Crossref] [PubMed]

Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
[Crossref] [PubMed]

Z. Li, Y. Tong, X. Fu, J. Wang, Q. Guo, H. Yu, and X. Bao, “Simultaneous distributed static and dynamic sensing based on ultra-short fiber Bragg gratings,” Opt. Express 26(13), 17437–17446 (2018).
[Crossref] [PubMed]

C. Lyu, C. Wu, H. Y. Tam, C. Lu, and J. Ma, “Polarimetric heterodyning fiber laser sensor for directional acoustic signal measurement,” Opt. Express 21(15), 18273–18280 (2013).
[Crossref] [PubMed]

M. Han, T. Liu, L. Hu, and Q. Zhang, “Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection,” Opt. Express 21(24), 29269–29276 (2013).
[Crossref] [PubMed]

Z. Wang, W. Zhang, W. Huang, S. Feng, and F. Li, “Optoelectronic hybrid fiber laser sensor for simultaneous acoustic and magnetic measurement,” Opt. Express 23(19), 24383–24389 (2015).
[Crossref] [PubMed]

X. Bai, Y. Liang, H. Sun, L. Jin, J. Ma, B. O. Guan, and L. Wang, “Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy,” Opt. Express 25(15), 17616–17626 (2017).
[Crossref] [PubMed]

Opt. Lett. (2)

Process Saf. Environ. (1)

Q. Xu, L. Zhang, and W. Liang, “Acoustic detection technology for gas pipeline leakage,” Process Saf. Environ. 91(4), 253–261 (2013).
[Crossref]

Sensor. Actuat. A (2)

Y. Zhao, M. Chen, F. Xia, and R. Lv, “Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber,” Sensor. Actuat. A 270, 162–169 (2018).
[Crossref]

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensor. Actuat. A 173(1), 97–101 (2012).
[Crossref]

Other (1)

B. Agarwal, L. Broutman, and K. Chandrashekhara, Analysis and performance of fiber composites (John Wiley & Sons, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Simulation of transmission coefficient (blue curve) and loss (red curve) with air cavity length.
Fig. 2
Fig. 2 Schematic diagram of sensor fabrication process including (a) wafer micromachining; (b) sensor assembling; (c) sensor real image.
Fig. 3
Fig. 3 Spatial frequency spectrum of the sensor and the reflected optical spectrum (inset).
Fig. 4
Fig. 4 Schematic diagram of low-frequency measurement setup.
Fig. 5
Fig. 5 Frequency spectra of sensor output signals under exposure to acoustic waves from 0.1 Hz to 250 Hz.
Fig. 6
Fig. 6 Sinusoidal fitting of time domain signal (a) 0.1 Hz; (b) 0.5 Hz; (c) 20 Hz; (d) 50 Hz.
Fig. 7
Fig. 7 Measured (blue dots) and simulated (red curve) sensor’s frequency response of acoustic sensitivity.
Fig. 8
Fig. 8 SNR and equivalent noise pressure of measured sensor output signals at different frequencies.
Fig. 9
Fig. 9 (a) Measured sensor’s optical spectrum in air before and after applying 25 MPa water pressure; (b) optical spectrum of the sensor under water.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

{ η= 4(4 z 2 + w 1 2 w 2 2 ) (4 z 2 + w 1 2 + w 2 2 w 2 2 )+4 z 2 w 2 2 w 1 2 z= 2L n air k w 1 w 2 α=1η
w a =0.65+ 1.619 V 3/2 + 2.879 V 6 , V= 2πa λ n core 2 n clad 2
η= 1 1+ ( λL/ π w 2 ) 2
P=asin(bt+c)
S(dB)=20log( a p 0 (1 radμP a 1 ) )
E c h c 1 μ c 2 = E 1 h 1 1 μ 1 2 + E 2 h 2 1 μ 2 2
μ c h c = μ 1 h 1 + μ 2 h 2

Metrics