Abstract

We propose and experimentally demonstrate a power efficient dual-stage optical frequency comb using laser gain switching followed by a dual-drive Mach-Zehnder modulator (DD-MZM). The laser is initially gain switched at ∼ 9.5 GHz and the resultant comb is then expanded using a dual-drive Mach-Zehnder modulator driven at ∼ 19 GHz with signal amplitudes below 1.5 V. The setup generates an optical frequency comb, with 12 lines within 3 dB flatness, in a power efficient manner. Theoretical analysis is presented and verified through simulation and experimental results.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of an optical frequency comb based on two cascaded dual-parallel polarization modulators

Rangana Banerjee Chaudhuri and Abhirup Das Barman
Appl. Opt. 57(30) 9164-9171 (2018)

Expansion and phase correlation of a wavelength tunable gain-switched optical frequency comb

Prajwal D. Lakshmijayasimha, Aleksandra Kaszubowska-Anandarajah, Eamonn P. Martin, Pascal Landais, and Prince M. Anandarajah
Opt. Express 27(12) 16560-16570 (2019)

Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach–Zehnder modulator

Qiang Wang, Li Huo, Yanfei Xing, and Bingkun Zhou
Opt. Lett. 39(10) 3050-3053 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  2. V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett. 30(13), 1734–1736 (2005).
    [Crossref] [PubMed]
  3. A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photonics Technol. Lett. 17(2), 504–506 (2005).
    [Crossref]
  4. V. T. Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio frequency photonics,” Laser and Photonics Rev. 8(3), 368–393 (2014).
    [Crossref]
  5. Qixiang Cheng, Meisam Bahadori, Madeleine Glick, Sébastien Rumley, and Keren Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5(11), 1354–1370 (2018).
    [Crossref]
  6. A. Akrout, A. Shen, R. Brenot, F. V. Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Error-free transmission of 8 WDM channels at 10 Gbit/s using comb generation in a quantum dash-based mode-locked laser,” in Proceedings of 34th European Conference on Optical Communication, Brussels, 21-25 Sept. 2008.
  7. G. A. Sefler and K.-I. Kitayama, “Frequency comb generation by four-wave mixing and the role of fiber dispersion,” J. Light. Technol. 16(9), 1596–1605 (1998).
    [Crossref]
  8. R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in Proceedings of 37th European Conference and Exhibition on Optical Communication, Geneva, 18-22 Sept. 2011.
  9. W. T. Wang, J. G. Liu, W. H. Sun, W. Chen, and N. H. Zhu, “Multi-band local microwave signal generation based on an optical frequency comb generator,” Elsevier Opt. Commun. 338, 90–94 (2015).
    [Crossref]
  10. C. Browning, H. H. Elwan, E. P. Martin, S. O’Duill, J. Poette, P. Sheridan, A. Farhang, B. Cabon, and L. P. Barry, “Gain-switched optical frequency combs for future mobile radio-over-fiber millimeter-wave systems,” J. Light. Technol. 36(19), 4602–4610 (2018).
    [Crossref]
  11. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
    [Crossref]
  12. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
    [Crossref] [PubMed]
  13. J. Zhang, J. Yu, N. Chi, Z. Dong, X. Li, Y. Shao, J. Yu, and L. Tao, “Flattened comb generation using only phase modulators driven by fundamental frequency sinusoidal sources with small frequency offset,” Opt. Lett. 38(4), 552–554 (2013).
    [Crossref] [PubMed]
  14. Q. Wang, L. Huo, Y. Xing, and B. Zhou, “Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach-Zehnder modulator,” Opt. Lett. 39(10), 3050–3053 (2014).
    [Crossref] [PubMed]
  15. R. B. Chaudhuri and A. D. Barman, “Generation of an optical frequency comb based on two cascaded dual-parallel polarization modulators,” Appl. Opt. 57(30), 9164–9171 (2018).
    [Crossref] [PubMed]
  16. T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron. 35(10), 1526–1534, (1999).
    [Crossref]
  17. L. Coldren, S. Corzine, and M. Mašanović, Diode Lasers and Photonic Integrated Circuits (John Wiley and Sons, 2012).
    [Crossref]
  18. G. Agrawal, Fiber-optic Communication Systems (John Wiley and Sons, 2010).
    [Crossref]
  19. S. L. Chuang, Physics of Photonic Devices, (John Wiley and Sons, 2012).

