Abstract

A unique freestanding nickel (Ni) metallic mesh–based electromagnetic interference shielding film has been fabricated though the direct-writing technique and a subsequent selective metal electrodeposited process. The structured freestanding Ni mesh film demonstrates a series of advantages, including ultrathin thickness (2.5-6.0 μm) and ultralight weight (0.23 mg cm−2), extraordinary optoelectronic performance (sheet resistance about 0.24-0.7 Ω sq−1 with transparency of 92%–93%), high figure of merit (18000) and outstanding flexibility as it can withstand folding, rolling and crumpling into various shapes while keeping the conductivity constant. Furthermore, by using this high-performance Ni mesh, an ultrathin, lightweight, freestanding and transparent electromagnetic interference shielding (EMI) film with extraordinary optoelectronic properties (shielding effectiveness about 40 dB with transparency of 92%) is demonstrated in X-band, with no performance attenuation observed even in bending state. This freestanding metallic mesh–structured electrode can be further explored or applied in various potential applications, such as conformal microwave antennas, transparent EMI windows, and wearable electronics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-performance composite Ag-Ni mesh based flexible transparent conductive film as multifunctional devices

Su Shen, Shi-Yu Chen, Dong-Yu Zhang, and Yan-Hua Liu
Opt. Express 26(21) 27545-27554 (2018)

Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding

Heyan Wang, Zhengang Lu, Yeshu Liu, Jiubin Tan, Limin Ma, and Shen Lin
Opt. Lett. 42(8) 1620-1623 (2017)

Petal-shaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction

Weiqi Wang, Benfeng Bai, Qian Zhou, Kai Ni, and Hui Lin
Opt. Mater. Express 8(11) 3485-3493 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Z. P. Chen, C. Xu, C. Q. Ma, W. C. Ren, and H. M. Cheng, “Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding,” Adv. Mater. 25(9), 1296–1300 (2013).
    [Crossref]
  2. J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
    [Crossref]
  3. S. Mondal, L. Nayak, M. Rahaman, A. Aldalbahi, T. K. Chaki, D. Khastgir, and N. C. Das, “An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites,” Composites, Part B 109, 155–169 (2017).
    [Crossref]
  4. J. Paś and S. Duer, “Determination of the impact indicators of electromagnetic interferences on computer information systems,” Neural Comput & Appl. 23(7-8), 2143–2157 (2013).
    [Crossref]
  5. X. W. Yin, L. Kong, L. T. Zhang, L. F. Cheng, N. Travitzky, and P. Greil, “Electromagnetic properties of Si–C–N based ceramics and composites,” Int. Mater. Rev. 59(6), 326–355 (2014).
    [Crossref]
  6. T. Chen, Y. H. Xue, A. K. Roy, and L. M. Dai, “Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrode,” ACS Nano 8(1), 1039–1046 (2014).
    [Crossref]
  7. J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, and S. H. Ko, “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale 9(5), 1978–1985 (2017).
    [Crossref]
  8. L. C. Jia, D. X. Yan, X. F. Liu, R. J. Ma, H. Y. Wu, and Z. M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
    [Crossref]
  9. Z. G. Lu, L. M. Ma, J. B. Tan, H. Y. Wang, and X. M. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
    [Crossref]
  10. J. C. Han, X. N. Wang, Y. F. Qiu, J. Q. Zhu, and P. A. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
    [Crossref]
  11. R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq−1),” Nat. Commun. 7(1), 13771 (2016).
    [Crossref]
  12. Y. Han, Y. X. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
    [Crossref]
  13. F. Fang, Y. Q. Li, H. M. Xiao, N. Hu, and S. Y. Fu, “Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material,” J. Mater. Chem. C 4(19), 4193–4203 (2016).
    [Crossref]
  14. D. H. Kim, Y. M. Kim, and J. W. Kim, “Transparent and flexible film for shielding electromagnetic interference,” Mater. Des. 89, 703–707 (2016).
    [Crossref]
  15. H. Y. Choi, T. W. Lee, S. E. Lee, J. D. Lim, and Y. G. Jeong, “Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements,” Compos. Sci. Technol. 150, 45–53 (2017).
    [Crossref]
  16. C. P. Zhang, A. Khan, J. X. Cai, C. W. Liang, J. H. Deng, S. Y. Huang, G. X. Li, and W. D. Li, “Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film,” ACS Appl. Mater. Interfaces 10(24), 21009–21017 (2018).
    [Crossref]
  17. X. L. Chen, W. R. Guo, L. M. Xie, C. T. Wei, J. Y. Zhuang, W. M. Su, and Z. Cui, “Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications,” ACS Appl. Mater. Interfaces 9(42), 37048–37054 (2017).
    [Crossref]
  18. H. Y. Wang, Z. G. Lu, J. B. Tan, Y. L. Zhang, J. X. Cao, Y. S. Liu, R. Kong, and S. Lin, “Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding,” Thin Solid Films 662, 76–82 (2018).
    [Crossref]
  19. K. Ellmer and R. Mientus, “Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide,” Thin Solid Films 516(14), 4620–4627 (2008).
    [Crossref]
  20. D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, and G. P. Crawford, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
    [Crossref]
  21. Y. Chen, H. B. Zhang, Y. B. Yang, M. Wang, A. Y. Cao, and Z. Z. Yu, “High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding,” Adv. Funct. Mater. 26(3), 447–455 (2016).
    [Crossref]
  22. K. Zhang, G. H. Li, L. M. Feng, N. Wang, J. Guo, K. Sun, K. X. Yu, J. B. Zeng, T. X. Li, Z. H. Guo, and M. Wang, “Ultralow percolation threshold and enhanced electromagnetic interference shielding inpoly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks,” J. Mater. Chem. C 5(36), 9359–9369 (2017).
    [Crossref]
  23. J. Kang, D. Kim, Y. Kim, J. B. Choi, B. H. Hong, and S. W. Kim, “High-performance near-field electromagnetic wave attenuation in ultra-thin and transparent graphene films,” 2D Mater. 4(2), 025003 (2017).
    [Crossref]
  24. D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, and Z. M. Li, “Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding,” Adv. Funct. Mater. 25(4), 559–566 (2015).
    [Crossref]
  25. R. Ravindren, S. Mondal, K. Nath, and N. C. Das, “Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites,” Composites, Part A 118, 75–89 (2019).
    [Crossref]
  26. R. Ravindren, S. Mondal, K. Nath, and N. C. Das, “Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites,” Composites, Part B 164, 559–569 (2019).
    [Crossref]
  27. S. Ghosh, S. Mondal, S. Ganguly, S. Remanan, N. Singha, and N. C. Das, “Carbon Nanostructures Based Mechanically Robust Conducting Cotton Fabric for Improved Electromagnetic Interference Shielding,” Fibers Polym. 19(5), 1064–1073 (2018).
    [Crossref]
  28. S. Ghosh, S. Remanan, S. Mondal, S. Ganguly, P. Das, N. Singha, and N. C. Das, “An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding,” Chem. Eng. J. 344, 138–154 (2018).
    [Crossref]
  29. S. Mondal, S. Ghosh, S. Ganguly, P. Das, R. Ravindren, S. Sit, G. Chakraborty, and N. C. Das, “Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance,” Mater. Res. Express 4(10), 105039 (2017).
    [Crossref]
  30. S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana, P. K. Maji, N. Singha, and N. C. Das, “Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials,” J. Mater. Sci.: Mater. Electron. 29(12), 10177–10189 (2018).
    [Crossref]
  31. S. Ganguly, P. Bhawal, R. Ravindren, and N. C. Das, “Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review,” J. Nanosci. Nanotechnol. 18(11), 7641–7669 (2018).
    [Crossref]
  32. Y. Han, J. Lin, Y. X. Liu, H. Fu, Y. Ma, P. Jin, and J. B. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
    [Crossref]
  33. J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable wlectronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
    [Crossref]
  34. S. Kang, S. Cho, R. Shanker, H. Lee, J. Park, D. S. Um, Y. Lee, and H. Ko, “Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones,” Sci. Adv. 4(8), eaas8772 (2018).
    [Crossref]
  35. B. Shen, W. T. Zhai, and W. G. Zheng, “Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
    [Crossref]
  36. P. Verma, P. Saini, and V. Choudhary, “Designing of carbon nanotube/polymer composites using melt recirculation approach: Effect of aspect ratio on mechanical, electrical and EMI shielding response,” Mater. Des. 88, 269–277 (2015).
    [Crossref]
  37. B. Zhao, N. Qi, K. Q. Zhang, and X. Gong, “Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4:Yb,Er nanocomposites with metal-enhanced fluorescence behavior,” Phys. Chem. Chem. Phys. 18(22), 15289–15294 (2016).
    [Crossref]
  38. Y. Huang, X. P. Bai, M. Zhou, S. Y. Liao, Z. F. Yu, Y. P. Wang, and H. Wu, “Large-scale spinning of silver nanofibers as flexible and reliable conductors,” Nano Lett. 16(9), 5846–5851 (2016).
    [Crossref]
  39. D. G. Kim, J. H. Choi, D. K. Chai, and S. W. Kim, “Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires,” ACS Appl. Mater. Interfaces 10(35), 29730–29740 (2018).
    [Crossref]
  40. A. Khan, S. Lee, T. Jang, Z. Xiong, C. P. Zhang, J. Y. Tang, L. J. Guo, and W. D. Li, “High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process,” Small 12(22), 3021–3030 (2016).
    [Crossref]
  41. P. Kumar, P. V. Reddy, B. Choudhury, P. Chowdhury, and H. C. Barshilia, “Transparent conductive Ta/Al/Ta-grid electrode for optoelectronic and electromagnetic interference shielding applications,” Thin Solid Films 612, 350–357 (2016).
    [Crossref]
  42. Y. Lou, Y. Ye, D. Pu, S. Shen, and L. Chen, “A large-scale diffractive glasses-free 3D display,” SPIE Newsroom 27 October 2014.
  43. H. Y. Wang, Z. G. Lu, and J. B. Tan, “Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays,” Opt. Express 24(20), 22989–23000 (2016).
    [Crossref]
  44. Z. G. Lu, H. Y. Wang, J. B. Tan, L. M. Ma, and S. Lin, “Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays,” Opt. Lett. 41(9), 1941–1944 (2016).
    [Crossref]
  45. D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 96(4), 041109 (2010).
    [Crossref]
  46. L. M. Ma, Z. G. Lu, J. B. Tan, J. Liu, X. M. Ding, N. Black, T. Y. Li, J. Gallop, and L. Hao, “Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene,” ACS Appl. Mater. Interfaces 9(39), 34221–34229 (2017).
    [Crossref]
  47. M. A. Shinde, K. Mallikarjuna, J. Noh, and H. Kim, “Highly stable silver nanowires based bilayered flexible transparent conductive electrode,” Thin Solid Films 660, 447–454 (2018).
    [Crossref]
  48. S. Su, S. Y. Chen, D. Y. Zhang, and Y. H. Liu, “High-performance composite Ag-Ni mesh based flexible transparent conductive film as multifunctional devices,” Opt. Express 26(21), 27545–27554 (2018).
    [Crossref]
  49. N. C. Das, Y. Y. Liu, K. K. Yang, W. Q. Peng, S. D. Maiti, and H. Wang, “Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding,” Polym. Eng. Sci. 49(8), 1627–1634 (2009).
    [Crossref]
  50. J. J. Ma, M. S. Zhang, and K. Wang, “Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding,” ACS Appl. Mater. Interfaces 7(1), 563–576 (2015).
    [Crossref]
  51. M. Mahmoodi, M. Arjmand, U. Sundararaj, and S. Park, “The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites,” Carbon 50(4), 1455–1464 (2012).
    [Crossref]
  52. P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2-3), 919–926 (2009).
    [Crossref]
  53. F. Shahzad, M. Alhabed, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, “Electromagnetic interference shielding with 2D transition metal carbides (MXenes),” Science 353(6304), 1137–1140 (2016).
    [Crossref]
  54. M. J. Hu, J. F. Gao, Y. C. Dong, K. Li, G. C. Shan, S. L. Yang, and R. K. Y. Li, “Flexible transparent PES/Silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
    [Crossref]
  55. X. Zhang, Y. L. Zhong, and Y. Yan, “Electrical, mechanical, and electromagnetic shielding properties of silver nanowire-based transparent conductive films,” Phys. Status Solidi A 215(14), 1800014 (2018).
    [Crossref]

