Abstract

We experimentally demonstrate 20 Gbaud 256QAM and 40 Gbaud 128QAM in an all-silicon IQ modulator. We combine a linear equalizer and a nonlinear predistortion implemented in a lookup table (LUT). We achieve bit error rate (BER) below the 20% forward error correction threshold; linear equalization alone cannot achieve this performance. To keep LUT size manageable, we use one dimensional LUTs and prune entries. We achieve good BER even when LUT size is halved. Finally, we verify the generality of the proposed methods on different data sets.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mitigating pattern dependent nonlinearity in SiP IQ-modulators via iterative learning control predistortion

S. Zhalehpour, J. Lin, H. Sepehrian, W. Shi, and L. A. Rusch
Opt. Express 26(21) 27639-27649 (2018)

Single-carrier 72 GBaud 32QAM and 84 GBaud 16QAM transmission using a SiP IQ modulator with joint digital-optical pre-compensation

Jiachuan Lin, Hassan Sepehrian, Leslie A. Rusch, and Wei Shi
Opt. Express 27(4) 5610-5619 (2019)

Experimental comparison of direct detection Nyquist SSB transmission based on silicon dual-drive and IQ Mach-Zehnder modulators with electrical packaging

Xiaoke Ruan, Ke Li, David J Thomson, Cosimo Lacava, Fanfan Meng, Iosif Demirtzioglou, Periklis Petropoulos, Yixiao Zhu, Graham T Reed, and Fan Zhang
Opt. Express 25(16) 19332-19342 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5(11), 1354–1370 (2018)
    [Crossref]
  2. J. Wang and Y. Long, “On-chip silicon photonic signaling and processing: a review,” Sci. Bulletin 63(19), 1267–1310 (2018).
    [Crossref]
  3. P. Dong, L. Chen, C. Xie, L. L. Buhl, and Y. Chen, “50-Gb/s silicon quadrature phase-shift keying modulator,” Opt. Express 20(19), 21181–21186 (2012).
    [Crossref] [PubMed]
  4. J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “Single-carrier 72 GBaud 32QAM and 84 GBaud 16QAM transmission using a SiP IQ modulator with joint digital-optical pre-compensation,” Opt. Express 27, 5610–5619 (2019).
    [Crossref] [PubMed]
  5. S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. A. Rusch, and W. Shi, “All-Silicon IQ Modulator for 100 GBaud 32QAM Transmissions,” in in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th4A.5.
  6. A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
    [Crossref]
  7. A. Khilo, C. M. Sorace, and F. X. Kärtner, “Broadband linearized silicon modulator,” Opt. Express 19(5), 4485–4500 (2011).
    [Crossref] [PubMed]
  8. G. Karam and H. Sari, “A data predistortion technique with memory for QAM radio systems,” IEEE Trans. Commun. 39(2), 336–344 (1991).
    [Crossref]
  9. P. J. Winzer, “High-Spectral-Efficiency Optical Modulation Formats,” J. Lightw. Technol. 30(24), 3824–3835 (2012).
    [Crossref]
  10. G. Khanna, B. Spinnler, S. Calabrò, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A Memory Polynomial Based Digital Pre-Distorter for High Power Transmitter Components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
    [Crossref]
  11. R. Elschner, R. Emmerich, C. Schmidt-Langhorst, F. Frey, P. Berenguer, J. Fischer, H. Grießer, D. Rafique, J. Elbers, and C. Schubert, “Improving Achievable Information Rates of 64-GBd PDM-64QAM by Nonlinear Transmitter Predistortion,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M1C.2.
    [Crossref]
  12. L. Guan and A. Zhu, “Low-cost FPGA implementation of Volterra series-based digital predistorter for RF power amplifiers,” IEEE Trans. Microw. Theory Techn. 58, 866–872 (2010).
    [Crossref]
  13. H. Faig, Y. Yoffe, and D. Sadot, “Dimensions-Reduced Volterra-Based Digital Pre-Distortion for Band-Limited Nonlinear Components,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper SpM3G.2.
    [Crossref]
  14. S. Zhalehpour, J. Lin, H. Sepehrian, W. Shi, and L. Rusch, “Mitigating pattern dependent nonlinearity in SiP IQ-modulators via iterative learning control predistortion,” Opt. Express 26, 27639–27649 (2018).
    [Crossref] [PubMed]
  15. S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, M. Schell, C. Koos, and S. Randel, “1-Tb/s Millimeter-Wave Signal Wireless Delivery at D-Band,” J. Lightw. Technol. 37, 196–204 (2018).
  16. X. Li, J. Yu, L. Zhao, K. Wang, C. Wang, M. Zhao, W. Zhou, and J. Xiao, “100 GBd Intensity Modulation and Direct Detection With an InP-Based Monolithic DFB Laser Mach–Zehnder Modulator,” J. Lightw. Technol. 36(1), 97–102 (2018).
    [Crossref]
  17. J. Ke, Y. Gao, and J. Cartledge, “400 Gbit/s single-carrier and 1 Tbit/s three-carrier superchannel signals using dual polarization 16-QAM with look-up table correction and optical pulse shaping,” Opt. Express 22(1), 71–84 (2014).
    [Crossref] [PubMed]
  18. S. Zhang, F. Yaman, Y. Huang, T. Inoue, K. Nakamura, E. Mateo, Y. Inada, T. Wang, and T. Ogata, “Trans-Pacific Transmission of Quad-Carrier 1Tb/s DP-8QAM Assisted by LUT-based MAP Algorithm,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W3G.3.
    [Crossref]
  19. J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD Transmission Based on Modified Lookup Table Nonlinear Predistortion,” IEEE Photon. J. 10, 1–9 (2018).
    [Crossref]
  20. S. Zhalehpour, J. Lin, H. Sepehrian, W. Shi, and L. Rusch, “Experimental demonstration of reduced-size LUT predistortion for 256QAM SiP Transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th1D.3.
  21. P. Varahram, S. Mohammady, A. Borhanuddin Mohd, and N. Sulaiman, Power efficiency in broadband wireless communications (CRC, 2014).
    [Crossref]
  22. D. Patel, “Design, Analysis, and Performance of a Silicon Photonic Traveling Wave Mach-Zehnder Modulator,” Masters Diss. McGill University (2014).

