Abstract

Here we present extremely low connector-to-connector loss ($\leq$3 dB) through silicon photonic chips using ultra-low loss ($\leq$0.15 dB) splicing between SMF-28 and ultra-high numerical aperture (UHNA) fibers. The small MFD from the UHNA fibers enables strong coupling to hybrid TE/TM edge couplers achieving TM (TE) losses of 1.25 (2.35) dB per coupler and low polarization-dependent loss. Mode coupling simulations and tolerance are investigated to understand performance.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides

Martin Papes, Pavel Cheben, Daniel Benedikovic, Jens H. Schmid, James Pond, Robert Halir, Alejandro Ortega-Moñux, Gonzalo Wangüemert-Pérez, Winnie N. Ye, Dan-Xia Xu, Siegfried Janz, Milan Dado, and Vladimír Vašinek
Opt. Express 24(5) 5026-5038 (2016)

Fiber-to-chip fusion splicing for low-loss photonic packaging

Juniyali Nauriyal, Meiting Song, Raymond Yu, and Jaime Cardenas
Optica 6(5) 549-552 (2019)

Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits

Michael Wood, Peng Sun, and Ronald M. Reano
Opt. Express 20(1) 164-172 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “The first 0.14 db/km loss optical fiber and its impact on submarine transmission,” J. Lightwave Technol. 36(1), 44–49 (2018).
    [Crossref]
  2. J. Nauriyal, M. Song, R. Yu, and J. Cardenas, “Fiber-to-chip fusion splicing for low-loss photonic packaging,” Optica 6(5), 549–552 (2019).
    [Crossref]
  3. T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morissette, Y. Thibodeau, L. Patry, T. W. Lichoulas, E. L. Kimbrell, S. Martel, and S. Kamlapurkar et al., “A metamaterial converter centered at 1490 nm for interfacing standard fibers to nanophotonic waveguides,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2016), pp. 1–3.
  4. E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R.-J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “Aim process design kit (aimpdkv2.0): Silicon photonics passive and active component libraries on a 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), p. M3F.1.
  5. D. Mortimore and J. Wright, “Low-loss joints between dissimilar fibres by tapering fusion splices,” Electron. Lett. 22(6), 318–319 (1986).
    [Crossref]
  6. M. Kihara, S. Tomita, and M. Matsumoto, “Loss characteristics of thermally diffused expanded core fiber,” IEEE Photonics Technol. Lett. 4(12), 1390–1391 (1992).
    [Crossref]
  7. A. D. Yablon and M. Sumetsky, “Optimum intermediate fibers for reducing interconnection loss: exact solution,” Opt. Lett. 32(6), 617–619 (2007).
    [Crossref]
  8. A. Martínez-Rios, I. Torres-Gómez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering and fattening,” Rev. Mex. Fis. 56(1), 80–84 (2010).
  9. B. Wang and E. Mies, “Advanced topics on fusion splicing of specialty fibers and devices,” Proc. SPIE 6781, 678130 (2007).
    [Crossref]
  10. X. Shen, B. Dai, Y. Xing, L. Yang, H. Li, J. Li, and J. Peng, “Manufacturing a long-period grating with periodic thermal diffusion technology on a high-na fiber and its application as a high temperature sensor,” Sensors 18(5), 1475–1485 (2018).
    [Crossref]
  11. E. Timurdogan, Z. Su, R.-J. Shiue, C. V. Poulton, M. J. Byrd, S. Xin, and M. R. Watts, “Apsuny process design kit (aimpdkv3.0): O, c and l band silicon photonics component libraries on 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2019), p. M3F.1.

2019 (1)

2018 (2)

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “The first 0.14 db/km loss optical fiber and its impact on submarine transmission,” J. Lightwave Technol. 36(1), 44–49 (2018).
[Crossref]

X. Shen, B. Dai, Y. Xing, L. Yang, H. Li, J. Li, and J. Peng, “Manufacturing a long-period grating with periodic thermal diffusion technology on a high-na fiber and its application as a high temperature sensor,” Sensors 18(5), 1475–1485 (2018).
[Crossref]

2010 (1)

A. Martínez-Rios, I. Torres-Gómez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering and fattening,” Rev. Mex. Fis. 56(1), 80–84 (2010).