2019 (2)

R. Ravindren, S. Mondal, K. Nath, and N. C. Das, “Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites,” Composites, Part A 118, 75–89 (2019).
[Crossref]

R. Ravindren, S. Mondal, K. Nath, and N. C. Das, “Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites,” Composites, Part B 164, 559–569 (2019).
[Crossref]

2018 (12)

S. Ghosh, S. Mondal, S. Ganguly, S. Remanan, N. Singha, and N. C. Das, “Carbon Nanostructures Based Mechanically Robust Conducting Cotton Fabric for Improved Electromagnetic Interference Shielding,” Fibers Polym. 19(5), 1064–1073 (2018).
[Crossref]

S. Ghosh, S. Remanan, S. Mondal, S. Ganguly, P. Das, N. Singha, and N. C. Das, “An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding,” Chem. Eng. J. 344, 138–154 (2018).
[Crossref]

S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana, P. K. Maji, N. Singha, and N. C. Das, “Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials,” J. Mater. Sci.: Mater. Electron. 29(12), 10177–10189 (2018).
[Crossref]

S. Ganguly, P. Bhawal, R. Ravindren, and N. C. Das, “Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review,” J. Nanosci. Nanotechnol. 18(11), 7641–7669 (2018).
[Crossref]

S. Kang, S. Cho, R. Shanker, H. Lee, J. Park, D. S. Um, Y. Lee, and H. Ko, “Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones,” Sci. Adv. 4(8), eaas8772 (2018).
[Crossref]

L. C. Jia, D. X. Yan, X. F. Liu, R. J. Ma, H. Y. Wu, and Z. M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

C. P. Zhang, A. Khan, J. X. Cai, C. W. Liang, J. H. Deng, S. Y. Huang, G. X. Li, and W. D. Li, “Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film,” ACS Appl. Mater. Interfaces 10(24), 21009–21017 (2018).
[Crossref]

H. Y. Wang, Z. G. Lu, J. B. Tan, Y. L. Zhang, J. X. Cao, Y. S. Liu, R. Kong, and S. Lin, “Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding,” Thin Solid Films 662, 76–82 (2018).
[Crossref]

D. G. Kim, J. H. Choi, D. K. Chai, and S. W. Kim, “Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires,” ACS Appl. Mater. Interfaces 10(35), 29730–29740 (2018).
[Crossref]

M. A. Shinde, K. Mallikarjuna, J. Noh, and H. Kim, “Highly stable silver nanowires based bilayered flexible transparent conductive electrode,” Thin Solid Films 660, 447–454 (2018).
[Crossref]

S. Su, S. Y. Chen, D. Y. Zhang, and Y. H. Liu, “High-performance composite Ag-Ni mesh based flexible transparent conductive film as multifunctional devices,” Opt. Express 26(21), 27545–27554 (2018).
[Crossref]

X. Zhang, Y. L. Zhong, and Y. Yan, “Electrical, mechanical, and electromagnetic shielding properties of silver nanowire-based transparent conductive films,” Phys. Status Solidi A 215(14), 1800014 (2018).
[Crossref]

2017 (11)

L. M. Ma, Z. G. Lu, J. B. Tan, J. Liu, X. M. Ding, N. Black, T. Y. Li, J. Gallop, and L. Hao, “Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene,” ACS Appl. Mater. Interfaces 9(39), 34221–34229 (2017).
[Crossref]

X. L. Chen, W. R. Guo, L. M. Xie, C. T. Wei, J. Y. Zhuang, W. M. Su, and Z. Cui, “Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications,” ACS Appl. Mater. Interfaces 9(42), 37048–37054 (2017).
[Crossref]

J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, and S. H. Ko, “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale 9(5), 1978–1985 (2017).
[Crossref]

Y. Han, Y. X. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
[Crossref]

Z. G. Lu, L. M. Ma, J. B. Tan, H. Y. Wang, and X. M. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
[Crossref]

S. Mondal, L. Nayak, M. Rahaman, A. Aldalbahi, T. K. Chaki, D. Khastgir, and N. C. Das, “An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites,” Composites, Part B 109, 155–169 (2017).
[Crossref]

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable wlectronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

S. Mondal, S. Ghosh, S. Ganguly, P. Das, R. Ravindren, S. Sit, G. Chakraborty, and N. C. Das, “Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance,” Mater. Res. Express 4(10), 105039 (2017).
[Crossref]

H. Y. Choi, T. W. Lee, S. E. Lee, J. D. Lim, and Y. G. Jeong, “Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements,” Compos. Sci. Technol. 150, 45–53 (2017).
[Crossref]

K. Zhang, G. H. Li, L. M. Feng, N. Wang, J. Guo, K. Sun, K. X. Yu, J. B. Zeng, T. X. Li, Z. H. Guo, and M. Wang, “Ultralow percolation threshold and enhanced electromagnetic interference shielding inpoly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks,” J. Mater. Chem. C 5(36), 9359–9369 (2017).
[Crossref]

J. Kang, D. Kim, Y. Kim, J. B. Choi, B. H. Hong, and S. W. Kim, “High-performance near-field electromagnetic wave attenuation in ultra-thin and transparent graphene films,” 2D Mater. 4(2), 025003 (2017).
[Crossref]

2016 (12)

Y. Chen, H. B. Zhang, Y. B. Yang, M. Wang, A. Y. Cao, and Z. Z. Yu, “High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding,” Adv. Funct. Mater. 26(3), 447–455 (2016).
[Crossref]

B. Zhao, N. Qi, K. Q. Zhang, and X. Gong, “Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4:Yb,Er nanocomposites with metal-enhanced fluorescence behavior,” Phys. Chem. Chem. Phys. 18(22), 15289–15294 (2016).
[Crossref]

Y. Huang, X. P. Bai, M. Zhou, S. Y. Liao, Z. F. Yu, Y. P. Wang, and H. Wu, “Large-scale spinning of silver nanofibers as flexible and reliable conductors,” Nano Lett. 16(9), 5846–5851 (2016).
[Crossref]

Y. Han, J. Lin, Y. X. Liu, H. Fu, Y. Ma, P. Jin, and J. B. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

F. Fang, Y. Q. Li, H. M. Xiao, N. Hu, and S. Y. Fu, “Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material,” J. Mater. Chem. C 4(19), 4193–4203 (2016).
[Crossref]

D. H. Kim, Y. M. Kim, and J. W. Kim, “Transparent and flexible film for shielding electromagnetic interference,” Mater. Des. 89, 703–707 (2016).
[Crossref]

R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq−1),” Nat. Commun. 7(1), 13771 (2016).
[Crossref]

F. Shahzad, M. Alhabed, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, “Electromagnetic interference shielding with 2D transition metal carbides (MXenes),” Science 353(6304), 1137–1140 (2016).
[Crossref]

A. Khan, S. Lee, T. Jang, Z. Xiong, C. P. Zhang, J. Y. Tang, L. J. Guo, and W. D. Li, “High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process,” Small 12(22), 3021–3030 (2016).
[Crossref]

P. Kumar, P. V. Reddy, B. Choudhury, P. Chowdhury, and H. C. Barshilia, “Transparent conductive Ta/Al/Ta-grid electrode for optoelectronic and electromagnetic interference shielding applications,” Thin Solid Films 612, 350–357 (2016).
[Crossref]

H. Y. Wang, Z. G. Lu, and J. B. Tan, “Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays,” Opt. Express 24(20), 22989–23000 (2016).
[Crossref]

Z. G. Lu, H. Y. Wang, J. B. Tan, L. M. Ma, and S. Lin, “Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays,” Opt. Lett. 41(9), 1941–1944 (2016).
[Crossref]

2015 (4)

J. J. Ma, M. S. Zhang, and K. Wang, “Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding,” ACS Appl. Mater. Interfaces 7(1), 563–576 (2015).
[Crossref]

J. C. Han, X. N. Wang, Y. F. Qiu, J. Q. Zhu, and P. A. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

P. Verma, P. Saini, and V. Choudhary, “Designing of carbon nanotube/polymer composites using melt recirculation approach: Effect of aspect ratio on mechanical, electrical and EMI shielding response,” Mater. Des. 88, 269–277 (2015).
[Crossref]

D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, and Z. M. Li, “Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding,” Adv. Funct. Mater. 25(4), 559–566 (2015).
[Crossref]

2014 (3)

B. Shen, W. T. Zhai, and W. G. Zheng, “Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
[Crossref]

X. W. Yin, L. Kong, L. T. Zhang, L. F. Cheng, N. Travitzky, and P. Greil, “Electromagnetic properties of Si–C–N based ceramics and composites,” Int. Mater. Rev. 59(6), 326–355 (2014).
[Crossref]

T. Chen, Y. H. Xue, A. K. Roy, and L. M. Dai, “Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrode,” ACS Nano 8(1), 1039–1046 (2014).
[Crossref]

2013 (2)

J. Paś and S. Duer, “Determination of the impact indicators of electromagnetic interferences on computer information systems,” Neural Comput & Appl. 23(7-8), 2143–2157 (2013).
[Crossref]

Z. P. Chen, C. Xu, C. Q. Ma, W. C. Ren, and H. M. Cheng, “Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding,” Adv. Mater. 25(9), 1296–1300 (2013).
[Crossref]

2012 (2)

M. Mahmoodi, M. Arjmand, U. Sundararaj, and S. Park, “The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites,” Carbon 50(4), 1455–1464 (2012).
[Crossref]

M. J. Hu, J. F. Gao, Y. C. Dong, K. Li, G. C. Shan, S. L. Yang, and R. K. Y. Li, “Flexible transparent PES/Silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

2010 (1)

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 96(4), 041109 (2010).
[Crossref]

2009 (3)

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2-3), 919–926 (2009).
[Crossref]

N. C. Das, Y. Y. Liu, K. K. Yang, W. Q. Peng, S. D. Maiti, and H. Wang, “Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding,” Polym. Eng. Sci. 49(8), 1627–1634 (2009).
[Crossref]

J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

2008 (1)

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide,” Thin Solid Films 516(14), 4620–4627 (2008).
[Crossref]

2000 (1)

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, and G. P. Crawford, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

Aldalbahi, A.

S. Mondal, L. Nayak, M. Rahaman, A. Aldalbahi, T. K. Chaki, D. Khastgir, and N. C. Das, “An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites,” Composites, Part B 109, 155–169 (2017).
[Crossref]

Alhabed, M.

F. Shahzad, M. Alhabed, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, “Electromagnetic interference shielding with 2D transition metal carbides (MXenes),” Science 353(6304), 1137–1140 (2016).
[Crossref]

An, K.

J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, and S. H. Ko, “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale 9(5), 1978–1985 (2017).
[Crossref]

Anasori, B.

F. Shahzad, M. Alhabed, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, “Electromagnetic interference shielding with 2D transition metal carbides (MXenes),” Science 353(6304), 1137–1140 (2016).
[Crossref]

Arjmand, M.

M. Mahmoodi, M. Arjmand, U. Sundararaj, and S. Park, “The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites,” Carbon 50(4), 1455–1464 (2012).
[Crossref]

Bai, X. P.

Y. Huang, X. P. Bai, M. Zhou, S. Y. Liao, Z. F. Yu, Y. P. Wang, and H. Wu, “Large-scale spinning of silver nanofibers as flexible and reliable conductors,” Nano Lett. 16(9), 5846–5851 (2016).
[Crossref]

Barshilia, H. C.

P. Kumar, P. V. Reddy, B. Choudhury, P. Chowdhury, and H. C. Barshilia, “Transparent conductive Ta/Al/Ta-grid electrode for optoelectronic and electromagnetic interference shielding applications,” Thin Solid Films 612, 350–357 (2016).
[Crossref]

Bhawal, P.

S. Ganguly, P. Bhawal, R. Ravindren, and N. C. Das, “Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review,” J. Nanosci. Nanotechnol. 18(11), 7641–7669 (2018).
[Crossref]

Black, N.

L. M. Ma, Z. G. Lu, J. B. Tan, J. Liu, X. M. Ding, N. Black, T. Y. Li, J. Gallop, and L. Hao, “Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene,” ACS Appl. Mater. Interfaces 9(39), 34221–34229 (2017).
[Crossref]

Cai, J. M.

J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Cai, J. X.