2019 (1)

2018 (7)

S. Zhalehpour, J. Lin, H. Sepehrian, W. Shi, and L. Rusch, “Mitigating pattern dependent nonlinearity in SiP IQ-modulators via iterative learning control predistortion,” Opt. Express 26, 27639–27649 (2018).
[Crossref] [PubMed]

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5(11), 1354–1370 (2018)
[Crossref]

J. Wang and Y. Long, “On-chip silicon photonic signaling and processing: a review,” Sci. Bulletin 63(19), 1267–1310 (2018).
[Crossref]

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, M. Schell, C. Koos, and S. Randel, “1-Tb/s Millimeter-Wave Signal Wireless Delivery at D-Band,” J. Lightw. Technol. 37, 196–204 (2018).

X. Li, J. Yu, L. Zhao, K. Wang, C. Wang, M. Zhao, W. Zhou, and J. Xiao, “100 GBd Intensity Modulation and Direct Detection With an InP-Based Monolithic DFB Laser Mach–Zehnder Modulator,” J. Lightw. Technol. 36(1), 97–102 (2018).
[Crossref]

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD Transmission Based on Modified Lookup Table Nonlinear Predistortion,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

2014 (1)

2012 (2)

2011 (1)

2010 (1)

L. Guan and A. Zhu, “Low-cost FPGA implementation of Volterra series-based digital predistorter for RF power amplifiers,” IEEE Trans. Microw. Theory Techn. 58, 866–872 (2010).
[Crossref]

1991 (1)

G. Karam and H. Sari, “A data predistortion technique with memory for QAM radio systems,” IEEE Trans. Commun. 39(2), 336–344 (1991).
[Crossref]

Altenhain, L.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, M. Schell, C. Koos, and S. Randel, “1-Tb/s Millimeter-Wave Signal Wireless Delivery at D-Band,” J. Lightw. Technol. 37, 196–204 (2018).

Bahadori, M.

Berenguer, P.

R. Elschner, R. Emmerich, C. Schmidt-Langhorst, F. Frey, P. Berenguer, J. Fischer, H. Grießer, D. Rafique, J. Elbers, and C. Schubert, “Improving Achievable Information Rates of 64-GBd PDM-64QAM by Nonlinear Transmitter Predistortion,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M1C.2.
[Crossref]

Berenguer, P. W.

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

Bergman, K.

Borhanuddin Mohd, A.

P. Varahram, S. Mohammady, A. Borhanuddin Mohd, and N. Sulaiman, Power efficiency in broadband wireless communications (CRC, 2014).
[Crossref]

Buhl, L. L.

Calabrò, S.

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A Memory Polynomial Based Digital Pre-Distorter for High Power Transmitter Components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

Cartledge, J.

Chen, L.

Chen, Y.

Cheng, Q.

De Man, E.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A Memory Polynomial Based Digital Pre-Distorter for High Power Transmitter Components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

Dong, P.

Drenski, T.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A Memory Polynomial Based Digital Pre-Distorter for High Power Transmitter Components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

Dris, S.