2007 (2)

B. Wang and E. Mies, “Advanced topics on fusion splicing of specialty fibers and devices,” Proc. SPIE 6781, 678130 (2007).
[Crossref]

A. D. Yablon and M. Sumetsky, “Optimum intermediate fibers for reducing interconnection loss: exact solution,” Opt. Lett. 32(6), 617–619 (2007).
[Crossref]

1992 (1)

M. Kihara, S. Tomita, and M. Matsumoto, “Loss characteristics of thermally diffused expanded core fiber,” IEEE Photonics Technol. Lett. 4(12), 1390–1391 (1992).
[Crossref]

1986 (1)

D. Mortimore and J. Wright, “Low-loss joints between dissimilar fibres by tapering fusion splices,” Electron. Lett. 22(6), 318–319 (1986).
[Crossref]

Barbosa-Garcia, O.

A. Martínez-Rios, I. Torres-Gómez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering and fattening,” Rev. Mex. Fis. 56(1), 80–84 (2010).

Barwicz, T.

T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morissette, Y. Thibodeau, L. Patry, T. W. Lichoulas, E. L. Kimbrell, S. Martel, and S. Kamlapurkar et al., “A metamaterial converter centered at 1490 nm for interfacing standard fibers to nanophotonic waveguides,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2016), pp. 1–3.

Boyer, N.

T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morissette, Y. Thibodeau, L. Patry, T. W. Lichoulas, E. L. Kimbrell, S. Martel, and S. Kamlapurkar et al., “A metamaterial converter centered at 1490 nm for interfacing standard fibers to nanophotonic waveguides,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2016), pp. 1–3.

Byrd, M. J.

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R.-J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “Aim process design kit (aimpdkv2.0): Silicon photonics passive and active component libraries on a 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), p. M3F.1.

E. Timurdogan, Z. Su, R.-J. Shiue, C. V. Poulton, M. J. Byrd, S. Xin, and M. R. Watts, “Apsuny process design kit (aimpdkv3.0): O, c and l band silicon photonics component libraries on 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2019), p. M3F.1.

Cardenas, J.

Dai, B.

X. Shen, B. Dai, Y. Xing, L. Yang, H. Li, J. Li, and J. Peng, “Manufacturing a long-period grating with periodic thermal diffusion technology on a high-na fiber and its application as a high temperature sensor,” Sensors 18(5), 1475–1485 (2018).
[Crossref]

Duran-Ramirez, V.

A. Martínez-Rios, I. Torres-Gómez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering and fattening,” Rev. Mex. Fis. 56(1), 80–84 (2010).

Fujii, T.

Hasegawa, T.

Honma, Y.

Hosseini, E. S.

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R.-J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “Aim process design kit (aimpdkv2.0): Silicon photonics passive and active component libraries on a 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), p. M3F.1.

Janta-Polczynski, A.

T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morissette, Y. Thibodeau, L. Patry, T. W. Lichoulas, E. L. Kimbrell, S. Martel, and S. Kamlapurkar et al., “A metamaterial converter centered at 1490 nm for interfacing standard fibers to nanophotonic waveguides,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2016), pp. 1–3.

Kamlapurkar, S.

T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morissette, Y. Thibodeau, L. Patry, T. W. Lichoulas, E. L. Kimbrell, S. Martel, and S. Kamlapurkar et al., “A metamaterial converter centered at 1490 nm for interfacing standard fibers to nanophotonic waveguides,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2016), pp. 1–3.

Kihara, M.

M. Kihara, S. Tomita, and M. Matsumoto, “Loss characteristics of thermally diffused expanded core fiber,” IEEE Photonics Technol. Lett. 4(12), 1390–1391 (1992).
[Crossref]

Kimbrell, E. L.

T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morissette, Y. Thibodeau, L. Patry, T. W. Lichoulas, E. L. Kimbrell, S. Martel, and S. Kamlapurkar et al., “A metamaterial converter centered at 1490 nm for interfacing standard fibers to nanophotonic waveguides,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2016), pp. 1–3.