C. P. Zhang, A. Khan, J. X. Cai, C. W. Liang, J. H. Deng, S. Y. Huang, G. X. Li, and W. D. Li, “Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film,” ACS Appl. Mater. Interfaces 10(24), 21009–21017 (2018).
[Crossref]

Cairns, D. R.

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, and G. P. Crawford, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

Cao, A. Y.

Y. Chen, H. B. Zhang, Y. B. Yang, M. Wang, A. Y. Cao, and Z. Z. Yu, “High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding,” Adv. Funct. Mater. 26(3), 447–455 (2016).
[Crossref]

Cao, J. X.

H. Y. Wang, Z. G. Lu, J. B. Tan, Y. L. Zhang, J. X. Cao, Y. S. Liu, R. Kong, and S. Lin, “Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding,” Thin Solid Films 662, 76–82 (2018).
[Crossref]

Chai, D. K.

D. G. Kim, J. H. Choi, D. K. Chai, and S. W. Kim, “Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires,” ACS Appl. Mater. Interfaces 10(35), 29730–29740 (2018).
[Crossref]

Chaki, T. K.

S. Mondal, L. Nayak, M. Rahaman, A. Aldalbahi, T. K. Chaki, D. Khastgir, and N. C. Das, “An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites,” Composites, Part B 109, 155–169 (2017).
[Crossref]

Chakraborty, G.

S. Mondal, S. Ghosh, S. Ganguly, P. Das, R. Ravindren, S. Sit, G. Chakraborty, and N. C. Das, “Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance,” Mater. Res. Express 4(10), 105039 (2017).
[Crossref]

Chen, L.

Y. Lou, Y. Ye, D. Pu, S. Shen, and L. Chen, “A large-scale diffractive glasses-free 3D display,” SPIE Newsroom 27 October 2014.

Chen, S. Y.

Chen, T.

T. Chen, Y. H. Xue, A. K. Roy, and L. M. Dai, “Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrode,” ACS Nano 8(1), 1039–1046 (2014).
[Crossref]

Chen, T. L.

R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq−1),” Nat. Commun. 7(1), 13771 (2016).
[Crossref]

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 96(4), 041109 (2010).
[Crossref]

Chen, X. L.

X. L. Chen, W. R. Guo, L. M. Xie, C. T. Wei, J. Y. Zhuang, W. M. Su, and Z. Cui, “Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications,” ACS Appl. Mater. Interfaces 9(42), 37048–37054 (2017).
[Crossref]

Chen, Y.

Y. Chen, H. B. Zhang, Y. B. Yang, M. Wang, A. Y. Cao, and Z. Z. Yu, “High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding,” Adv. Funct. Mater. 26(3), 447–455 (2016).
[Crossref]

Chen, Y. S.

J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Chen, Z. P.

Z. P. Chen, C. Xu, C. Q. Ma, W. C. Ren, and H. M. Cheng, “Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding,” Adv. Mater. 25(9), 1296–1300 (2013).
[Crossref]

Cheng, H. M.

Z. P. Chen, C. Xu, C. Q. Ma, W. C. Ren, and H. M. Cheng, “Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding,” Adv. Mater. 25(9), 1296–1300 (2013).
[Crossref]

Cheng, L. F.

X. W. Yin, L. Kong, L. T. Zhang, L. F. Cheng, N. Travitzky, and P. Greil, “Electromagnetic properties of Si–C–N based ceramics and composites,” Int. Mater. Rev. 59(6), 326–355 (2014).
[Crossref]

Cho, H.

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable wlectronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

Cho, S.

S. Kang, S. Cho, R. Shanker, H. Lee, J. Park, D. S. Um, Y. Lee, and H. Ko, “Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones,” Sci. Adv. 4(8), eaas8772 (2018).
[Crossref]

Choi, H. Y.

H. Y. Choi, T. W. Lee, S. E. Lee, J. D. Lim, and Y. G. Jeong, “Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements,” Compos. Sci. Technol. 150, 45–53 (2017).
[Crossref]

Choi, J. B.

J. Kang, D. Kim, Y. Kim, J. B. Choi, B. H. Hong, and S. W. Kim, “High-performance near-field electromagnetic wave attenuation in ultra-thin and transparent graphene films,” 2D Mater. 4(2), 025003 (2017).
[Crossref]

Choi, J. H.

D. G. Kim, J. H. Choi, D. K. Chai, and S. W. Kim, “Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires,” ACS Appl. Mater. Interfaces 10(35), 29730–29740 (2018).
[Crossref]

Choudhary, V.

P. Verma, P. Saini, and V. Choudhary, “Designing of carbon nanotube/polymer composites using melt recirculation approach: Effect of aspect ratio on mechanical, electrical and EMI shielding response,” Mater. Des. 88, 269–277 (2015).
[Crossref]

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2-3), 919–926 (2009).
[Crossref]

Choudhury, B.

P. Kumar, P. V. Reddy, B. Choudhury, P. Chowdhury, and H. C. Barshilia, “Transparent conductive Ta/Al/Ta-grid electrode for optoelectronic and electromagnetic interference shielding applications,” Thin Solid Films 612, 350–357 (2016).
[Crossref]

Chowdhury, P.

P. Kumar, P. V. Reddy, B. Choudhury, P. Chowdhury, and H. C. Barshilia, “Transparent conductive Ta/Al/Ta-grid electrode for optoelectronic and electromagnetic interference shielding applications,” Thin Solid Films 612, 350–357 (2016).
[Crossref]

Crawford, G. P.

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, and G. P. Crawford, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

Cui, Z.

X. L. Chen, W. R. Guo, L. M. Xie, C. T. Wei, J. Y. Zhuang, W. M. Su, and Z. Cui, “Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications,” ACS Appl. Mater. Interfaces 9(42), 37048–37054 (2017).
[Crossref]

Dai, L. M.

T. Chen, Y. H. Xue, A. K. Roy, and L. M. Dai, “Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrode,” ACS Nano 8(1), 1039–1046 (2014).
[Crossref]

Das, N. C.

R. Ravindren, S. Mondal, K. Nath, and N. C. Das, “Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites,” Composites, Part A 118, 75–89 (2019).
[Crossref]

R. Ravindren, S. Mondal, K. Nath, and N. C. Das, “Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites,” Composites, Part B 164, 559–569 (2019).
[Crossref]

S. Ghosh, S. Mondal, S. Ganguly, S. Remanan, N. Singha, and N. C. Das, “Carbon Nanostructures Based Mechanically Robust Conducting Cotton Fabric for Improved Electromagnetic Interference Shielding,” Fibers Polym. 19(5), 1064–1073 (2018).
[Crossref]

S. Ghosh, S. Remanan, S. Mondal, S. Ganguly, P. Das, N. Singha, and N. C. Das, “An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding,” Chem. Eng. J. 344, 138–154 (2018).
[Crossref]

S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana, P. K. Maji, N. Singha, and N. C. Das, “Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials,” J. Mater. Sci.: Mater. Electron. 29(12), 10177–10189 (2018).
[Crossref]

S. Ganguly, P. Bhawal, R. Ravindren, and N. C. Das, “Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review,” J. Nanosci. Nanotechnol. 18(11), 7641–7669 (2018).
[Crossref]

S. Mondal, S. Ghosh, S. Ganguly, P. Das, R. Ravindren, S. Sit, G. Chakraborty, and N. C. Das, “Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance,” Mater. Res. Express 4(10), 105039 (2017).
[Crossref]

S. Mondal, L. Nayak, M. Rahaman, A. Aldalbahi, T. K. Chaki, D. Khastgir, and N. C. Das, “An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites,” Composites, Part B 109, 155–169 (2017).
[Crossref]

N. C. Das, Y. Y. Liu, K. K. Yang, W. Q. Peng, S. D. Maiti, and H. Wang, “Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding,” Polym. Eng. Sci. 49(8), 1627–1634 (2009).
[Crossref]

Das, P.

S. Ghosh, S. Remanan, S. Mondal, S. Ganguly, P. Das, N. Singha, and N. C. Das, “An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding,” Chem. Eng. J. 344, 138–154 (2018).
[Crossref]

S. Mondal, S. Ghosh, S. Ganguly, P. Das, R. Ravindren, S. Sit, G. Chakraborty, and N. C. Das, “Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance,” Mater. Res. Express 4(10), 105039 (2017).
[Crossref]

Deng, J. H.

C. P. Zhang, A. Khan, J. X. Cai, C. W. Liang, J. H. Deng, S. Y. Huang, G. X. Li, and W. D. Li, “Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film,” ACS Appl. Mater. Interfaces 10(24), 21009–21017 (2018).
[Crossref]

Dhawan, S. K.

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2-3), 919–926 (2009).
[Crossref]

Ding, X. M.

Z. G. Lu, L. M. Ma, J. B. Tan, H. Y. Wang, and X. M. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
[Crossref]

L. M. Ma, Z. G. Lu, J. B. Tan, J. Liu, X. M. Ding, N. Black, T. Y. Li, J. Gallop, and L. Hao, “Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene,” ACS Appl. Mater. Interfaces 9(39), 34221–34229 (2017).
[Crossref]

Dong, Y. C.

M. J. Hu, J. F. Gao, Y. C. Dong, K. Li, G. C. Shan, S. L. Yang, and R. K. Y. Li, “Flexible transparent PES/Silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Duer, S.

J. Paś and S. Duer, “Determination of the impact indicators of electromagnetic interferences on computer information systems,” Neural Comput & Appl. 23(7-8), 2143–2157 (2013).
[Crossref]

Ellmer, K.

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide,” Thin Solid Films 516(14), 4620–4627 (2008).
[Crossref]

Fang, F.

F. Fang, Y. Q. Li, H. M. Xiao, N. Hu, and S. Y. Fu, “Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material,” J. Mater. Chem. C 4(19), 4193–4203 (2016).
[Crossref]

Feng, L. M.

K. Zhang, G. H. Li, L. M. Feng, N. Wang, J. Guo, K. Sun, K. X. Yu, J. B. Zeng, T. X. Li, Z. H. Guo, and M. Wang, “Ultralow percolation threshold and enhanced electromagnetic interference shielding inpoly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks,” J. Mater. Chem. C 5(36), 9359–9369 (2017).
[Crossref]

Fu, H.

Y. Han, J. Lin, Y. X. Liu, H. Fu, Y. Ma, P. Jin, and J. B. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

Fu, S. Y.

F. Fang, Y. Q. Li, H. M. Xiao, N. Hu, and S. Y. Fu, “Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material,” J. Mater. Chem. C 4(19), 4193–4203 (2016).
[Crossref]

Gallop, J.

L. M. Ma, Z. G. Lu, J. B. Tan, J. Liu, X. M. Ding, N. Black, T. Y. Li, J. Gallop, and L. Hao, “Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene,” ACS Appl. Mater. Interfaces 9(39), 34221–34229 (2017).
[Crossref]

Ganguly, S.

S. Ganguly, P. Bhawal, R. Ravindren, and N. C. Das, “Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review,” J. Nanosci. Nanotechnol. 18(11), 7641–7669 (2018).
[Crossref]

S. Ghosh, S. Remanan, S. Mondal, S. Ganguly, P. Das, N. Singha, and N. C. Das, “An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding,” Chem. Eng. J. 344, 138–154 (2018).
[Crossref]

S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana, P. K. Maji, N. Singha, and N. C. Das, “Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials,” J. Mater. Sci.: Mater. Electron. 29(12), 10177–10189 (2018).
[Crossref]

S. Ghosh, S. Mondal, S. Ganguly, S. Remanan, N. Singha, and N. C. Das, “Carbon Nanostructures Based Mechanically Robust Conducting Cotton Fabric for Improved Electromagnetic Interference Shielding,” Fibers Polym. 19(5), 1064–1073 (2018).
[Crossref]

S. Mondal, S. Ghosh, S. Ganguly, P. Das, R. Ravindren, S. Sit, G. Chakraborty, and N. C. Das, “Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance,” Mater. Res. Express 4(10), 105039 (2017).
[Crossref]

Gao, H. J.

J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Gao, J. F.

M. J. Hu, J. F. Gao, Y. C. Dong, K. Li, G. C. Shan, S. L. Yang, and R. K. Y. Li, “Flexible transparent PES/Silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Ghosh, D. S.

R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq−1),” Nat. Commun. 7(1), 13771 (2016).
[Crossref]

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 96(4), 041109 (2010).
[Crossref]

Ghosh, S.