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

Elbers, J.

R. Elschner, R. Emmerich, C. Schmidt-Langhorst, F. Frey, P. Berenguer, J. Fischer, H. Grießer, D. Rafique, J. Elbers, and C. Schubert, “Improving Achievable Information Rates of 64-GBd PDM-64QAM by Nonlinear Transmitter Predistortion,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M1C.2.
[Crossref]

Elschner, R.

R. Elschner, R. Emmerich, C. Schmidt-Langhorst, F. Frey, P. Berenguer, J. Fischer, H. Grießer, D. Rafique, J. Elbers, and C. Schubert, “Improving Achievable Information Rates of 64-GBd PDM-64QAM by Nonlinear Transmitter Predistortion,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M1C.2.
[Crossref]

Emmerich, R.

R. Elschner, R. Emmerich, C. Schmidt-Langhorst, F. Frey, P. Berenguer, J. Fischer, H. Grießer, D. Rafique, J. Elbers, and C. Schubert, “Improving Achievable Information Rates of 64-GBd PDM-64QAM by Nonlinear Transmitter Predistortion,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M1C.2.
[Crossref]

Faig, H.

H. Faig, Y. Yoffe, and D. Sadot, “Dimensions-Reduced Volterra-Based Digital Pre-Distortion for Band-Limited Nonlinear Components,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper SpM3G.2.
[Crossref]

Fang, K.

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD Transmission Based on Modified Lookup Table Nonlinear Predistortion,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Feiste, U.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A Memory Polynomial Based Digital Pre-Distorter for High Power Transmitter Components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

Fischer, J.

R. Elschner, R. Emmerich, C. Schmidt-Langhorst, F. Frey, P. Berenguer, J. Fischer, H. Grießer, D. Rafique, J. Elbers, and C. Schubert, “Improving Achievable Information Rates of 64-GBd PDM-64QAM by Nonlinear Transmitter Predistortion,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M1C.2.
[Crossref]

Fischer, J. K.

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

Frey, F.

R. Elschner, R. Emmerich, C. Schmidt-Langhorst, F. Frey, P. Berenguer, J. Fischer, H. Grießer, D. Rafique, J. Elbers, and C. Schubert, “Improving Achievable Information Rates of 64-GBd PDM-64QAM by Nonlinear Transmitter Predistortion,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M1C.2.
[Crossref]

Gao, Y.

Gardian, L.

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

Glick, M.

Gou, P.

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD Transmission Based on Modified Lookup Table Nonlinear Predistortion,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Grießer, H.

R. Elschner, R. Emmerich, C. Schmidt-Langhorst, F. Frey, P. Berenguer, J. Fischer, H. Grießer, D. Rafique, J. Elbers, and C. Schubert, “Improving Achievable Information Rates of 64-GBd PDM-64QAM by Nonlinear Transmitter Predistortion,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M1C.2.
[Crossref]

Guan, L.

L. Guan and A. Zhu, “Low-cost FPGA implementation of Volterra series-based digital predistorter for RF power amplifiers,” IEEE Trans. Microw. Theory Techn. 58, 866–872 (2010).
[Crossref]

Guo, M.

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. A. Rusch, and W. Shi, “All-Silicon IQ Modulator for 100 GBaud 32QAM Transmissions,” in in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th4A.5.

Hanik, N.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A Memory Polynomial Based Digital Pre-Distorter for High Power Transmitter Components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

Huang, Y.

S. Zhang, F. Yaman, Y. Huang, T. Inoue, K. Nakamura, E. Mateo, Y. Inada, T. Wang, and T. Ogata, “Trans-Pacific Transmission of Quad-Carrier 1Tb/s DP-8QAM Assisted by LUT-based MAP Algorithm,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W3G.3.
[Crossref]

Inada, Y.

S. Zhang, F. Yaman, Y. Huang, T. Inoue, K. Nakamura, E. Mateo, Y. Inada, T. Wang, and T. Ogata, “Trans-Pacific Transmission of Quad-Carrier 1Tb/s DP-8QAM Assisted by LUT-based MAP Algorithm,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W3G.3.
[Crossref]

Inoue, T.

S. Zhang, F. Yaman, Y. Huang, T. Inoue, K. Nakamura, E. Mateo, Y. Inada, T. Wang, and T. Ogata, “Trans-Pacific Transmission of Quad-Carrier 1Tb/s DP-8QAM Assisted by LUT-based MAP Algorithm,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W3G.3.
[Crossref]

Kaiser, R.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, M. Schell, C. Koos, and S. Randel, “1-Tb/s Millimeter-Wave Signal Wireless Delivery at D-Band,” J. Lightw. Technol. 37, 196–204 (2018).