2018 (3)

2015 (1)

W. T. Wang, J. G. Liu, W. H. Sun, W. Chen, and N. H. Zhu, “Multi-band local microwave signal generation based on an optical frequency comb generator,” Elsevier Opt. Commun. 338, 90–94 (2015).
[Crossref]

2014 (2)

Q. Wang, L. Huo, Y. Xing, and B. Zhou, “Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach-Zehnder modulator,” Opt. Lett. 39(10), 3050–3053 (2014).
[Crossref] [PubMed]

V. T. Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio frequency photonics,” Laser and Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

2013 (1)

2010 (1)

2007 (1)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
[Crossref]

2005 (2)

V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett. 30(13), 1734–1736 (2005).
[Crossref] [PubMed]

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photonics Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

1999 (1)

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron. 35(10), 1526–1534, (1999).
[Crossref]

1998 (1)

G. A. Sefler and K.-I. Kitayama, “Frequency comb generation by four-wave mixing and the role of fiber dispersion,” J. Light. Technol. 16(9), 1596–1605 (1998).
[Crossref]

Agrawal, G.

G. Agrawal, Fiber-optic Communication Systems (John Wiley and Sons, 2010).
[Crossref]

Akrout, A.

A. Akrout, A. Shen, R. Brenot, F. V. Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Error-free transmission of 8 WDM channels at 10 Gbit/s using comb generation in a quantum dash-based mode-locked laser,” in Proceedings of 34th European Conference on Optical Communication, Brussels, 21-25 Sept. 2008.

Anandarajah, P.

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in Proceedings of 37th European Conference and Exhibition on Optical Communication, Geneva, 18-22 Sept. 2011.

Bahadori, Meisam

Barman, A. D.

Barry, L. P.

C. Browning, H. H. Elwan, E. P. Martin, S. O’Duill, J. Poette, P. Sheridan, A. Farhang, B. Cabon, and L. P. Barry, “Gain-switched optical frequency combs for future mobile radio-over-fiber millimeter-wave systems,” J. Light. Technol. 36(19), 4602–4610 (2018).
[Crossref]

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in Proceedings of 37th European Conference and Exhibition on Optical Communication, Geneva, 18-22 Sept. 2011.

Bartels, A.

Bergman, Keren

Brenot, R.

A. Akrout, A. Shen, R. Brenot, F. V. Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Error-free transmission of 8 WDM channels at 10 Gbit/s using comb generation in a quantum dash-based mode-locked laser,” in Proceedings of 34th European Conference on Optical Communication, Brussels, 21-25 Sept. 2008.

Browning, C.

C. Browning, H. H. Elwan, E. P. Martin, S. O’Duill, J. Poette, P. Sheridan, A. Farhang, B. Cabon, and L. P. Barry, “Gain-switched optical frequency combs for future mobile radio-over-fiber millimeter-wave systems,” J. Light. Technol. 36(19), 4602–4610 (2018).
[Crossref]

Cabon, B.

C. Browning, H. H. Elwan, E. P. Martin, S. O’Duill, J. Poette, P. Sheridan, A. Farhang, B. Cabon, and L. P. Barry, “Gain-switched optical frequency combs for future mobile radio-over-fiber millimeter-wave systems,” J. Light. Technol. 36(19), 4602–4610 (2018).
[Crossref]

Chaudhuri, R. B.

Chen, W.

W. T. Wang, J. G. Liu, W. H. Sun, W. Chen, and N. H. Zhu, “Multi-band local microwave signal generation based on an optical frequency comb generator,” Elsevier Opt. Commun. 338, 90–94 (2015).
[Crossref]

Cheng, Qixiang

Chi, N.

Chuang, S. L.

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron. 35(10), 1526–1534, (1999).
[Crossref]

S. L. Chuang, Physics of Photonic Devices, (John Wiley and Sons, 2012).

Coldren, L.

L. Coldren, S. Corzine, and M. Mašanović, Diode Lasers and Photonic Integrated Circuits (John Wiley and Sons, 2012).
[Crossref]

Company, V. T.

V. T. Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio frequency photonics,” Laser and Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

Corzine, S.

L. Coldren, S. Corzine, and M. Mašanović, Diode Lasers and Photonic Integrated Circuits (John Wiley and Sons, 2012).
[Crossref]

Diddams, S. A.

Dijk, F. V.

A. Akrout, A. Shen, R. Brenot, F. V. Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Error-free transmission of 8 WDM channels at 10 Gbit/s using comb generation in a quantum dash-based mode-locked laser,” in Proceedings of 34th European Conference on Optical Communication, Brussels, 21-25 Sept. 2008.

Dong, Z.

Duan, G.-H.