S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana, P. K. Maji, N. Singha, and N. C. Das, “Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials,” J. Mater. Sci.: Mater. Electron. 29(12), 10177–10189 (2018).
[Crossref]

S. Ghosh, S. Mondal, S. Ganguly, S. Remanan, N. Singha, and N. C. Das, “Carbon Nanostructures Based Mechanically Robust Conducting Cotton Fabric for Improved Electromagnetic Interference Shielding,” Fibers Polym. 19(5), 1064–1073 (2018).
[Crossref]

S. Ghosh, S. Remanan, S. Mondal, S. Ganguly, P. Das, N. Singha, and N. C. Das, “An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding,” Chem. Eng. J. 344, 138–154 (2018).
[Crossref]

S. Mondal, S. Ghosh, S. Ganguly, P. Das, R. Ravindren, S. Sit, G. Chakraborty, and N. C. Das, “Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance,” Mater. Res. Express 4(10), 105039 (2017).
[Crossref]

Gogotsi, Y.

F. Shahzad, M. Alhabed, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, “Electromagnetic interference shielding with 2D transition metal carbides (MXenes),” Science 353(6304), 1137–1140 (2016).
[Crossref]

Gong, X.

B. Zhao, N. Qi, K. Q. Zhang, and X. Gong, “Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4:Yb,Er nanocomposites with metal-enhanced fluorescence behavior,” Phys. Chem. Chem. Phys. 18(22), 15289–15294 (2016).
[Crossref]

Greil, P.

X. W. Yin, L. Kong, L. T. Zhang, L. F. Cheng, N. Travitzky, and P. Greil, “Electromagnetic properties of Si–C–N based ceramics and composites,” Int. Mater. Rev. 59(6), 326–355 (2014).
[Crossref]

Guo, J.

K. Zhang, G. H. Li, L. M. Feng, N. Wang, J. Guo, K. Sun, K. X. Yu, J. B. Zeng, T. X. Li, Z. H. Guo, and M. Wang, “Ultralow percolation threshold and enhanced electromagnetic interference shielding inpoly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks,” J. Mater. Chem. C 5(36), 9359–9369 (2017).
[Crossref]

Guo, L. J.

A. Khan, S. Lee, T. Jang, Z. Xiong, C. P. Zhang, J. Y. Tang, L. J. Guo, and W. D. Li, “High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process,” Small 12(22), 3021–3030 (2016).
[Crossref]

Guo, W. R.

X. L. Chen, W. R. Guo, L. M. Xie, C. T. Wei, J. Y. Zhuang, W. M. Su, and Z. Cui, “Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications,” ACS Appl. Mater. Interfaces 9(42), 37048–37054 (2017).
[Crossref]

Guo, Z. H.

K. Zhang, G. H. Li, L. M. Feng, N. Wang, J. Guo, K. Sun, K. X. Yu, J. B. Zeng, T. X. Li, Z. H. Guo, and M. Wang, “Ultralow percolation threshold and enhanced electromagnetic interference shielding inpoly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks,” J. Mater. Chem. C 5(36), 9359–9369 (2017).
[Crossref]

Ha, I.

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable wlectronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

Han, J. C.

J. C. Han, X. N. Wang, Y. F. Qiu, J. Q. Zhu, and P. A. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

Han, L.

Y. Han, Y. X. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
[Crossref]

Han, Y.

Y. Han, Y. X. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
[Crossref]

Y. Han, J. Lin, Y. X. Liu, H. Fu, Y. Ma, P. Jin, and J. B. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

Hao, L.

L. M. Ma, Z. G. Lu, J. B. Tan, J. Liu, X. M. Ding, N. Black, T. Y. Li, J. Gallop, and L. Hao, “Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene,” ACS Appl. Mater. Interfaces 9(39), 34221–34229 (2017).
[Crossref]

Hatter, C. B.

F. Shahzad, M. Alhabed, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, “Electromagnetic interference shielding with 2D transition metal carbides (MXenes),” Science 353(6304), 1137–1140 (2016).
[Crossref]

Hong, B. H.

J. Kang, D. Kim, Y. Kim, J. B. Choi, B. H. Hong, and S. W. Kim, “High-performance near-field electromagnetic wave attenuation in ultra-thin and transparent graphene films,” 2D Mater. 4(2), 025003 (2017).
[Crossref]

Hong, S.

J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, and S. H. Ko, “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale 9(5), 1978–1985 (2017).
[Crossref]

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable wlectronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

Hong, S. M.

F. Shahzad, M. Alhabed, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, “Electromagnetic interference shielding with 2D transition metal carbides (MXenes),” Science 353(6304), 1137–1140 (2016).
[Crossref]

Hu, M. J.

M. J. Hu, J. F. Gao, Y. C. Dong, K. Li, G. C. Shan, S. L. Yang, and R. K. Y. Li, “Flexible transparent PES/Silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Hu, N.

F. Fang, Y. Q. Li, H. M. Xiao, N. Hu, and S. Y. Fu, “Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material,” J. Mater. Chem. C 4(19), 4193–4203 (2016).
[Crossref]

Hu, P. A.

J. C. Han, X. N. Wang, Y. F. Qiu, J. Q. Zhu, and P. A. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

Huang, S. Y.

C. P. Zhang, A. Khan, J. X. Cai, C. W. Liang, J. H. Deng, S. Y. Huang, G. X. Li, and W. D. Li, “Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film,” ACS Appl. Mater. Interfaces 10(24), 21009–21017 (2018).
[Crossref]

Huang, Y.

Y. Huang, X. P. Bai, M. Zhou, S. Y. Liao, Z. F. Yu, Y. P. Wang, and H. Wu, “Large-scale spinning of silver nanofibers as flexible and reliable conductors,” Nano Lett. 16(9), 5846–5851 (2016).
[Crossref]

J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Hwang, H.

J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, and S. H. Ko, “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale 9(5), 1978–1985 (2017).
[Crossref]

Jana, S.

S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana, P. K. Maji, N. Singha, and N. C. Das, “Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials,” J. Mater. Sci.: Mater. Electron. 29(12), 10177–10189 (2018).
[Crossref]

Jang, T.

A. Khan, S. Lee, T. Jang, Z. Xiong, C. P. Zhang, J. Y. Tang, L. J. Guo, and W. D. Li, “High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process,” Small 12(22), 3021–3030 (2016).
[Crossref]

Jeong, Y. G.

H. Y. Choi, T. W. Lee, S. E. Lee, J. D. Lim, and Y. G. Jeong, “Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements,” Compos. Sci. Technol. 150, 45–53 (2017).
[Crossref]

Jia, L. C.

L. C. Jia, D. X. Yan, X. F. Liu, R. J. Ma, H. Y. Wu, and Z. M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

Jin, P.

Y. Han, Y. X. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
[Crossref]

Y. Han, J. Lin, Y. X. Liu, H. Fu, Y. Ma, P. Jin, and J. B. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

Jung, J.

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable wlectronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

Ka, Y.

J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, and S. H. Ko, “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale 9(5), 1978–1985 (2017).
[Crossref]

Kang, J.

J. Kang, D. Kim, Y. Kim, J. B. Choi, B. H. Hong, and S. W. Kim, “High-performance near-field electromagnetic wave attenuation in ultra-thin and transparent graphene films,” 2D Mater. 4(2), 025003 (2017).
[Crossref]

Kang, S.

S. Kang, S. Cho, R. Shanker, H. Lee, J. Park, D. S. Um, Y. Lee, and H. Ko, “Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones,” Sci. Adv. 4(8), eaas8772 (2018).
[Crossref]

Khan, A.

C. P. Zhang, A. Khan, J. X. Cai, C. W. Liang, J. H. Deng, S. Y. Huang, G. X. Li, and W. D. Li, “Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film,” ACS Appl. Mater. Interfaces 10(24), 21009–21017 (2018).
[Crossref]

A. Khan, S. Lee, T. Jang, Z. Xiong, C. P. Zhang, J. Y. Tang, L. J. Guo, and W. D. Li, “High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process,” Small 12(22), 3021–3030 (2016).
[Crossref]

Khastgir, D.

S. Mondal, L. Nayak, M. Rahaman, A. Aldalbahi, T. K. Chaki, D. Khastgir, and N. C. Das, “An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites,” Composites, Part B 109, 155–169 (2017).
[Crossref]

Kim, C.

J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, and S. H. Ko, “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale 9(5), 1978–1985 (2017).
[Crossref]

Kim, D.

J. Kang, D. Kim, Y. Kim, J. B. Choi, B. H. Hong, and S. W. Kim, “High-performance near-field electromagnetic wave attenuation in ultra-thin and transparent graphene films,” 2D Mater. 4(2), 025003 (2017).
[Crossref]

Kim, D. G.

D. G. Kim, J. H. Choi, D. K. Chai, and S. W. Kim, “Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires,” ACS Appl. Mater. Interfaces 10(35), 29730–29740 (2018).
[Crossref]

Kim, D. H.

D. H. Kim, Y. M. Kim, and J. W. Kim, “Transparent and flexible film for shielding electromagnetic interference,” Mater. Des. 89, 703–707 (2016).
[Crossref]

Kim, H.

M. A. Shinde, K. Mallikarjuna, J. Noh, and H. Kim, “Highly stable silver nanowires based bilayered flexible transparent conductive electrode,” Thin Solid Films 660, 447–454 (2018).
[Crossref]

Kim, J. W.

D. H. Kim, Y. M. Kim, and J. W. Kim, “Transparent and flexible film for shielding electromagnetic interference,” Mater. Des. 89, 703–707 (2016).
[Crossref]

Kim, K. K.

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable wlectronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

Kim, S. W.

D. G. Kim, J. H. Choi, D. K. Chai, and S. W. Kim, “Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires,” ACS Appl. Mater. Interfaces 10(35), 29730–29740 (2018).
[Crossref]

J. Kang, D. Kim, Y. Kim, J. B. Choi, B. H. Hong, and S. W. Kim, “High-performance near-field electromagnetic wave attenuation in ultra-thin and transparent graphene films,” 2D Mater. 4(2), 025003 (2017).
[Crossref]

Kim, Y.

J. Kang, D. Kim, Y. Kim, J. B. Choi, B. H. Hong, and S. W. Kim, “High-performance near-field electromagnetic wave attenuation in ultra-thin and transparent graphene films,” 2D Mater. 4(2), 025003 (2017).
[Crossref]

Kim, Y. M.

D. H. Kim, Y. M. Kim, and J. W. Kim, “Transparent and flexible film for shielding electromagnetic interference,” Mater. Des. 89, 703–707 (2016).
[Crossref]

Ko, H.

S. Kang, S. Cho, R. Shanker, H. Lee, J. Park, D. S. Um, Y. Lee, and H. Ko, “Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones,” Sci. Adv. 4(8), eaas8772 (2018).
[Crossref]

Ko, S. H.

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable wlectronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, and S. H. Ko, “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale 9(5), 1978–1985 (2017).
[Crossref]

Kong, L.

X. W. Yin, L. Kong, L. T. Zhang, L. F. Cheng, N. Travitzky, and P. Greil, “Electromagnetic properties of Si–C–N based ceramics and composites,” Int. Mater. Rev. 59(6), 326–355 (2014).
[Crossref]

Kong, R.

H. Y. Wang, Z. G. Lu, J. B. Tan, Y. L. Zhang, J. X. Cao, Y. S. Liu, R. Kong, and S. Lin, “Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding,” Thin Solid Films 662, 76–82 (2018).
[Crossref]

Koo, C. M.

F. Shahzad, M. Alhabed, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, “Electromagnetic interference shielding with 2D transition metal carbides (MXenes),” Science 353(6304), 1137–1140 (2016).
[Crossref]

Kumar, P.

P. Kumar, P. V. Reddy, B. Choudhury, P. Chowdhury, and H. C. Barshilia, “Transparent conductive Ta/Al/Ta-grid electrode for optoelectronic and electromagnetic interference shielding applications,” Thin Solid Films 612, 350–357 (2016).
[Crossref]

Kwon, J.

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable wlectronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

Kwon, Y.

J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, and S. H. Ko, “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale 9(5), 1978–1985 (2017).
[Crossref]

Lee, C.

J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, and S. H. Ko, “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale 9(5), 1978–1985 (2017).
[Crossref]

Lee, H.