Karam, G.

G. Karam and H. Sari, “A data predistortion technique with memory for QAM radio systems,” IEEE Trans. Commun. 39(2), 336–344 (1991).
[Crossref]

Kärtner, F. X.

Ke, J.

Khanna, G.

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A Memory Polynomial Based Digital Pre-Distorter for High Power Transmitter Components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

Khilo, A.

Kong, M.

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD Transmission Based on Modified Lookup Table Nonlinear Predistortion,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Koos, C.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, M. Schell, C. Koos, and S. Randel, “1-Tb/s Millimeter-Wave Signal Wireless Delivery at D-Band,” J. Lightw. Technol. 37, 196–204 (2018).

Lange, S.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, M. Schell, C. Koos, and S. Randel, “1-Tb/s Millimeter-Wave Signal Wireless Delivery at D-Band,” J. Lightw. Technol. 37, 196–204 (2018).

Li, X.

X. Li, J. Yu, L. Zhao, K. Wang, C. Wang, M. Zhao, W. Zhou, and J. Xiao, “100 GBd Intensity Modulation and Direct Detection With an InP-Based Monolithic DFB Laser Mach–Zehnder Modulator,” J. Lightw. Technol. 36(1), 97–102 (2018).
[Crossref]

Lin, J.

J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “Single-carrier 72 GBaud 32QAM and 84 GBaud 16QAM transmission using a SiP IQ modulator with joint digital-optical pre-compensation,” Opt. Express 27, 5610–5619 (2019).
[Crossref] [PubMed]

S. Zhalehpour, J. Lin, H. Sepehrian, W. Shi, and L. Rusch, “Mitigating pattern dependent nonlinearity in SiP IQ-modulators via iterative learning control predistortion,” Opt. Express 26, 27639–27649 (2018).
[Crossref] [PubMed]

S. Zhalehpour, J. Lin, H. Sepehrian, W. Shi, and L. Rusch, “Experimental demonstration of reduced-size LUT predistortion for 256QAM SiP Transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th1D.3.

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. A. Rusch, and W. Shi, “All-Silicon IQ Modulator for 100 GBaud 32QAM Transmissions,” in in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th4A.5.

Long, Y.

J. Wang and Y. Long, “On-chip silicon photonic signaling and processing: a review,” Sci. Bulletin 63(19), 1267–1310 (2018).
[Crossref]

Lutz, J.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, M. Schell, C. Koos, and S. Randel, “1-Tb/s Millimeter-Wave Signal Wireless Delivery at D-Band,” J. Lightw. Technol. 37, 196–204 (2018).

Mateo, E.

S. Zhang, F. Yaman, Y. Huang, T. Inoue, K. Nakamura, E. Mateo, Y. Inada, T. Wang, and T. Ogata, “Trans-Pacific Transmission of Quad-Carrier 1Tb/s DP-8QAM Assisted by LUT-based MAP Algorithm,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W3G.3.
[Crossref]

Mezghanni, M. M.

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

Mohammady, S.

P. Varahram, S. Mohammady, A. Borhanuddin Mohd, and N. Sulaiman, Power efficiency in broadband wireless communications (CRC, 2014).
[Crossref]

Nakamura, K.

S. Zhang, F. Yaman, Y. Huang, T. Inoue, K. Nakamura, E. Mateo, Y. Inada, T. Wang, and T. Ogata, “Trans-Pacific Transmission of Quad-Carrier 1Tb/s DP-8QAM Assisted by LUT-based MAP Algorithm,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W3G.3.
[Crossref]

Napoli, A.

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

Ogata, T.

S. Zhang, F. Yaman, Y. Huang, T. Inoue, K. Nakamura, E. Mateo, Y. Inada, T. Wang, and T. Ogata, “Trans-Pacific Transmission of Quad-Carrier 1Tb/s DP-8QAM Assisted by LUT-based MAP Algorithm,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W3G.3.
[Crossref]

Patel, D.

D. Patel, “Design, Analysis, and Performance of a Silicon Photonic Traveling Wave Mach-Zehnder Modulator,” Masters Diss. McGill University (2014).

Piat, A. C.

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

Rafique, D.

R. Elschner, R. Emmerich, C. Schmidt-Langhorst, F. Frey, P. Berenguer, J. Fischer, H. Grießer, D. Rafique, J. Elbers, and C. Schubert, “Improving Achievable Information Rates of 64-GBd PDM-64QAM by Nonlinear Transmitter Predistortion,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M1C.2.
[Crossref]

Rahman, T.