Li, H.

X. Shen, B. Dai, Y. Xing, L. Yang, H. Li, J. Li, and J. Peng, “Manufacturing a long-period grating with periodic thermal diffusion technology on a high-na fiber and its application as a high temperature sensor,” Sensors 18(5), 1475–1485 (2018).
[Crossref]

Li, J.

X. Shen, B. Dai, Y. Xing, L. Yang, H. Li, J. Li, and J. Peng, “Manufacturing a long-period grating with periodic thermal diffusion technology on a high-na fiber and its application as a high temperature sensor,” Sensors 18(5), 1475–1485 (2018).
[Crossref]

Lichoulas, T. W.

T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morissette, Y. Thibodeau, L. Patry, T. W. Lichoulas, E. L. Kimbrell, S. Martel, and S. Kamlapurkar et al., “A metamaterial converter centered at 1490 nm for interfacing standard fibers to nanophotonic waveguides,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2016), pp. 1–3.

Martel, S.

T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morissette, Y. Thibodeau, L. Patry, T. W. Lichoulas, E. L. Kimbrell, S. Martel, and S. Kamlapurkar et al., “A metamaterial converter centered at 1490 nm for interfacing standard fibers to nanophotonic waveguides,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2016), pp. 1–3.

Martínez-Rios, A.

A. Martínez-Rios, I. Torres-Gómez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering and fattening,” Rev. Mex. Fis. 56(1), 80–84 (2010).

Matsumoto, M.

M. Kihara, S. Tomita, and M. Matsumoto, “Loss characteristics of thermally diffused expanded core fiber,” IEEE Photonics Technol. Lett. 4(12), 1390–1391 (1992).
[Crossref]

Mies, E.

B. Wang and E. Mies, “Advanced topics on fusion splicing of specialty fibers and devices,” Proc. SPIE 6781, 678130 (2007).
[Crossref]

Monzon-Hernandez, D.

A. Martínez-Rios, I. Torres-Gómez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering and fattening,” Rev. Mex. Fis. 56(1), 80–84 (2010).

Morissette, J.-F.

T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morissette, Y. Thibodeau, L. Patry, T. W. Lichoulas, E. L. Kimbrell, S. Martel, and S. Kamlapurkar et al., “A metamaterial converter centered at 1490 nm for interfacing standard fibers to nanophotonic waveguides,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2016), pp. 1–3.

Morita, K.

Mortimore, D.

D. Mortimore and J. Wright, “Low-loss joints between dissimilar fibres by tapering fusion splices,” Electron. Lett. 22(6), 318–319 (1986).
[Crossref]

Moss, B. R.

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R.-J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “Aim process design kit (aimpdkv2.0): Silicon photonics passive and active component libraries on a 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), p. M3F.1.

Nauriyal, J.

Patry, L.

T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morissette, Y. Thibodeau, L. Patry, T. W. Lichoulas, E. L. Kimbrell, S. Martel, and S. Kamlapurkar et al., “A metamaterial converter centered at 1490 nm for interfacing standard fibers to nanophotonic waveguides,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2016), pp. 1–3.

Peng, J.

X. Shen, B. Dai, Y. Xing, L. Yang, H. Li, J. Li, and J. Peng, “Manufacturing a long-period grating with periodic thermal diffusion technology on a high-na fiber and its application as a high temperature sensor,” Sensors 18(5), 1475–1485 (2018).
[Crossref]

Poulton, C. V.

E. Timurdogan, Z. Su, R.-J. Shiue, C. V. Poulton, M. J. Byrd, S. Xin, and M. R. Watts, “Apsuny process design kit (aimpdkv3.0): O, c and l band silicon photonics component libraries on 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2019), p. M3F.1.

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R.-J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “Aim process design kit (aimpdkv2.0): Silicon photonics passive and active component libraries on a 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), p. M3F.1.

Sakuma, H.

Shen, X.

X. Shen, B. Dai, Y. Xing, L. Yang, H. Li, J. Li, and J. Peng, “Manufacturing a long-period grating with periodic thermal diffusion technology on a high-na fiber and its application as a high temperature sensor,” Sensors 18(5), 1475–1485 (2018).
[Crossref]

Shimada, K.