S. Kang, S. Cho, R. Shanker, H. Lee, J. Park, D. S. Um, Y. Lee, and H. Ko, “Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones,” Sci. Adv. 4(8), eaas8772 (2018).
[Crossref]

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable wlectronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

Lee, J.

J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, and S. H. Ko, “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale 9(5), 1978–1985 (2017).
[Crossref]

Lee, S.

A. Khan, S. Lee, T. Jang, Z. Xiong, C. P. Zhang, J. Y. Tang, L. J. Guo, and W. D. Li, “High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process,” Small 12(22), 3021–3030 (2016).
[Crossref]

Lee, S. E.

H. Y. Choi, T. W. Lee, S. E. Lee, J. D. Lim, and Y. G. Jeong, “Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements,” Compos. Sci. Technol. 150, 45–53 (2017).
[Crossref]

Lee, T. W.

H. Y. Choi, T. W. Lee, S. E. Lee, J. D. Lim, and Y. G. Jeong, “Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements,” Compos. Sci. Technol. 150, 45–53 (2017).
[Crossref]

Lee, Y.

S. Kang, S. Cho, R. Shanker, H. Lee, J. Park, D. S. Um, Y. Lee, and H. Ko, “Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones,” Sci. Adv. 4(8), eaas8772 (2018).
[Crossref]

Li, B.

D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, and Z. M. Li, “Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding,” Adv. Funct. Mater. 25(4), 559–566 (2015).
[Crossref]

Li, G. H.

K. Zhang, G. H. Li, L. M. Feng, N. Wang, J. Guo, K. Sun, K. X. Yu, J. B. Zeng, T. X. Li, Z. H. Guo, and M. Wang, “Ultralow percolation threshold and enhanced electromagnetic interference shielding inpoly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks,” J. Mater. Chem. C 5(36), 9359–9369 (2017).
[Crossref]

Li, G. X.

C. P. Zhang, A. Khan, J. X. Cai, C. W. Liang, J. H. Deng, S. Y. Huang, G. X. Li, and W. D. Li, “Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film,” ACS Appl. Mater. Interfaces 10(24), 21009–21017 (2018).
[Crossref]

Li, K.

M. J. Hu, J. F. Gao, Y. C. Dong, K. Li, G. C. Shan, S. L. Yang, and R. K. Y. Li, “Flexible transparent PES/Silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Li, R. K. Y.

M. J. Hu, J. F. Gao, Y. C. Dong, K. Li, G. C. Shan, S. L. Yang, and R. K. Y. Li, “Flexible transparent PES/Silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Li, T. X.

K. Zhang, G. H. Li, L. M. Feng, N. Wang, J. Guo, K. Sun, K. X. Yu, J. B. Zeng, T. X. Li, Z. H. Guo, and M. Wang, “Ultralow percolation threshold and enhanced electromagnetic interference shielding inpoly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks,” J. Mater. Chem. C 5(36), 9359–9369 (2017).
[Crossref]

Li, T. Y.

L. M. Ma, Z. G. Lu, J. B. Tan, J. Liu, X. M. Ding, N. Black, T. Y. Li, J. Gallop, and L. Hao, “Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene,” ACS Appl. Mater. Interfaces 9(39), 34221–34229 (2017).
[Crossref]

Li, W. D.

C. P. Zhang, A. Khan, J. X. Cai, C. W. Liang, J. H. Deng, S. Y. Huang, G. X. Li, and W. D. Li, “Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film,” ACS Appl. Mater. Interfaces 10(24), 21009–21017 (2018).
[Crossref]

A. Khan, S. Lee, T. Jang, Z. Xiong, C. P. Zhang, J. Y. Tang, L. J. Guo, and W. D. Li, “High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process,” Small 12(22), 3021–3030 (2016).
[Crossref]

Li, Y. Q.

F. Fang, Y. Q. Li, H. M. Xiao, N. Hu, and S. Y. Fu, “Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material,” J. Mater. Chem. C 4(19), 4193–4203 (2016).
[Crossref]

Li, Z. M.

L. C. Jia, D. X. Yan, X. F. Liu, R. J. Ma, H. Y. Wu, and Z. M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, and Z. M. Li, “Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding,” Adv. Funct. Mater. 25(4), 559–566 (2015).
[Crossref]

Liang, C. W.

C. P. Zhang, A. Khan, J. X. Cai, C. W. Liang, J. H. Deng, S. Y. Huang, G. X. Li, and W. D. Li, “Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film,” ACS Appl. Mater. Interfaces 10(24), 21009–21017 (2018).
[Crossref]

Liang, J. J.

J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Liao, S. Y.

Y. Huang, X. P. Bai, M. Zhou, S. Y. Liao, Z. F. Yu, Y. P. Wang, and H. Wu, “Large-scale spinning of silver nanofibers as flexible and reliable conductors,” Nano Lett. 16(9), 5846–5851 (2016).
[Crossref]

Lim, J. D.

H. Y. Choi, T. W. Lee, S. E. Lee, J. D. Lim, and Y. G. Jeong, “Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements,” Compos. Sci. Technol. 150, 45–53 (2017).
[Crossref]

Lin, J.

Y. Han, Y. X. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
[Crossref]

Y. Han, J. Lin, Y. X. Liu, H. Fu, Y. Ma, P. Jin, and J. B. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

Lin, S.

H. Y. Wang, Z. G. Lu, J. B. Tan, Y. L. Zhang, J. X. Cao, Y. S. Liu, R. Kong, and S. Lin, “Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding,” Thin Solid Films 662, 76–82 (2018).
[Crossref]

Z. G. Lu, H. Y. Wang, J. B. Tan, L. M. Ma, and S. Lin, “Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays,” Opt. Lett. 41(9), 1941–1944 (2016).
[Crossref]

Liu, J.

L. M. Ma, Z. G. Lu, J. B. Tan, J. Liu, X. M. Ding, N. Black, T. Y. Li, J. Gallop, and L. Hao, “Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene,” ACS Appl. Mater. Interfaces 9(39), 34221–34229 (2017).
[Crossref]

Liu, X. F.

L. C. Jia, D. X. Yan, X. F. Liu, R. J. Ma, H. Y. Wu, and Z. M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

Liu, Y. H.

Liu, Y. S.

H. Y. Wang, Z. G. Lu, J. B. Tan, Y. L. Zhang, J. X. Cao, Y. S. Liu, R. Kong, and S. Lin, “Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding,” Thin Solid Films 662, 76–82 (2018).
[Crossref]

Liu, Y. X.

Y. Han, Y. X. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
[Crossref]

Y. Han, J. Lin, Y. X. Liu, H. Fu, Y. Ma, P. Jin, and J. B. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

Liu, Y. Y.

N. C. Das, Y. Y. Liu, K. K. Yang, W. Q. Peng, S. D. Maiti, and H. Wang, “Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding,” Polym. Eng. Sci. 49(8), 1627–1634 (2009).
[Crossref]

Liu, Z. F.

J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Lou, Y.

Y. Lou, Y. Ye, D. Pu, S. Shen, and L. Chen, “A large-scale diffractive glasses-free 3D display,” SPIE Newsroom 27 October 2014.

Lu, Z. G.

H. Y. Wang, Z. G. Lu, J. B. Tan, Y. L. Zhang, J. X. Cao, Y. S. Liu, R. Kong, and S. Lin, “Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding,” Thin Solid Films 662, 76–82 (2018).
[Crossref]

Z. G. Lu, L. M. Ma, J. B. Tan, H. Y. Wang, and X. M. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
[Crossref]

L. M. Ma, Z. G. Lu, J. B. Tan, J. Liu, X. M. Ding, N. Black, T. Y. Li, J. Gallop, and L. Hao, “Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene,” ACS Appl. Mater. Interfaces 9(39), 34221–34229 (2017).
[Crossref]

H. Y. Wang, Z. G. Lu, and J. B. Tan, “Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays,” Opt. Express 24(20), 22989–23000 (2016).
[Crossref]

Z. G. Lu, H. Y. Wang, J. B. Tan, L. M. Ma, and S. Lin, “Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays,” Opt. Lett. 41(9), 1941–1944 (2016).
[Crossref]

Ma, C. Q.

Z. P. Chen, C. Xu, C. Q. Ma, W. C. Ren, and H. M. Cheng, “Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding,” Adv. Mater. 25(9), 1296–1300 (2013).
[Crossref]

Ma, J. J.

J. J. Ma, M. S. Zhang, and K. Wang, “Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding,” ACS Appl. Mater. Interfaces 7(1), 563–576 (2015).
[Crossref]

Ma, L. M.

Z. G. Lu, L. M. Ma, J. B. Tan, H. Y. Wang, and X. M. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
[Crossref]

L. M. Ma, Z. G. Lu, J. B. Tan, J. Liu, X. M. Ding, N. Black, T. Y. Li, J. Gallop, and L. Hao, “Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene,” ACS Appl. Mater. Interfaces 9(39), 34221–34229 (2017).
[Crossref]

Z. G. Lu, H. Y. Wang, J. B. Tan, L. M. Ma, and S. Lin, “Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays,” Opt. Lett. 41(9), 1941–1944 (2016).
[Crossref]

Ma, R. J.

L. C. Jia, D. X. Yan, X. F. Liu, R. J. Ma, H. Y. Wu, and Z. M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

Ma, Y.

Y. Han, J. Lin, Y. X. Liu, H. Fu, Y. Ma, P. Jin, and J. B. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

Ma, Y. F.

J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Mahmoodi, M.

M. Mahmoodi, M. Arjmand, U. Sundararaj, and S. Park, “The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites,” Carbon 50(4), 1455–1464 (2012).
[Crossref]

Maiti, S. D.

N. C. Das, Y. Y. Liu, K. K. Yang, W. Q. Peng, S. D. Maiti, and H. Wang, “Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding,” Polym. Eng. Sci. 49(8), 1627–1634 (2009).
[Crossref]

Maji, P. K.

S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana, P. K. Maji, N. Singha, and N. C. Das, “Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials,” J. Mater. Sci.: Mater. Electron. 29(12), 10177–10189 (2018).
[Crossref]

Mallikarjuna, K.

M. A. Shinde, K. Mallikarjuna, J. Noh, and H. Kim, “Highly stable silver nanowires based bilayered flexible transparent conductive electrode,” Thin Solid Films 660, 447–454 (2018).
[Crossref]

Maniyara, R. A.

R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq−1),” Nat. Commun. 7(1), 13771 (2016).
[Crossref]

Mathur, R. B.

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2-3), 919–926 (2009).
[Crossref]

Mientus, R.

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide,” Thin Solid Films 516(14), 4620–4627 (2008).
[Crossref]

Mkhitaryan, V. K.

R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq−1),” Nat. Commun. 7(1), 13771 (2016).
[Crossref]

Mondal, S.

R. Ravindren, S. Mondal, K. Nath, and N. C. Das, “Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites,” Composites, Part A 118, 75–89 (2019).
[Crossref]

R. Ravindren, S. Mondal, K. Nath, and N. C. Das, “Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites,” Composites, Part B 164, 559–569 (2019).
[Crossref]

S. Ghosh, S. Remanan, S. Mondal, S. Ganguly, P. Das, N. Singha, and N. C. Das, “An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding,” Chem. Eng. J. 344, 138–154 (2018).
[Crossref]

S. Ghosh, S. Mondal, S. Ganguly, S. Remanan, N. Singha, and N. C. Das, “Carbon Nanostructures Based Mechanically Robust Conducting Cotton Fabric for Improved Electromagnetic Interference Shielding,” Fibers Polym. 19(5), 1064–1073 (2018).
[Crossref]

S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana, P. K. Maji, N. Singha, and N. C. Das, “Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials,” J. Mater. Sci.: Mater. Electron. 29(12), 10177–10189 (2018).
[Crossref]

S. Mondal, S. Ghosh, S. Ganguly, P. Das, R. Ravindren, S. Sit, G. Chakraborty, and N. C. Das, “Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance,” Mater. Res. Express 4(10), 105039 (2017).
[Crossref]

S. Mondal, L. Nayak, M. Rahaman, A. Aldalbahi, T. K. Chaki, D. Khastgir, and N. C. Das, “An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites,” Composites, Part B 109, 155–169 (2017).
[Crossref]

Moon, H.