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

Randel, S.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, M. Schell, C. Koos, and S. Randel, “1-Tb/s Millimeter-Wave Signal Wireless Delivery at D-Band,” J. Lightw. Technol. 37, 196–204 (2018).

Riccardi, E.

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

Richter, A.

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

Rumley, S.

Rusch, L.

S. Zhalehpour, J. Lin, H. Sepehrian, W. Shi, and L. Rusch, “Mitigating pattern dependent nonlinearity in SiP IQ-modulators via iterative learning control predistortion,” Opt. Express 26, 27639–27649 (2018).
[Crossref] [PubMed]

S. Zhalehpour, J. Lin, H. Sepehrian, W. Shi, and L. Rusch, “Experimental demonstration of reduced-size LUT predistortion for 256QAM SiP Transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th1D.3.

Rusch, L. A.

J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “Single-carrier 72 GBaud 32QAM and 84 GBaud 16QAM transmission using a SiP IQ modulator with joint digital-optical pre-compensation,” Opt. Express 27, 5610–5619 (2019).
[Crossref] [PubMed]

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. A. Rusch, and W. Shi, “All-Silicon IQ Modulator for 100 GBaud 32QAM Transmissions,” in in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th4A.5.

Sadot, D.

H. Faig, Y. Yoffe, and D. Sadot, “Dimensions-Reduced Volterra-Based Digital Pre-Distortion for Band-Limited Nonlinear Components,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper SpM3G.2.
[Crossref]

Sari, H.

G. Karam and H. Sari, “A data predistortion technique with memory for QAM radio systems,” IEEE Trans. Commun. 39(2), 336–344 (1991).
[Crossref]

Schell, M.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, M. Schell, C. Koos, and S. Randel, “1-Tb/s Millimeter-Wave Signal Wireless Delivery at D-Band,” J. Lightw. Technol. 37, 196–204 (2018).

Schmid, R.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, M. Schell, C. Koos, and S. Randel, “1-Tb/s Millimeter-Wave Signal Wireless Delivery at D-Band,” J. Lightw. Technol. 37, 196–204 (2018).

Schmidt-Langhorst, C.

R. Elschner, R. Emmerich, C. Schmidt-Langhorst, F. Frey, P. Berenguer, J. Fischer, H. Grießer, D. Rafique, J. Elbers, and C. Schubert, “Improving Achievable Information Rates of 64-GBd PDM-64QAM by Nonlinear Transmitter Predistortion,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M1C.2.
[Crossref]

Schubert, C.

R. Elschner, R. Emmerich, C. Schmidt-Langhorst, F. Frey, P. Berenguer, J. Fischer, H. Grießer, D. Rafique, J. Elbers, and C. Schubert, “Improving Achievable Information Rates of 64-GBd PDM-64QAM by Nonlinear Transmitter Predistortion,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M1C.2.
[Crossref]

Sepehrian, H.

J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “Single-carrier 72 GBaud 32QAM and 84 GBaud 16QAM transmission using a SiP IQ modulator with joint digital-optical pre-compensation,” Opt. Express 27, 5610–5619 (2019).
[Crossref] [PubMed]

S. Zhalehpour, J. Lin, H. Sepehrian, W. Shi, and L. Rusch, “Mitigating pattern dependent nonlinearity in SiP IQ-modulators via iterative learning control predistortion,” Opt. Express 26, 27639–27649 (2018).
[Crossref] [PubMed]

S. Zhalehpour, J. Lin, H. Sepehrian, W. Shi, and L. Rusch, “Experimental demonstration of reduced-size LUT predistortion for 256QAM SiP Transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th1D.3.

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. A. Rusch, and W. Shi, “All-Silicon IQ Modulator for 100 GBaud 32QAM Transmissions,” in in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th4A.5.

Shi, W.

J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “Single-carrier 72 GBaud 32QAM and 84 GBaud 16QAM transmission using a SiP IQ modulator with joint digital-optical pre-compensation,” Opt. Express 27, 5610–5619 (2019).
[Crossref] [PubMed]

S. Zhalehpour, J. Lin, H. Sepehrian, W. Shi, and L. Rusch, “Mitigating pattern dependent nonlinearity in SiP IQ-modulators via iterative learning control predistortion,” Opt. Express 26, 27639–27649 (2018).
[Crossref] [PubMed]

S. Zhalehpour, J. Lin, H. Sepehrian, W. Shi, and L. Rusch, “Experimental demonstration of reduced-size LUT predistortion for 256QAM SiP Transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th1D.3.

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. A. Rusch, and W. Shi, “All-Silicon IQ Modulator for 100 GBaud 32QAM Transmissions,” in in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th4A.5.