Shiue, R.-J.

E. Timurdogan, Z. Su, R.-J. Shiue, C. V. Poulton, M. J. Byrd, S. Xin, and M. R. Watts, “Apsuny process design kit (aimpdkv3.0): O, c and l band silicon photonics component libraries on 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2019), p. M3F.1.

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R.-J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “Aim process design kit (aimpdkv2.0): Silicon photonics passive and active component libraries on a 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), p. M3F.1.

Sohma, K.

Song, M.

Su, Z.

E. Timurdogan, Z. Su, R.-J. Shiue, C. V. Poulton, M. J. Byrd, S. Xin, and M. R. Watts, “Apsuny process design kit (aimpdkv3.0): O, c and l band silicon photonics component libraries on 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2019), p. M3F.1.

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R.-J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “Aim process design kit (aimpdkv2.0): Silicon photonics passive and active component libraries on a 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), p. M3F.1.

Sumetsky, M.

Suzuki, M.

Tamura, Y.

Thibodeau, Y.

T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morissette, Y. Thibodeau, L. Patry, T. W. Lichoulas, E. L. Kimbrell, S. Martel, and S. Kamlapurkar et al., “A metamaterial converter centered at 1490 nm for interfacing standard fibers to nanophotonic waveguides,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2016), pp. 1–3.

Timurdogan, E.

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R.-J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “Aim process design kit (aimpdkv2.0): Silicon photonics passive and active component libraries on a 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), p. M3F.1.

E. Timurdogan, Z. Su, R.-J. Shiue, C. V. Poulton, M. J. Byrd, S. Xin, and M. R. Watts, “Apsuny process design kit (aimpdkv3.0): O, c and l band silicon photonics component libraries on 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2019), p. M3F.1.

Tomita, S.

M. Kihara, S. Tomita, and M. Matsumoto, “Loss characteristics of thermally diffused expanded core fiber,” IEEE Photonics Technol. Lett. 4(12), 1390–1391 (1992).
[Crossref]

Torres-Gómez, I.

A. Martínez-Rios, I. Torres-Gómez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering and fattening,” Rev. Mex. Fis. 56(1), 80–84 (2010).

Wang, B.

B. Wang and E. Mies, “Advanced topics on fusion splicing of specialty fibers and devices,” Proc. SPIE 6781, 678130 (2007).
[Crossref]

Watts, M. R.

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R.-J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “Aim process design kit (aimpdkv2.0): Silicon photonics passive and active component libraries on a 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), p. M3F.1.

E. Timurdogan, Z. Su, R.-J. Shiue, C. V. Poulton, M. J. Byrd, S. Xin, and M. R. Watts, “Apsuny process design kit (aimpdkv3.0): O, c and l band silicon photonics component libraries on 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2019), p. M3F.1.

Wright, J.

D. Mortimore and J. Wright, “Low-loss joints between dissimilar fibres by tapering fusion splices,” Electron. Lett. 22(6), 318–319 (1986).
[Crossref]

Xin, S.

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R.-J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “Aim process design kit (aimpdkv2.0): Silicon photonics passive and active component libraries on a 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), p. M3F.1.

E. Timurdogan, Z. Su, R.-J. Shiue, C. V. Poulton, M. J. Byrd, S. Xin, and M. R. Watts, “Apsuny process design kit (aimpdkv3.0): O, c and l band silicon photonics component libraries on 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2019), p. M3F.1.

Xing, Y.

X. Shen, B. Dai, Y. Xing, L. Yang, H. Li, J. Li, and J. Peng, “Manufacturing a long-period grating with periodic thermal diffusion technology on a high-na fiber and its application as a high temperature sensor,” Sensors 18(5), 1475–1485 (2018).
[Crossref]

Yablon, A. D.

Yamamoto, Y.

Yang, L.

X. Shen, B. Dai, Y. Xing, L. Yang, H. Li, J. Li, and J. Peng, “Manufacturing a long-period grating with periodic thermal diffusion technology on a high-na fiber and its application as a high temperature sensor,” Sensors 18(5), 1475–1485 (2018).
[Crossref]

Yu, R.