J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, and S. H. Ko, “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale 9(5), 1978–1985 (2017).
[Crossref]

Nath, K.

R. Ravindren, S. Mondal, K. Nath, and N. C. Das, “Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites,” Composites, Part B 164, 559–569 (2019).
[Crossref]

R. Ravindren, S. Mondal, K. Nath, and N. C. Das, “Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites,” Composites, Part A 118, 75–89 (2019).
[Crossref]

Nayak, L.

S. Mondal, L. Nayak, M. Rahaman, A. Aldalbahi, T. K. Chaki, D. Khastgir, and N. C. Das, “An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites,” Composites, Part B 109, 155–169 (2017).
[Crossref]

Noh, J.

M. A. Shinde, K. Mallikarjuna, J. Noh, and H. Kim, “Highly stable silver nanowires based bilayered flexible transparent conductive electrode,” Thin Solid Films 660, 447–454 (2018).
[Crossref]

Paine, D. C.

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, and G. P. Crawford, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

Pang, H.

D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, and Z. M. Li, “Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding,” Adv. Funct. Mater. 25(4), 559–566 (2015).
[Crossref]

Park, J.

S. Kang, S. Cho, R. Shanker, H. Lee, J. Park, D. S. Um, Y. Lee, and H. Ko, “Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones,” Sci. Adv. 4(8), eaas8772 (2018).
[Crossref]

Park, S.

M. Mahmoodi, M. Arjmand, U. Sundararaj, and S. Park, “The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites,” Carbon 50(4), 1455–1464 (2012).
[Crossref]

Pas, J.

J. Paś and S. Duer, “Determination of the impact indicators of electromagnetic interferences on computer information systems,” Neural Comput & Appl. 23(7-8), 2143–2157 (2013).
[Crossref]

Peng, W. Q.

N. C. Das, Y. Y. Liu, K. K. Yang, W. Q. Peng, S. D. Maiti, and H. Wang, “Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding,” Polym. Eng. Sci. 49(8), 1627–1634 (2009).
[Crossref]

Pruneri, V.

R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq−1),” Nat. Commun. 7(1), 13771 (2016).
[Crossref]

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 96(4), 041109 (2010).
[Crossref]

Pu, D.

Y. Lou, Y. Ye, D. Pu, S. Shen, and L. Chen, “A large-scale diffractive glasses-free 3D display,” SPIE Newsroom 27 October 2014.

Qi, N.

B. Zhao, N. Qi, K. Q. Zhang, and X. Gong, “Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4:Yb,Er nanocomposites with metal-enhanced fluorescence behavior,” Phys. Chem. Chem. Phys. 18(22), 15289–15294 (2016).
[Crossref]

Qiu, Y. F.

J. C. Han, X. N. Wang, Y. F. Qiu, J. Q. Zhu, and P. A. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

Rahaman, M.

S. Mondal, L. Nayak, M. Rahaman, A. Aldalbahi, T. K. Chaki, D. Khastgir, and N. C. Das, “An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites,” Composites, Part B 109, 155–169 (2017).
[Crossref]

Ravindren, R.

R. Ravindren, S. Mondal, K. Nath, and N. C. Das, “Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites,” Composites, Part A 118, 75–89 (2019).
[Crossref]

R. Ravindren, S. Mondal, K. Nath, and N. C. Das, “Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites,” Composites, Part B 164, 559–569 (2019).
[Crossref]

S. Ganguly, P. Bhawal, R. Ravindren, and N. C. Das, “Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review,” J. Nanosci. Nanotechnol. 18(11), 7641–7669 (2018).
[Crossref]

S. Mondal, S. Ghosh, S. Ganguly, P. Das, R. Ravindren, S. Sit, G. Chakraborty, and N. C. Das, “Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance,” Mater. Res. Express 4(10), 105039 (2017).
[Crossref]

Reddy, P. V.

P. Kumar, P. V. Reddy, B. Choudhury, P. Chowdhury, and H. C. Barshilia, “Transparent conductive Ta/Al/Ta-grid electrode for optoelectronic and electromagnetic interference shielding applications,” Thin Solid Films 612, 350–357 (2016).
[Crossref]

Remanan, S.

S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana, P. K. Maji, N. Singha, and N. C. Das, “Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials,” J. Mater. Sci.: Mater. Electron. 29(12), 10177–10189 (2018).
[Crossref]

S. Ghosh, S. Remanan, S. Mondal, S. Ganguly, P. Das, N. Singha, and N. C. Das, “An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding,” Chem. Eng. J. 344, 138–154 (2018).
[Crossref]

S. Ghosh, S. Mondal, S. Ganguly, S. Remanan, N. Singha, and N. C. Das, “Carbon Nanostructures Based Mechanically Robust Conducting Cotton Fabric for Improved Electromagnetic Interference Shielding,” Fibers Polym. 19(5), 1064–1073 (2018).
[Crossref]

Ren, P. G.

D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, and Z. M. Li, “Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding,” Adv. Funct. Mater. 25(4), 559–566 (2015).
[Crossref]

Ren, W. C.

Z. P. Chen, C. Xu, C. Q. Ma, W. C. Ren, and H. M. Cheng, “Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding,” Adv. Mater. 25(9), 1296–1300 (2013).
[Crossref]

Roy, A. K.

T. Chen, Y. H. Xue, A. K. Roy, and L. M. Dai, “Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrode,” ACS Nano 8(1), 1039–1046 (2014).
[Crossref]

Sachsman, S. M.

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, and G. P. Crawford, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

Saini, P.

P. Verma, P. Saini, and V. Choudhary, “Designing of carbon nanotube/polymer composites using melt recirculation approach: Effect of aspect ratio on mechanical, electrical and EMI shielding response,” Mater. Des. 88, 269–277 (2015).
[Crossref]

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2-3), 919–926 (2009).
[Crossref]

Shahzad, F.

F. Shahzad, M. Alhabed, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, “Electromagnetic interference shielding with 2D transition metal carbides (MXenes),” Science 353(6304), 1137–1140 (2016).
[Crossref]

Shan, G. C.

M. J. Hu, J. F. Gao, Y. C. Dong, K. Li, G. C. Shan, S. L. Yang, and R. K. Y. Li, “Flexible transparent PES/Silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Shanker, R.

S. Kang, S. Cho, R. Shanker, H. Lee, J. Park, D. S. Um, Y. Lee, and H. Ko, “Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones,” Sci. Adv. 4(8), eaas8772 (2018).
[Crossref]

Shen, B.

B. Shen, W. T. Zhai, and W. G. Zheng, “Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
[Crossref]

Shen, S.

Y. Lou, Y. Ye, D. Pu, S. Shen, and L. Chen, “A large-scale diffractive glasses-free 3D display,” SPIE Newsroom 27 October 2014.

Shinde, M. A.

M. A. Shinde, K. Mallikarjuna, J. Noh, and H. Kim, “Highly stable silver nanowires based bilayered flexible transparent conductive electrode,” Thin Solid Films 660, 447–454 (2018).
[Crossref]

Singh, B. P.

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2-3), 919–926 (2009).
[Crossref]

Singha, N.

S. Ghosh, S. Mondal, S. Ganguly, S. Remanan, N. Singha, and N. C. Das, “Carbon Nanostructures Based Mechanically Robust Conducting Cotton Fabric for Improved Electromagnetic Interference Shielding,” Fibers Polym. 19(5), 1064–1073 (2018).
[Crossref]

S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana, P. K. Maji, N. Singha, and N. C. Das, “Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials,” J. Mater. Sci.: Mater. Electron. 29(12), 10177–10189 (2018).
[Crossref]

S. Ghosh, S. Remanan, S. Mondal, S. Ganguly, P. Das, N. Singha, and N. C. Das, “An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding,” Chem. Eng. J. 344, 138–154 (2018).
[Crossref]

Sit, S.

S. Mondal, S. Ghosh, S. Ganguly, P. Das, R. Ravindren, S. Sit, G. Chakraborty, and N. C. Das, “Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance,” Mater. Res. Express 4(10), 105039 (2017).
[Crossref]

Sparacin, D. K.

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, and G. P. Crawford, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

Su, S.

Su, W. M.

X. L. Chen, W. R. Guo, L. M. Xie, C. T. Wei, J. Y. Zhuang, W. M. Su, and Z. Cui, “Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications,” ACS Appl. Mater. Interfaces 9(42), 37048–37054 (2017).
[Crossref]

Sun, K.

K. Zhang, G. H. Li, L. M. Feng, N. Wang, J. Guo, K. Sun, K. X. Yu, J. B. Zeng, T. X. Li, Z. H. Guo, and M. Wang, “Ultralow percolation threshold and enhanced electromagnetic interference shielding inpoly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks,” J. Mater. Chem. C 5(36), 9359–9369 (2017).
[Crossref]

Sundararaj, U.

M. Mahmoodi, M. Arjmand, U. Sundararaj, and S. Park, “The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites,” Carbon 50(4), 1455–1464 (2012).
[Crossref]

Tan, J. B.

H. Y. Wang, Z. G. Lu, J. B. Tan, Y. L. Zhang, J. X. Cao, Y. S. Liu, R. Kong, and S. Lin, “Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding,” Thin Solid Films 662, 76–82 (2018).
[Crossref]

Z. G. Lu, L. M. Ma, J. B. Tan, H. Y. Wang, and X. M. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
[Crossref]

L. M. Ma, Z. G. Lu, J. B. Tan, J. Liu, X. M. Ding, N. Black, T. Y. Li, J. Gallop, and L. Hao, “Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene,” ACS Appl. Mater. Interfaces 9(39), 34221–34229 (2017).
[Crossref]

Z. G. Lu, H. Y. Wang, J. B. Tan, L. M. Ma, and S. Lin, “Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays,” Opt. Lett. 41(9), 1941–1944 (2016).
[Crossref]

H. Y. Wang, Z. G. Lu, and J. B. Tan, “Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays,” Opt. Express 24(20), 22989–23000 (2016).
[Crossref]

Y. Han, J. Lin, Y. X. Liu, H. Fu, Y. Ma, P. Jin, and J. B. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

Tang, J. Y.

A. Khan, S. Lee, T. Jang, Z. Xiong, C. P. Zhang, J. Y. Tang, L. J. Guo, and W. D. Li, “High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process,” Small 12(22), 3021–3030 (2016).
[Crossref]

Travitzky, N.

X. W. Yin, L. Kong, L. T. Zhang, L. F. Cheng, N. Travitzky, and P. Greil, “Electromagnetic properties of Si–C–N based ceramics and composites,” Int. Mater. Rev. 59(6), 326–355 (2014).
[Crossref]

Um, D. S.

S. Kang, S. Cho, R. Shanker, H. Lee, J. Park, D. S. Um, Y. Lee, and H. Ko, “Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones,” Sci. Adv. 4(8), eaas8772 (2018).
[Crossref]

Vajtai, R.

D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, and Z. M. Li, “Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding,” Adv. Funct. Mater. 25(4), 559–566 (2015).
[Crossref]

Verma, P.

P. Verma, P. Saini, and V. Choudhary, “Designing of carbon nanotube/polymer composites using melt recirculation approach: Effect of aspect ratio on mechanical, electrical and EMI shielding response,” Mater. Des. 88, 269–277 (2015).
[Crossref]

Wang, H.

N. C. Das, Y. Y. Liu, K. K. Yang, W. Q. Peng, S. D. Maiti, and H. Wang, “Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding,” Polym. Eng. Sci. 49(8), 1627–1634 (2009).
[Crossref]

Wang, H. Y.

H. Y. Wang, Z. G. Lu, J. B. Tan, Y. L. Zhang, J. X. Cao, Y. S. Liu, R. Kong, and S. Lin, “Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding,” Thin Solid Films 662, 76–82 (2018).
[Crossref]

Z. G. Lu, L. M. Ma, J. B. Tan, H. Y. Wang, and X. M. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
[Crossref]

H. Y. Wang, Z. G. Lu, and J. B. Tan, “Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays,” Opt. Express 24(20), 22989–23000 (2016).
[Crossref]

Z. G. Lu, H. Y. Wang, J. B. Tan, L. M. Ma, and S. Lin, “Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays,” Opt. Lett. 41(9), 1941–1944 (2016).
[Crossref]

Wang, J. H.

D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, and Z. M. Li, “Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding,” Adv. Funct. Mater. 25(4), 559–566 (2015).
[Crossref]

Wang, K.