Sommerkorn-Krombholz, B.

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

Sorace, C. M.

Spinnler, B.

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A Memory Polynomial Based Digital Pre-Distorter for High Power Transmitter Components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

Sulaiman, N.

P. Varahram, S. Mohammady, A. Borhanuddin Mohd, and N. Sulaiman, Power efficiency in broadband wireless communications (CRC, 2014).
[Crossref]

Varahram, P.

P. Varahram, S. Mohammady, A. Borhanuddin Mohd, and N. Sulaiman, Power efficiency in broadband wireless communications (CRC, 2014).
[Crossref]

Wang, C.

X. Li, J. Yu, L. Zhao, K. Wang, C. Wang, M. Zhao, W. Zhou, and J. Xiao, “100 GBd Intensity Modulation and Direct Detection With an InP-Based Monolithic DFB Laser Mach–Zehnder Modulator,” J. Lightw. Technol. 36(1), 97–102 (2018).
[Crossref]

Wang, J.

J. Wang and Y. Long, “On-chip silicon photonic signaling and processing: a review,” Sci. Bulletin 63(19), 1267–1310 (2018).
[Crossref]

Wang, K.

X. Li, J. Yu, L. Zhao, K. Wang, C. Wang, M. Zhao, W. Zhou, and J. Xiao, “100 GBd Intensity Modulation and Direct Detection With an InP-Based Monolithic DFB Laser Mach–Zehnder Modulator,” J. Lightw. Technol. 36(1), 97–102 (2018).
[Crossref]

Wang, T.

S. Zhang, F. Yaman, Y. Huang, T. Inoue, K. Nakamura, E. Mateo, Y. Inada, T. Wang, and T. Ogata, “Trans-Pacific Transmission of Quad-Carrier 1Tb/s DP-8QAM Assisted by LUT-based MAP Algorithm,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W3G.3.
[Crossref]

Winzer, P. J.

P. J. Winzer, “High-Spectral-Efficiency Optical Modulation Formats,” J. Lightw. Technol. 30(24), 3824–3835 (2012).
[Crossref]

Wolf, S.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, M. Schell, C. Koos, and S. Randel, “1-Tb/s Millimeter-Wave Signal Wireless Delivery at D-Band,” J. Lightw. Technol. 37, 196–204 (2018).

Xiao, J.

X. Li, J. Yu, L. Zhao, K. Wang, C. Wang, M. Zhao, W. Zhou, and J. Xiao, “100 GBd Intensity Modulation and Direct Detection With an InP-Based Monolithic DFB Laser Mach–Zehnder Modulator,” J. Lightw. Technol. 36(1), 97–102 (2018).
[Crossref]

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD Transmission Based on Modified Lookup Table Nonlinear Predistortion,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Xie, C.

Xin, X.

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD Transmission Based on Modified Lookup Table Nonlinear Predistortion,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Yaman, F.

S. Zhang, F. Yaman, Y. Huang, T. Inoue, K. Nakamura, E. Mateo, Y. Inada, T. Wang, and T. Ogata, “Trans-Pacific Transmission of Quad-Carrier 1Tb/s DP-8QAM Assisted by LUT-based MAP Algorithm,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W3G.3.
[Crossref]

Yoffe, Y.

H. Faig, Y. Yoffe, and D. Sadot, “Dimensions-Reduced Volterra-Based Digital Pre-Distortion for Band-Limited Nonlinear Components,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper SpM3G.2.
[Crossref]

Yu, J.

X. Li, J. Yu, L. Zhao, K. Wang, C. Wang, M. Zhao, W. Zhou, and J. Xiao, “100 GBd Intensity Modulation and Direct Detection With an InP-Based Monolithic DFB Laser Mach–Zehnder Modulator,” J. Lightw. Technol. 36(1), 97–102 (2018).
[Crossref]

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD Transmission Based on Modified Lookup Table Nonlinear Predistortion,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Zhalehpour, S.

S. Zhalehpour, J. Lin, H. Sepehrian, W. Shi, and L. Rusch, “Mitigating pattern dependent nonlinearity in SiP IQ-modulators via iterative learning control predistortion,” Opt. Express 26, 27639–27649 (2018).
[Crossref] [PubMed]

S. Zhalehpour, J. Lin, H. Sepehrian, W. Shi, and L. Rusch, “Experimental demonstration of reduced-size LUT predistortion for 256QAM SiP Transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th1D.3.

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. A. Rusch, and W. Shi, “All-Silicon IQ Modulator for 100 GBaud 32QAM Transmissions,” in in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th4A.5.

Zhang, J.

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD Transmission Based on Modified Lookup Table Nonlinear Predistortion,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Zhang, Q.