Electron. Lett. (1)

D. Mortimore and J. Wright, “Low-loss joints between dissimilar fibres by tapering fusion splices,” Electron. Lett. 22(6), 318–319 (1986).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Kihara, S. Tomita, and M. Matsumoto, “Loss characteristics of thermally diffused expanded core fiber,” IEEE Photonics Technol. Lett. 4(12), 1390–1391 (1992).
[Crossref]

J. Lightwave Technol. (1)

Opt. Lett. (1)

Optica (1)

Proc. SPIE (1)

B. Wang and E. Mies, “Advanced topics on fusion splicing of specialty fibers and devices,” Proc. SPIE 6781, 678130 (2007).
[Crossref]

Rev. Mex. Fis. (1)

A. Martínez-Rios, I. Torres-Gómez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering and fattening,” Rev. Mex. Fis. 56(1), 80–84 (2010).

Sensors (1)

X. Shen, B. Dai, Y. Xing, L. Yang, H. Li, J. Li, and J. Peng, “Manufacturing a long-period grating with periodic thermal diffusion technology on a high-na fiber and its application as a high temperature sensor,” Sensors 18(5), 1475–1485 (2018).
[Crossref]

Other (3)

E. Timurdogan, Z. Su, R.-J. Shiue, C. V. Poulton, M. J. Byrd, S. Xin, and M. R. Watts, “Apsuny process design kit (aimpdkv3.0): O, c and l band silicon photonics component libraries on 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2019), p. M3F.1.

T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morissette, Y. Thibodeau, L. Patry, T. W. Lichoulas, E. L. Kimbrell, S. Martel, and S. Kamlapurkar et al., “A metamaterial converter centered at 1490 nm for interfacing standard fibers to nanophotonic waveguides,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2016), pp. 1–3.

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R.-J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “Aim process design kit (aimpdkv2.0): Silicon photonics passive and active component libraries on a 300mm wafer,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), p. M3F.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Normalized transmitted power of SMF-28 spliced to UHNA spliced to SMF-28 optical fiber. Another SMF-28 fiber was used as a reference to determine the loss. (b) Percent of transmitted power from a set of SMF28-UHNA7 optical fiber patch cables.
Fig. 2.
Fig. 2. Schematic of the fiber-to-edge coupler testing setup. Mode overlapping calculation of the AIM PDK TE/TM Edge Coupler to SMF28 and UHNA7 fibers offset in (b) y- and (c) z-direction. The transmission peaks at $\Delta$y=$\Delta$z=0 and starts to roll-off when the fibers are out of alignment from the maximum coupling position. Solid and dashed line represent TE and TM mode overlap, respectively. All calculations used a 1550 nm source.
Fig. 3.
Fig. 3. Spectral dependence for the Connector-to-Connector transmission through an AIM photonic chip for: (a) TE mode and (b) TM mode using SMF28 spliced to UHNA optical fibers.
Fig. 4.
Fig. 4. Experiment results of the UHNA7 fiber alignment tolerance to the (a) TE, and (b) TM mode of the TE/TM edge coupler. Calculated alignment tolerance of the (c) TE and (d) TM modes based on the edge coupler model provided by AIM Photonics. (e) Horizontal ($\Delta$y) and vertical ($\Delta$z) cuts of the white dashed lines in (a) and (c). (f) Horizontal ($\Delta$y) and vertical ($\Delta$z) cuts of white dashed lines in (b) and (d).

Tables (2)

Tables Icon

Table 1. Optical fiber characteristics and UHNA-SMF28 splicing performance measured at 1550 nm. Splicing loss was determined by power transmitted from laser to detector via SMF-28 fiber compared to laser to detector via spliced fiber. Splicing recipe (arc duration and power) values are included which yields optimal splice loss for each fiber.

Tables Icon

Table 2. Connector-to-Connector [CtoC] loss measured at 1550 nm. Loss is measured as power transmitted from laser to detector via SMF28 compared to transmission from laser through spliced fiber, to chip, to spliced fiber onto detector.