J. J. Ma, M. S. Zhang, and K. Wang, “Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding,” ACS Appl. Mater. Interfaces 7(1), 563–576 (2015).
[Crossref]

Wang, M.

K. Zhang, G. H. Li, L. M. Feng, N. Wang, J. Guo, K. Sun, K. X. Yu, J. B. Zeng, T. X. Li, Z. H. Guo, and M. Wang, “Ultralow percolation threshold and enhanced electromagnetic interference shielding inpoly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks,” J. Mater. Chem. C 5(36), 9359–9369 (2017).
[Crossref]

Y. Chen, H. B. Zhang, Y. B. Yang, M. Wang, A. Y. Cao, and Z. Z. Yu, “High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding,” Adv. Funct. Mater. 26(3), 447–455 (2016).
[Crossref]

Wang, N.

K. Zhang, G. H. Li, L. M. Feng, N. Wang, J. Guo, K. Sun, K. X. Yu, J. B. Zeng, T. X. Li, Z. H. Guo, and M. Wang, “Ultralow percolation threshold and enhanced electromagnetic interference shielding inpoly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks,” J. Mater. Chem. C 5(36), 9359–9369 (2017).
[Crossref]

Wang, X. N.

J. C. Han, X. N. Wang, Y. F. Qiu, J. Q. Zhu, and P. A. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

Wang, Y.

J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Wang, Y. P.

Y. Huang, X. P. Bai, M. Zhou, S. Y. Liao, Z. F. Yu, Y. P. Wang, and H. Wu, “Large-scale spinning of silver nanofibers as flexible and reliable conductors,” Nano Lett. 16(9), 5846–5851 (2016).
[Crossref]

Wei, C. T.

X. L. Chen, W. R. Guo, L. M. Xie, C. T. Wei, J. Y. Zhuang, W. M. Su, and Z. Cui, “Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications,” ACS Appl. Mater. Interfaces 9(42), 37048–37054 (2017).
[Crossref]

Witte, R. P.

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, and G. P. Crawford, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

Won, P.

J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, and S. H. Ko, “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale 9(5), 1978–1985 (2017).
[Crossref]

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable wlectronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

Wu, H.

Y. Huang, X. P. Bai, M. Zhou, S. Y. Liao, Z. F. Yu, Y. P. Wang, and H. Wu, “Large-scale spinning of silver nanofibers as flexible and reliable conductors,” Nano Lett. 16(9), 5846–5851 (2016).
[Crossref]

Wu, H. Y.

L. C. Jia, D. X. Yan, X. F. Liu, R. J. Ma, H. Y. Wu, and Z. M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

Xiao, H. M.

F. Fang, Y. Q. Li, H. M. Xiao, N. Hu, and S. Y. Fu, “Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material,” J. Mater. Chem. C 4(19), 4193–4203 (2016).
[Crossref]

Xie, L. M.

X. L. Chen, W. R. Guo, L. M. Xie, C. T. Wei, J. Y. Zhuang, W. M. Su, and Z. Cui, “Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications,” ACS Appl. Mater. Interfaces 9(42), 37048–37054 (2017).
[Crossref]

Xiong, Z.

A. Khan, S. Lee, T. Jang, Z. Xiong, C. P. Zhang, J. Y. Tang, L. J. Guo, and W. D. Li, “High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process,” Small 12(22), 3021–3030 (2016).
[Crossref]

Xu, C.

Z. P. Chen, C. Xu, C. Q. Ma, W. C. Ren, and H. M. Cheng, “Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding,” Adv. Mater. 25(9), 1296–1300 (2013).
[Crossref]

Xu, L.

D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, and Z. M. Li, “Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding,” Adv. Funct. Mater. 25(4), 559–566 (2015).
[Crossref]

Xue, Y. H.

T. Chen, Y. H. Xue, A. K. Roy, and L. M. Dai, “Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrode,” ACS Nano 8(1), 1039–1046 (2014).
[Crossref]

Yan, D. X.

L. C. Jia, D. X. Yan, X. F. Liu, R. J. Ma, H. Y. Wu, and Z. M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, and Z. M. Li, “Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding,” Adv. Funct. Mater. 25(4), 559–566 (2015).
[Crossref]

Yan, Y.

X. Zhang, Y. L. Zhong, and Y. Yan, “Electrical, mechanical, and electromagnetic shielding properties of silver nanowire-based transparent conductive films,” Phys. Status Solidi A 215(14), 1800014 (2018).
[Crossref]

Yang, K. K.

N. C. Das, Y. Y. Liu, K. K. Yang, W. Q. Peng, S. D. Maiti, and H. Wang, “Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding,” Polym. Eng. Sci. 49(8), 1627–1634 (2009).
[Crossref]

Yang, S. L.

M. J. Hu, J. F. Gao, Y. C. Dong, K. Li, G. C. Shan, S. L. Yang, and R. K. Y. Li, “Flexible transparent PES/Silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Yang, Y. B.

Y. Chen, H. B. Zhang, Y. B. Yang, M. Wang, A. Y. Cao, and Z. Z. Yu, “High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding,” Adv. Funct. Mater. 26(3), 447–455 (2016).
[Crossref]

Ye, Y.

Y. Lou, Y. Ye, D. Pu, S. Shen, and L. Chen, “A large-scale diffractive glasses-free 3D display,” SPIE Newsroom 27 October 2014.

Yin, X. W.

X. W. Yin, L. Kong, L. T. Zhang, L. F. Cheng, N. Travitzky, and P. Greil, “Electromagnetic properties of Si–C–N based ceramics and composites,” Int. Mater. Rev. 59(6), 326–355 (2014).
[Crossref]

Yu, K. X.

K. Zhang, G. H. Li, L. M. Feng, N. Wang, J. Guo, K. Sun, K. X. Yu, J. B. Zeng, T. X. Li, Z. H. Guo, and M. Wang, “Ultralow percolation threshold and enhanced electromagnetic interference shielding inpoly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks,” J. Mater. Chem. C 5(36), 9359–9369 (2017).
[Crossref]

Yu, Z. F.

Y. Huang, X. P. Bai, M. Zhou, S. Y. Liao, Z. F. Yu, Y. P. Wang, and H. Wu, “Large-scale spinning of silver nanofibers as flexible and reliable conductors,” Nano Lett. 16(9), 5846–5851 (2016).
[Crossref]

Yu, Z. Z.

Y. Chen, H. B. Zhang, Y. B. Yang, M. Wang, A. Y. Cao, and Z. Z. Yu, “High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding,” Adv. Funct. Mater. 26(3), 447–455 (2016).
[Crossref]

Zeng, J. B.

K. Zhang, G. H. Li, L. M. Feng, N. Wang, J. Guo, K. Sun, K. X. Yu, J. B. Zeng, T. X. Li, Z. H. Guo, and M. Wang, “Ultralow percolation threshold and enhanced electromagnetic interference shielding inpoly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks,” J. Mater. Chem. C 5(36), 9359–9369 (2017).
[Crossref]

Zhai, W. T.

B. Shen, W. T. Zhai, and W. G. Zheng, “Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
[Crossref]

Zhang, C. D.

J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Zhang, C. P.

C. P. Zhang, A. Khan, J. X. Cai, C. W. Liang, J. H. Deng, S. Y. Huang, G. X. Li, and W. D. Li, “Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film,” ACS Appl. Mater. Interfaces 10(24), 21009–21017 (2018).
[Crossref]

A. Khan, S. Lee, T. Jang, Z. Xiong, C. P. Zhang, J. Y. Tang, L. J. Guo, and W. D. Li, “High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process,” Small 12(22), 3021–3030 (2016).
[Crossref]

Zhang, D. Y.

Zhang, H. B.

Y. Chen, H. B. Zhang, Y. B. Yang, M. Wang, A. Y. Cao, and Z. Z. Yu, “High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding,” Adv. Funct. Mater. 26(3), 447–455 (2016).
[Crossref]

Zhang, K.

K. Zhang, G. H. Li, L. M. Feng, N. Wang, J. Guo, K. Sun, K. X. Yu, J. B. Zeng, T. X. Li, Z. H. Guo, and M. Wang, “Ultralow percolation threshold and enhanced electromagnetic interference shielding inpoly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks,” J. Mater. Chem. C 5(36), 9359–9369 (2017).
[Crossref]

Zhang, K. Q.

B. Zhao, N. Qi, K. Q. Zhang, and X. Gong, “Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4:Yb,Er nanocomposites with metal-enhanced fluorescence behavior,” Phys. Chem. Chem. Phys. 18(22), 15289–15294 (2016).
[Crossref]

Zhang, L. T.

X. W. Yin, L. Kong, L. T. Zhang, L. F. Cheng, N. Travitzky, and P. Greil, “Electromagnetic properties of Si–C–N based ceramics and composites,” Int. Mater. Rev. 59(6), 326–355 (2014).
[Crossref]

Zhang, M. S.

J. J. Ma, M. S. Zhang, and K. Wang, “Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding,” ACS Appl. Mater. Interfaces 7(1), 563–576 (2015).
[Crossref]

Zhang, X.

X. Zhang, Y. L. Zhong, and Y. Yan, “Electrical, mechanical, and electromagnetic shielding properties of silver nanowire-based transparent conductive films,” Phys. Status Solidi A 215(14), 1800014 (2018).
[Crossref]

Zhang, Y. L.

H. Y. Wang, Z. G. Lu, J. B. Tan, Y. L. Zhang, J. X. Cao, Y. S. Liu, R. Kong, and S. Lin, “Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding,” Thin Solid Films 662, 76–82 (2018).
[Crossref]

Zhao, B.

B. Zhao, N. Qi, K. Q. Zhang, and X. Gong, “Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4:Yb,Er nanocomposites with metal-enhanced fluorescence behavior,” Phys. Chem. Chem. Phys. 18(22), 15289–15294 (2016).
[Crossref]

Zheng, W. G.

B. Shen, W. T. Zhai, and W. G. Zheng, “Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
[Crossref]

Zhong, Y. L.

X. Zhang, Y. L. Zhong, and Y. Yan, “Electrical, mechanical, and electromagnetic shielding properties of silver nanowire-based transparent conductive films,” Phys. Status Solidi A 215(14), 1800014 (2018).
[Crossref]

Zhou, M.

Y. Huang, X. P. Bai, M. Zhou, S. Y. Liao, Z. F. Yu, Y. P. Wang, and H. Wu, “Large-scale spinning of silver nanofibers as flexible and reliable conductors,” Nano Lett. 16(9), 5846–5851 (2016).
[Crossref]

Zhu, J. Q.

J. C. Han, X. N. Wang, Y. F. Qiu, J. Q. Zhu, and P. A. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

Zhuang, J. Y.