A. Akrout, A. Shen, R. Brenot, F. V. Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Error-free transmission of 8 WDM channels at 10 Gbit/s using comb generation in a quantum dash-based mode-locked laser,” in Proceedings of 34th European Conference on Optical Communication, Brussels, 21-25 Sept. 2008.

Ellis, A. D.

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photonics Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

Elwan, H. H.

C. Browning, H. H. Elwan, E. P. Martin, S. O’Duill, J. Poette, P. Sheridan, A. Farhang, B. Cabon, and L. P. Barry, “Gain-switched optical frequency combs for future mobile radio-over-fiber millimeter-wave systems,” J. Light. Technol. 36(19), 4602–4610 (2018).
[Crossref]

Farhang, A.

C. Browning, H. H. Elwan, E. P. Martin, S. O’Duill, J. Poette, P. Sheridan, A. Farhang, B. Cabon, and L. P. Barry, “Gain-switched optical frequency combs for future mobile radio-over-fiber millimeter-wave systems,” J. Light. Technol. 36(19), 4602–4610 (2018).
[Crossref]

Gerginov, V.

Glick, Madeleine

Gunning, F. C. G.

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photonics Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

Hansch, T. W.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hess, K.

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron. 35(10), 1526–1534, (1999).
[Crossref]

Hollberg, L.

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Huo, L.

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
[Crossref]

Jin, X.

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron. 35(10), 1526–1534, (1999).
[Crossref]

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
[Crossref]

Keating, T.

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron. 35(10), 1526–1534, (1999).
[Crossref]

Kitayama, K.-I.

G. A. Sefler and K.-I. Kitayama, “Frequency comb generation by four-wave mixing and the role of fiber dispersion,” J. Light. Technol. 16(9), 1596–1605 (1998).
[Crossref]

Latkowski, S.

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in Proceedings of 37th European Conference and Exhibition on Optical Communication, Geneva, 18-22 Sept. 2011.

Leaird, D. E.

Legouezigou, O.

A. Akrout, A. Shen, R. Brenot, F. V. Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Error-free transmission of 8 WDM channels at 10 Gbit/s using comb generation in a quantum dash-based mode-locked laser,” in Proceedings of 34th European Conference on Optical Communication, Brussels, 21-25 Sept. 2008.

Lelarge, F.

A. Akrout, A. Shen, R. Brenot, F. V. Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Error-free transmission of 8 WDM channels at 10 Gbit/s using comb generation in a quantum dash-based mode-locked laser,” in Proceedings of 34th European Conference on Optical Communication, Brussels, 21-25 Sept. 2008.

Li, X.

Liu, J. G.

W. T. Wang, J. G. Liu, W. H. Sun, W. Chen, and N. H. Zhu, “Multi-band local microwave signal generation based on an optical frequency comb generator,” Elsevier Opt. Commun. 338, 90–94 (2015).
[Crossref]

Long, C. M.

Martin, E. P.

C. Browning, H. H. Elwan, E. P. Martin, S. O’Duill, J. Poette, P. Sheridan, A. Farhang, B. Cabon, and L. P. Barry, “Gain-switched optical frequency combs for future mobile radio-over-fiber millimeter-wave systems,” J. Light. Technol. 36(19), 4602–4610 (2018).
[Crossref]

Mašanovic, M.

L. Coldren, S. Corzine, and M. Mašanović, Diode Lasers and Photonic Integrated Circuits (John Wiley and Sons, 2012).
[Crossref]

O’Carroll, J.

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in Proceedings of 37th European Conference and Exhibition on Optical Communication, Geneva, 18-22 Sept. 2011.

O’Duill, S.

C. Browning, H. H. Elwan, E. P. Martin, S. O’Duill, J. Poette, P. Sheridan, A. Farhang, B. Cabon, and L. P. Barry, “Gain-switched optical frequency combs for future mobile radio-over-fiber millimeter-wave systems,” J. Light. Technol. 36(19), 4602–4610 (2018).
[Crossref]

Phelan, R.

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in Proceedings of 37th European Conference and Exhibition on Optical Communication, Geneva, 18-22 Sept. 2011.

Poette, J.

C. Browning, H. H. Elwan, E. P. Martin, S. O’Duill, J. Poette, P. Sheridan, A. Farhang, B. Cabon, and L. P. Barry, “Gain-switched optical frequency combs for future mobile radio-over-fiber millimeter-wave systems,” J. Light. Technol. 36(19), 4602–4610 (2018).
[Crossref]

Pommereau, F.