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD Transmission Based on Modified Lookup Table Nonlinear Predistortion,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Zhang, S.

S. Zhang, F. Yaman, Y. Huang, T. Inoue, K. Nakamura, E. Mateo, Y. Inada, T. Wang, and T. Ogata, “Trans-Pacific Transmission of Quad-Carrier 1Tb/s DP-8QAM Assisted by LUT-based MAP Algorithm,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W3G.3.
[Crossref]

Zhang, Z.

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. A. Rusch, and W. Shi, “All-Silicon IQ Modulator for 100 GBaud 32QAM Transmissions,” in in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th4A.5.

Zhao, L.

X. Li, J. Yu, L. Zhao, K. Wang, C. Wang, M. Zhao, W. Zhou, and J. Xiao, “100 GBd Intensity Modulation and Direct Detection With an InP-Based Monolithic DFB Laser Mach–Zehnder Modulator,” J. Lightw. Technol. 36(1), 97–102 (2018).
[Crossref]

Zhao, M.

X. Li, J. Yu, L. Zhao, K. Wang, C. Wang, M. Zhao, W. Zhou, and J. Xiao, “100 GBd Intensity Modulation and Direct Detection With an InP-Based Monolithic DFB Laser Mach–Zehnder Modulator,” J. Lightw. Technol. 36(1), 97–102 (2018).
[Crossref]

Zhou, W.

X. Li, J. Yu, L. Zhao, K. Wang, C. Wang, M. Zhao, W. Zhou, and J. Xiao, “100 GBd Intensity Modulation and Direct Detection With an InP-Based Monolithic DFB Laser Mach–Zehnder Modulator,” J. Lightw. Technol. 36(1), 97–102 (2018).
[Crossref]

Zhu, A.

L. Guan and A. Zhu, “Low-cost FPGA implementation of Volterra series-based digital predistorter for RF power amplifiers,” IEEE Trans. Microw. Theory Techn. 58, 866–872 (2010).
[Crossref]

IEEE Photon. J. (1)

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD Transmission Based on Modified Lookup Table Nonlinear Predistortion,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

IEEE Trans. Commun. (1)

G. Karam and H. Sari, “A data predistortion technique with memory for QAM radio systems,” IEEE Trans. Commun. 39(2), 336–344 (1991).
[Crossref]

IEEE Trans. Microw. Theory Techn. (1)

L. Guan and A. Zhu, “Low-cost FPGA implementation of Volterra series-based digital predistorter for RF power amplifiers,” IEEE Trans. Microw. Theory Techn. 58, 866–872 (2010).
[Crossref]

J. Lightw. Technol. (3)

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, M. Schell, C. Koos, and S. Randel, “1-Tb/s Millimeter-Wave Signal Wireless Delivery at D-Band,” J. Lightw. Technol. 37, 196–204 (2018).

X. Li, J. Yu, L. Zhao, K. Wang, C. Wang, M. Zhao, W. Zhou, and J. Xiao, “100 GBd Intensity Modulation and Direct Detection With an InP-Based Monolithic DFB Laser Mach–Zehnder Modulator,” J. Lightw. Technol. 36(1), 97–102 (2018).
[Crossref]

P. J. Winzer, “High-Spectral-Efficiency Optical Modulation Formats,” J. Lightw. Technol. 30(24), 3824–3835 (2012).
[Crossref]

Opt. Commun. (1)

A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian, E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, A. Richter, J. K. Fischer, B. Sommerkorn-Krombholz, and B. Spinnler, “Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders,” Opt. Commun. 409, 52–65, (2018).
[Crossref]

Opt. Express (5)

Optica (1)

Sci. Bulletin (1)

J. Wang and Y. Long, “On-chip silicon photonic signaling and processing: a review,” Sci. Bulletin 63(19), 1267–1310 (2018).
[Crossref]

Other (8)

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. A. Rusch, and W. Shi, “All-Silicon IQ Modulator for 100 GBaud 32QAM Transmissions,” in in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th4A.5.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A Memory Polynomial Based Digital Pre-Distorter for High Power Transmitter Components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

R. Elschner, R. Emmerich, C. Schmidt-Langhorst, F. Frey, P. Berenguer, J. Fischer, H. Grießer, D. Rafique, J. Elbers, and C. Schubert, “Improving Achievable Information Rates of 64-GBd PDM-64QAM by Nonlinear Transmitter Predistortion,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M1C.2.
[Crossref]

S. Zhang, F. Yaman, Y. Huang, T. Inoue, K. Nakamura, E. Mateo, Y. Inada, T. Wang, and T. Ogata, “Trans-Pacific Transmission of Quad-Carrier 1Tb/s DP-8QAM Assisted by LUT-based MAP Algorithm,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W3G.3.
[Crossref]

H. Faig, Y. Yoffe, and D. Sadot, “Dimensions-Reduced Volterra-Based Digital Pre-Distortion for Band-Limited Nonlinear Components,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper SpM3G.2.
[Crossref]

S. Zhalehpour, J. Lin, H. Sepehrian, W. Shi, and L. Rusch, “Experimental demonstration of reduced-size LUT predistortion for 256QAM SiP Transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2019), paper Th1D.3.