X. L. Chen, W. R. Guo, L. M. Xie, C. T. Wei, J. Y. Zhuang, W. M. Su, and Z. Cui, “Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications,” ACS Appl. Mater. Interfaces 9(42), 37048–37054 (2017).
[Crossref]

2D Mater. (2)

Z. G. Lu, L. M. Ma, J. B. Tan, H. Y. Wang, and X. M. Ding, “Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing,” 2D Mater. 4(2), 025021 (2017).
[Crossref]

J. Kang, D. Kim, Y. Kim, J. B. Choi, B. H. Hong, and S. W. Kim, “High-performance near-field electromagnetic wave attenuation in ultra-thin and transparent graphene films,” 2D Mater. 4(2), 025003 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (7)

J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, and S. H. Ko, “Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable wlectronics applications,” ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017).
[Crossref]

C. P. Zhang, A. Khan, J. X. Cai, C. W. Liang, J. H. Deng, S. Y. Huang, G. X. Li, and W. D. Li, “Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film,” ACS Appl. Mater. Interfaces 10(24), 21009–21017 (2018).
[Crossref]

X. L. Chen, W. R. Guo, L. M. Xie, C. T. Wei, J. Y. Zhuang, W. M. Su, and Z. Cui, “Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications,” ACS Appl. Mater. Interfaces 9(42), 37048–37054 (2017).
[Crossref]

L. C. Jia, D. X. Yan, X. F. Liu, R. J. Ma, H. Y. Wu, and Z. M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018).
[Crossref]

D. G. Kim, J. H. Choi, D. K. Chai, and S. W. Kim, “Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires,” ACS Appl. Mater. Interfaces 10(35), 29730–29740 (2018).
[Crossref]

L. M. Ma, Z. G. Lu, J. B. Tan, J. Liu, X. M. Ding, N. Black, T. Y. Li, J. Gallop, and L. Hao, “Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene,” ACS Appl. Mater. Interfaces 9(39), 34221–34229 (2017).
[Crossref]

J. J. Ma, M. S. Zhang, and K. Wang, “Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding,” ACS Appl. Mater. Interfaces 7(1), 563–576 (2015).
[Crossref]

ACS Nano (1)

T. Chen, Y. H. Xue, A. K. Roy, and L. M. Dai, “Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrode,” ACS Nano 8(1), 1039–1046 (2014).
[Crossref]

Adv. Funct. Mater. (3)

B. Shen, W. T. Zhai, and W. G. Zheng, “Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
[Crossref]

D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, and Z. M. Li, “Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding,” Adv. Funct. Mater. 25(4), 559–566 (2015).
[Crossref]

Y. Chen, H. B. Zhang, Y. B. Yang, M. Wang, A. Y. Cao, and Z. Z. Yu, “High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding,” Adv. Funct. Mater. 26(3), 447–455 (2016).
[Crossref]

Adv. Mater. (1)

Z. P. Chen, C. Xu, C. Q. Ma, W. C. Ren, and H. M. Cheng, “Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding,” Adv. Mater. 25(9), 1296–1300 (2013).
[Crossref]

Appl. Phys. Lett. (2)

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, and G. P. Crawford, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 96(4), 041109 (2010).
[Crossref]

Carbon (4)

M. Mahmoodi, M. Arjmand, U. Sundararaj, and S. Park, “The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites,” Carbon 50(4), 1455–1464 (2012).
[Crossref]

J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

J. C. Han, X. N. Wang, Y. F. Qiu, J. Q. Zhu, and P. A. Hu, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

Y. Han, Y. X. Liu, L. Han, J. Lin, and P. Jin, “High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding,” Carbon 115, 34–42 (2017).
[Crossref]

Chem. Eng. J. (1)

S. Ghosh, S. Remanan, S. Mondal, S. Ganguly, P. Das, N. Singha, and N. C. Das, “An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding,” Chem. Eng. J. 344, 138–154 (2018).
[Crossref]

Compos. Sci. Technol. (1)

H. Y. Choi, T. W. Lee, S. E. Lee, J. D. Lim, and Y. G. Jeong, “Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements,” Compos. Sci. Technol. 150, 45–53 (2017).
[Crossref]

Composites, Part A (1)

R. Ravindren, S. Mondal, K. Nath, and N. C. Das, “Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites,” Composites, Part A 118, 75–89 (2019).
[Crossref]

Composites, Part B (2)

R. Ravindren, S. Mondal, K. Nath, and N. C. Das, “Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites,” Composites, Part B 164, 559–569 (2019).
[Crossref]

S. Mondal, L. Nayak, M. Rahaman, A. Aldalbahi, T. K. Chaki, D. Khastgir, and N. C. Das, “An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites,” Composites, Part B 109, 155–169 (2017).
[Crossref]

Fibers Polym. (1)

S. Ghosh, S. Mondal, S. Ganguly, S. Remanan, N. Singha, and N. C. Das, “Carbon Nanostructures Based Mechanically Robust Conducting Cotton Fabric for Improved Electromagnetic Interference Shielding,” Fibers Polym. 19(5), 1064–1073 (2018).
[Crossref]

Int. Mater. Rev. (1)

X. W. Yin, L. Kong, L. T. Zhang, L. F. Cheng, N. Travitzky, and P. Greil, “Electromagnetic properties of Si–C–N based ceramics and composites,” Int. Mater. Rev. 59(6), 326–355 (2014).
[Crossref]

J. Mater. Chem. C (2)

F. Fang, Y. Q. Li, H. M. Xiao, N. Hu, and S. Y. Fu, “Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material,” J. Mater. Chem. C 4(19), 4193–4203 (2016).
[Crossref]

K. Zhang, G. H. Li, L. M. Feng, N. Wang, J. Guo, K. Sun, K. X. Yu, J. B. Zeng, T. X. Li, Z. H. Guo, and M. Wang, “Ultralow percolation threshold and enhanced electromagnetic interference shielding inpoly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks,” J. Mater. Chem. C 5(36), 9359–9369 (2017).
[Crossref]

J. Mater. Sci.: Mater. Electron. (1)

S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana, P. K. Maji, N. Singha, and N. C. Das, “Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials,” J. Mater. Sci.: Mater. Electron. 29(12), 10177–10189 (2018).
[Crossref]

J. Nanosci. Nanotechnol. (1)

S. Ganguly, P. Bhawal, R. Ravindren, and N. C. Das, “Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review,” J. Nanosci. Nanotechnol. 18(11), 7641–7669 (2018).
[Crossref]

Langmuir (1)

M. J. Hu, J. F. Gao, Y. C. Dong, K. Li, G. C. Shan, S. L. Yang, and R. K. Y. Li, “Flexible transparent PES/Silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref]

Mater. Chem. Phys. (1)

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2-3), 919–926 (2009).
[Crossref]

Mater. Des. (2)

P. Verma, P. Saini, and V. Choudhary, “Designing of carbon nanotube/polymer composites using melt recirculation approach: Effect of aspect ratio on mechanical, electrical and EMI shielding response,” Mater. Des. 88, 269–277 (2015).
[Crossref]

D. H. Kim, Y. M. Kim, and J. W. Kim, “Transparent and flexible film for shielding electromagnetic interference,” Mater. Des. 89, 703–707 (2016).
[Crossref]

Mater. Res. Express (1)

S. Mondal, S. Ghosh, S. Ganguly, P. Das, R. Ravindren, S. Sit, G. Chakraborty, and N. C. Das, “Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance,” Mater. Res. Express 4(10), 105039 (2017).
[Crossref]

Nano Lett. (1)

Y. Huang, X. P. Bai, M. Zhou, S. Y. Liao, Z. F. Yu, Y. P. Wang, and H. Wu, “Large-scale spinning of silver nanofibers as flexible and reliable conductors,” Nano Lett. 16(9), 5846–5851 (2016).
[Crossref]

Nanoscale (1)

J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, and S. H. Ko, “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale 9(5), 1978–1985 (2017).
[Crossref]

Nat. Commun. (1)

R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq−1),” Nat. Commun. 7(1), 13771 (2016).
[Crossref]

Neural Comput & Appl. (1)

J. Paś and S. Duer, “Determination of the impact indicators of electromagnetic interferences on computer information systems,” Neural Comput & Appl. 23(7-8), 2143–2157 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

B. Zhao, N. Qi, K. Q. Zhang, and X. Gong, “Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4:Yb,Er nanocomposites with metal-enhanced fluorescence behavior,” Phys. Chem. Chem. Phys. 18(22), 15289–15294 (2016).
[Crossref]

Phys. Status Solidi A (1)

X. Zhang, Y. L. Zhong, and Y. Yan, “Electrical, mechanical, and electromagnetic shielding properties of silver nanowire-based transparent conductive films,” Phys. Status Solidi A 215(14), 1800014 (2018).
[Crossref]

Polym. Eng. Sci. (1)

N. C. Das, Y. Y. Liu, K. K. Yang, W. Q. Peng, S. D. Maiti, and H. Wang, “Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding,” Polym. Eng. Sci. 49(8), 1627–1634 (2009).
[Crossref]

Sci. Adv. (1)

S. Kang, S. Cho, R. Shanker, H. Lee, J. Park, D. S. Um, Y. Lee, and H. Ko, “Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones,” Sci. Adv. 4(8), eaas8772 (2018).
[Crossref]

Sci. Rep. (1)

Y. Han, J. Lin, Y. X. Liu, H. Fu, Y. Ma, P. Jin, and J. B. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref]

Science (1)

F. Shahzad, M. Alhabed, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, “Electromagnetic interference shielding with 2D transition metal carbides (MXenes),” Science 353(6304), 1137–1140 (2016).
[Crossref]

Small (1)

A. Khan, S. Lee, T. Jang, Z. Xiong, C. P. Zhang, J. Y. Tang, L. J. Guo, and W. D. Li, “High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process,” Small 12(22), 3021–3030 (2016).
[Crossref]

Thin Solid Films (4)

P. Kumar, P. V. Reddy, B. Choudhury, P. Chowdhury, and H. C. Barshilia, “Transparent conductive Ta/Al/Ta-grid electrode for optoelectronic and electromagnetic interference shielding applications,” Thin Solid Films 612, 350–357 (2016).
[Crossref]

M. A. Shinde, K. Mallikarjuna, J. Noh, and H. Kim, “Highly stable silver nanowires based bilayered flexible transparent conductive electrode,” Thin Solid Films 660, 447–454 (2018).
[Crossref]

H. Y. Wang, Z. G. Lu, J. B. Tan, Y. L. Zhang, J. X. Cao, Y. S. Liu, R. Kong, and S. Lin, “Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding,” Thin Solid Films 662, 76–82 (2018).
[Crossref]

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide,” Thin Solid Films 516(14), 4620–4627 (2008).
[Crossref]

Other (1)

Y. Lou, Y. Ye, D. Pu, S. Shen, and L. Chen, “A large-scale diffractive glasses-free 3D display,” SPIE Newsroom 27 October 2014.

Supplementary Material (2)

NameDescription
» Visualization 1       Place the freestanding Ni mesh on a holder, it allows a free permeation of gas.
» Visualization 2       Place the freestanding Ni mesh on a holder, it allows a free permeation of liquid.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) The schematic illustration of the fabrication process of the freestanding Ni mesh conductive film. (b) The characterizations of freestanding Ni metallic mesh: (i) large-scaled, (ii) high optical transparency, (iii), (iv) flexible and (v), (vi) lightweight properties. (c) (i) The weight of a scaled 10×10 cm2 Ni mesh film with 4.0 μm thickness, (ii) a 100 g weight and (iii) the mechanical property of the Ni mesh film. (d) SEM images with different scale bar.
Fig. 2.
Fig. 2. The 3D confocal microscope images of the formation process of Ni mesh. (a) Photoresist patterning, (b) Ni electrodepositing, (c) bare Ni mesh, and (d)-(f) line profile of the Ni line in different processes. (g) Profile and cross-sectional SEM images of the freestanding Ni mesh with various thicknesses of 2.5 μm, 4.0 μm, and 6.0 μm, respectively.
Fig. 3.
Fig. 3. Diffraction pattern analysis of the Ni mesh film with different grid arrangements. (a) Different arrangements of (i) square, (ii) honeycomb and (iii) random grid grids. (b) Diffraction spectrograms of (i) square, (ii) honeycomb and (iii) random arranged grids. (c) The 3D intensity profiles of diffraction spots related to (i) square, (ii) honeycomb and (iii) random arranged grid, respectively.
Fig. 4.
Fig. 4. Characterization of the freestanding Ni mesh film with various thicknesses. (a) Transmittance, and (b) sheet resistance on the left and FoMs on the right for the freestanding Ni mesh film with a thickness of 2.5 μm, 4.0 μm and 6.0 μm, respectively. (c) Comparison of the FoMs of the Ni mesh film in this work with other reported transparent metal meshes. Normalized sheet resistance changes versus (d) various bending radii, (e) the number of repeated bending cycles, and (f) different applied strain ratios for the Ni mesh film at the thickness of 2.5 μm, 4.0 μm and 6.0 μm, respectively.
Fig. 5.
Fig. 5. EMI SE of fabricated Ni mesh films. (a) The measured EMI SE of plane Ni mesh films in X-band, (b) the theoretically calculated EMI SE of plane Ni mesh films, (c) the EMI SE of spherical Ni mesh films. (d) The EMI SE curves of the Ni mesh film with a thickness of 4 μm with different curvatures, 0.45 cm−1, 0.65 cm−1, and 1 cm−1, respectively. (e) The EMI SE variation of a 4.0 μm thickness Ni mesh film with different bending cycles. (f) A comparison of the EMI SE versus transmittance characteristic of the measured sample with various flexible transparent EMI films in literature.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T = ( 1 F F ) 2 = ( 1 W W + G ) 2
F o M = σ d c σ o p t = 188.5 R s ( 1 T 1 )
S E T = 10 log P t P i
S E T = 50 + 10 log ( σ f ) + 1.7 t σ f

Metrics