A. Akrout, A. Shen, R. Brenot, F. V. Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Error-free transmission of 8 WDM channels at 10 Gbit/s using comb generation in a quantum dash-based mode-locked laser,” in Proceedings of 34th European Conference on Optical Communication, Brussels, 21-25 Sept. 2008.

Ramdane, A.

A. Akrout, A. Shen, R. Brenot, F. V. Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Error-free transmission of 8 WDM channels at 10 Gbit/s using comb generation in a quantum dash-based mode-locked laser,” in Proceedings of 34th European Conference on Optical Communication, Brussels, 21-25 Sept. 2008.

Rumley, Sébastien

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
[Crossref]

Sefler, G. A.

G. A. Sefler and K.-I. Kitayama, “Frequency comb generation by four-wave mixing and the role of fiber dispersion,” J. Light. Technol. 16(9), 1596–1605 (1998).
[Crossref]

Shao, Y.

Shen, A.

A. Akrout, A. Shen, R. Brenot, F. V. Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Error-free transmission of 8 WDM channels at 10 Gbit/s using comb generation in a quantum dash-based mode-locked laser,” in Proceedings of 34th European Conference on Optical Communication, Brussels, 21-25 Sept. 2008.

Sheridan, P.

C. Browning, H. H. Elwan, E. P. Martin, S. O’Duill, J. Poette, P. Sheridan, A. Farhang, B. Cabon, and L. P. Barry, “Gain-switched optical frequency combs for future mobile radio-over-fiber millimeter-wave systems,” J. Light. Technol. 36(19), 4602–4610 (2018).
[Crossref]

Sun, W. H.

W. T. Wang, J. G. Liu, W. H. Sun, W. Chen, and N. H. Zhu, “Multi-band local microwave signal generation based on an optical frequency comb generator,” Elsevier Opt. Commun. 338, 90–94 (2015).
[Crossref]

Supradeepa, V. R.

Tanner, C. E.

Tao, L.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Wang, Q.

Wang, W. T.

W. T. Wang, J. G. Liu, W. H. Sun, W. Chen, and N. H. Zhu, “Multi-band local microwave signal generation based on an optical frequency comb generator,” Elsevier Opt. Commun. 338, 90–94 (2015).
[Crossref]

Weiner, A. M.

Wu, R.

Xing, Y.

Yu, J.

Zhang, J.

Zhou, B.

Zhou, R.

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in Proceedings of 37th European Conference and Exhibition on Optical Communication, Geneva, 18-22 Sept. 2011.

Zhu, N. H.

W. T. Wang, J. G. Liu, W. H. Sun, W. Chen, and N. H. Zhu, “Multi-band local microwave signal generation based on an optical frequency comb generator,” Elsevier Opt. Commun. 338, 90–94 (2015).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
[Crossref]

Elsevier Opt. Commun. (1)

W. T. Wang, J. G. Liu, W. H. Sun, W. Chen, and N. H. Zhu, “Multi-band local microwave signal generation based on an optical frequency comb generator,” Elsevier Opt. Commun. 338, 90–94 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron. 35(10), 1526–1534, (1999).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photonics Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

J. Light. Technol. (2)

C. Browning, H. H. Elwan, E. P. Martin, S. O’Duill, J. Poette, P. Sheridan, A. Farhang, B. Cabon, and L. P. Barry, “Gain-switched optical frequency combs for future mobile radio-over-fiber millimeter-wave systems,” J. Light. Technol. 36(19), 4602–4610 (2018).
[Crossref]

G. A. Sefler and K.-I. Kitayama, “Frequency comb generation by four-wave mixing and the role of fiber dispersion,” J. Light. Technol. 16(9), 1596–1605 (1998).
[Crossref]

Laser and Photonics Rev. (1)

V. T. Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio frequency photonics,” Laser and Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Opt. Lett. (4)

Optica (1)

Other (5)

A. Akrout, A. Shen, R. Brenot, F. V. Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Error-free transmission of 8 WDM channels at 10 Gbit/s using comb generation in a quantum dash-based mode-locked laser,” in Proceedings of 34th European Conference on Optical Communication, Brussels, 21-25 Sept. 2008.