P. Varahram, S. Mohammady, A. Borhanuddin Mohd, and N. Sulaiman, Power efficiency in broadband wireless communications (CRC, 2014).
[Crossref]

D. Patel, “Design, Analysis, and Performance of a Silicon Photonic Traveling Wave Mach-Zehnder Modulator,” Masters Diss. McGill University (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 LUT-based predistortion block diagram where SW(n) indicates sliding window with length n.
Fig. 2
Fig. 2 DSP block diagram and experimental setup; inset is E/O S21 of SiP IQ modulator for several reversed DC bias voltages [4].
Fig. 3
Fig. 3 When using linear equalizers alone, constellations for a) 20 Gbaud 256QAM, b) 40 Gbaud 128QAM, and average absolute error per symbol for c) 20 Gbaud 256QAM, and d) 40 Gbaud 128QAM.
Fig. 4
Fig. 4 In-phase PDD vs. pattern index, for 20 Gbaud 256QAM in a) LUT-3, b) LUT-5, and c) LUT-7, and for 40 Gbaud 128QAM in d) LUT-3, e) LUT-5, and f) LUT-7; mean and variance are given in insets.
Fig. 5
Fig. 5 BER when using linear equalizer alone, and in combination with full-size LUT with memory depth n=3, 5, and 7 for a) 20 Gbaud 256QAM, and b) 40 Gbaud 128QAM.
Fig. 6
Fig. 6 For LUT-7, 20 Gbaud 256QAM in a) predistorted constellation, b) mean of the absolute value of the predistortion, and c) its standard deviation, and for 40 Gbaud 128QAM in d) predistorted constellation, e) mean of the absolute value of the predistortion, and f) its standard deviation.
Fig. 7
Fig. 7 R-LUT for n = 3 and 20 Gbaud 256QAM: a) absolute PDD vs. pattern index with four horizontal threshold levels are set by the percentage of PDD values above the threshold, and b) for the 20% threshold, the distribution of patterns retained as a function of the center symbol of the pattern for both in-phase and quadrature R-LUTs.
Fig. 8
Fig. 8 For 20% R-LUT for n=3 and 20 Gbaud 256QAM, distribution of first and third symbol of a) patterns with middle symbol of −15, and b) patterns with middle symbol of −5.
Fig. 9
Fig. 9 PDD of I-LUT-3 for 20 Gbaud 256QAM with pattern indexes grouped by center symbol, for a) full-size LUT and b) 20% R-LUT.
Fig. 10
Fig. 10 Left axis (× markers) is BER vs. R-LUT size in percentage at 2 dBm optical received power, right axis (square markers) is R-LUT size, for a) 20 Gbaud 256QAM, b) 40 Gbaud 128QAM.
Fig. 11
Fig. 11 BER vs. data set PRBS order at 2 dBm optical received power; training always on PRBS24.
Fig. 12
Fig. 12 20 Gbaud 256QAM predistorted constellations, X ˜ _, for a) LUT-3, b) LUT-5, and c) LUT-7.
Fig. 13
Fig. 13 40 Gbaud 128QAM predistorted constellations, X ˜ _, for a) LUT-3, b) LUT-5, and c) LUT-7.
Fig. 14
Fig. 14 Received constellations for linear equalizer and LUT-7 at a) 20 Gbaud 256QAM, and b) 40 Gbaud 128QAM.
Fig. 15
Fig. 15 Electrical spectrum of 256QAM at 20 Gbaud a) with RC pulse shaping filter alone, b) with RC filter and MMSE pre-distortion, and c) with RC filter, MMSE pre-distortion, and LUT-3 pre-distortion.

Tables (1)

Tables Icon

Table 1 In-phase Full-size LUT Predistortion Assuming n =3, 5, and 7.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

X _ k = ( X k ( n 1 ) / 2 , , X k , , X k + ( n 1 ) / 2 )
e k = X k Y k .
I-LUT ( i ) = 1 N i Re { X _ k } = P I ( i ) Re { e k } and Q-LUT ( q ) = 1 N q Im { X _ k } = P Q ( q ) Im { e k }