L. Coldren, S. Corzine, and M. Mašanović, Diode Lasers and Photonic Integrated Circuits (John Wiley and Sons, 2012).
[Crossref]

G. Agrawal, Fiber-optic Communication Systems (John Wiley and Sons, 2010).
[Crossref]

S. L. Chuang, Physics of Photonic Devices, (John Wiley and Sons, 2012).

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in Proceedings of 37th European Conference and Exhibition on Optical Communication, Geneva, 18-22 Sept. 2011.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Gain switching and DD-MZM based two-stage comb source.
Fig. 2
Fig. 2 The schematic concept of the gain switched comb expansion. Three flat lines frequency comb generated after the gain switching stage. The symmetrical distribution of the side-comb lines (lines ±2) is feasible for simple harmonic optical phase modulation profile. Expansion of the comb after the DD-MZM stage. MZM harmonics ±2 produce spectrum replicas which contribute to expansion of the final comb to 11 flat lines. The arrowed lines depict the directions of mappings between the originalspectrum and its replicas due to MZM expansion. Flatness of the expanded comb crucially depends on the summation of the lines −2 and +2 between original spectrum and its replicas.
Fig. 3
Fig. 3 (a) Measured gain switched laser output spectrum with FSR of around 9.5 GHz. Three flat comb lines are obtained within 1 dB of flatness. (b) DD-MZM output spectrum for CW input. MZM driving voltage is set to suppress odd MZM harmonics and to equate the fundamental MZM harmonic with the first even harmonic, by setting |J0 (ξ)| = |J2 (ξ)| (Eq. (11)).
Fig. 4
Fig. 4 Two-stage comb source output spectrum with 12 lines in 3 dB flatness and FSR of 9.5 GHz.
Fig. 5
Fig. 5 (a) Simulated gain-switched laser output spectrum with three lines in 2 dB flatness (blue dots). Red solid line stands for the experimentally measured comb envelope, showing an excellent agreement with simulation. (b) Simulated DD-MZM output spectrum with 12 lines in 3 dB flatness (blue dots), obtained with low MZM RF voltage (VRF = 0.586Vπ). Red solid line stands for the experimentally measured comb envelope, showing an excellent agreement with simulation.
Fig. 6
Fig. 6 Simulated DD-MZM output spectrum with 20 lines in 3.8 dB flatness (blue dots), obtained with higher MZM RF voltage ( V RF 1 3.14 V π).
Fig. 7
Fig. 7 Measured (red dots) and simulated (blue solid line) (a) PI curve and (b) small-signal normalized modulation response, obtained at I = 4Ith. Dashed line stands for −3 dB grid line.

Tables (1)

Tables Icon

Table 1 Fitting parameters with their values used in the simulation

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

d n b d t = η inj I q V tot n b τ b n b τ bw + n w V w τ wb V tot .
d n w d t = n b V tot τ bw V w n w τ w n w τ wb v g Ω ( n w n 0 ) S 1 + ε S .
d S d t = Γ v g Ω ( n w n 0 ) S 1 + ε S S τ p + Γ R sp V tot .
d ϕ d t = 1 2 α Γ v g Ω ( n w n th ) .
E GS ( t ) = S ( t ) e i ϕ ( t ) .
E out = 1 2 E GS ( t ) [ exp  ( i φ 1 ( t ) ) + exp  ( i φ 2 ( t ) ) ] ,
φ 1 ( t ) = π V π v 1 ( t ) , φ 2 ( t ) = π V π v 2 ( t ) ,
v 1 ( t ) = V DC 1 + V RF 1 cos  ( 2 π f MZM t ) , v 2 ( t ) = V DC 2 + V RF 2 cos  ( 2 π f MZM t ) ,
E out ( t ) = E GS ( t ) cos  { π 2 V π [ v 1 ( t ) v 2 ( t ) ] } exp  { i π 2 V π [ v 1 ( t ) + v 2 ( t ) ] } .
E out ( t ) = E GS ( t ) cos  [ η + ξ cos  ( 2 π f MZM t ) ] ,
E out ( t ) = E GS ( t ) [ cos  ( η ) ( J 0 ( ξ ) + 2 k = 1 ( 1 ) k J 2 k ( ξ ) cos  ( 2 k 2 π f MZM t ) ) ] E GS ( t ) [ sin  ( η ) ( 2 k = 1 ( 1 ) k J 2 k 1 ( ξ ) cos  ( ( 2 k 1 ) 2 π f MZM t ) ) ] ,
M ( ω ) M ( 0 ) = ω r 2 ( 1 + i ω τ bw ) ( ω r 2 ω 2 + i ω γ ) ,
ω r 2 = v g ( Ω / χ ) τ p S 0 1 + ε S 0 ( 1 + ε v g Ω τ w )
γ = v g ( Ω / χ ) S 0 1 + ε S 0 + ε S 0 τ p ( 1 + ε S 0 ) + 1 χ τ w
χ = 1 + τ bw τ wb .
P = η d ω 0 q ( I I th ) ,
S = τ p Γ P η 0 V w ω 0 ,

Metrics