Abstract

We demonstrate experimentally ghost optical coherence tomography using a broadband incoherent supercontinuum light source with shot-to-shot random spectral fluctuations. The technique is based on ghost imaging in the spectral domain where the object is the spectral interference pattern generated from an optical coherence tomography interferometer in which a physical sample is placed. The axial profile of the sample is obtained from the Fourier transform of the correlation between the spectrally resolved intensity fluctuations of the supercontinuum and the integrated signal measured at the output of the interferometer. The results are in excellent agreement with measurements obtained from a conventional optical coherence tomography system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Noise of supercontinuum sources in spectral domain optical coherence tomography

Mikkel Jensen, Iván Bravo Gonzalo, Rasmus Dybbro Engelsholm, Michael Maria, Niels Møller Israelsen, Adrian Podoleanu, and Ole Bang
J. Opt. Soc. Am. B 36(2) A154-A160 (2019)

Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source

Sucbei Moon and Dug Young Kim
Opt. Express 14(24) 11575-11584 (2006)

Interleaved optical coherence tomography

Hee Yoon Lee, Helge Sudkamp, Tahereh Marvdashti, and Audrey K. Ellerbee
Opt. Express 21(22) 26542-26556 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [Crossref]
  2. B. Bouma, Handbook of optical coherence tomography (CRC Press, 2001).
    [Crossref]
  3. W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008).
    [Crossref]
  4. W. Drexler, U. Morgner, F. Kärtner, C. Pitris, S. Boppart, X. Li, E. Ippen, and J. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [Crossref]
  5. A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
    [Crossref]
  6. C. K. Hitzenberger, “Optical coherence tomography in optics express,” Opt. Express 26, 24240–24259 (2018).
    [Crossref] [PubMed]
  7. J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57, OCT1–OCT13 (2016).
    [Crossref]
  8. C. O’Mahony, M. Hill, M. Brunet, R. Duane, and A. Mathewson, “Characterization of micromechanical structures using white-light interferometry,” Meas. Sci. Technol. 14, 1807–1814 (2003).
    [Crossref]
  9. J. F. De Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [Crossref] [PubMed]
  10. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [Crossref] [PubMed]
  11. D. P. Popescu, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155–169 (2011).
    [Crossref] [PubMed]
  12. B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2, 405–450 (2010).
    [Crossref]
  13. M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Phil. Trans. R. Soc. A 375, 20160233 (2017).
    [Crossref] [PubMed]
  14. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
    [Crossref]
  15. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
    [Crossref] [PubMed]
  16. R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [Crossref]
  17. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
    [Crossref] [PubMed]
  18. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref] [PubMed]
  19. D. Shi, C. Fan, P. Zhang, J. Zhang, H. Shen, C. Qiao, and Y. Wang, “Adaptive optical ghost imaging through atmospheric turbulence,” Opt. Express 20, 27992–27998 (2012).
    [Crossref] [PubMed]
  20. P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
    [Crossref]
  21. F. Devaux, P.-A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica 3, 698–701 (2016).
    [Crossref]
  22. H. Wu, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging using wavelength conversion and two-color detection,” Optica 6, 902–906 (2019).
    [Crossref]
  23. C. Amiot, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Supercontinuum spectral-domain ghost imaging,” Opt. Lett. 43, 5025–5028 (2018).
    [Crossref] [PubMed]
  24. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  25. B. Wetzel, A. Stefani, L. Larger, P.-A. Lacourt, J.-M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, and F. Dias, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
    [Crossref] [PubMed]
  26. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
    [Crossref]
  27. A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
    [Crossref]
  28. T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, and F. Dias, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
    [Crossref] [PubMed]
  29. S. M. Kolenderska, O. Katz, M. Fink, and S. Gigan, “Scanning-free imaging through a single fiber by random spatio-spectral encoding,” Opt. Lett. 40, 534–537 (2015).
    [Crossref] [PubMed]

2019 (1)

2018 (2)

2017 (2)

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Phil. Trans. R. Soc. A 375, 20160233 (2017).
[Crossref] [PubMed]

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

2016 (3)

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

F. Devaux, P.-A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica 3, 698–701 (2016).
[Crossref]

J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57, OCT1–OCT13 (2016).
[Crossref]

2015 (1)

2013 (3)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, and F. Dias, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

2012 (2)

D. Shi, C. Fan, P. Zhang, J. Zhang, H. Shen, C. Qiao, and Y. Wang, “Adaptive optical ghost imaging through atmospheric turbulence,” Opt. Express 20, 27992–27998 (2012).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P.-A. Lacourt, J.-M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, and F. Dias, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

2011 (1)

D. P. Popescu, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155–169 (2011).
[Crossref] [PubMed]

2010 (1)

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2, 405–450 (2010).
[Crossref]

2009 (1)

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (1)

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

2004 (1)

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref] [PubMed]

2003 (4)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

C. O’Mahony, M. Hill, M. Brunet, R. Duane, and A. Mathewson, “Characterization of micromechanical structures using white-light interferometry,” Meas. Sci. Technol. 14, 1807–1814 (2003).
[Crossref]

J. F. De Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[Crossref] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref] [PubMed]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

1999 (1)

1998 (1)

Amiot, C.

Bache, M.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Barbier, M.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Barland, S.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Boer, J. F. De

Boppart, S.

Bouma, B.

B. Bouma, Handbook of optical coherence tomography (CRC Press, 2001).
[Crossref]

Bouma, B. E.

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Boyd, R. W.

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Phil. Trans. R. Soc. A 375, 20160233 (2017).
[Crossref] [PubMed]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[Crossref]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Brambilla, E.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Broderick, N.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Brunet, M.

C. O’Mahony, M. Hill, M. Brunet, R. Duane, and A. Mathewson, “Characterization of micromechanical structures using white-light interferometry,” Meas. Sci. Technol. 14, 1807–1814 (2003).
[Crossref]

Cense, B.

Chan, K. W. C.

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[Crossref]

Chang, S.

D. P. Popescu, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155–169 (2011).
[Crossref] [PubMed]

Churkin, D. V.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Denis, S.

Devaux, F.

Dias, F.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, and F. Dias, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P.-A. Lacourt, J.-M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, and F. Dias, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Disano, J.

D. P. Popescu, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155–169 (2011).
[Crossref] [PubMed]

Dobre, G. M.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

W. Drexler, U. Morgner, F. Kärtner, C. Pitris, S. Boppart, X. Li, E. Ippen, and J. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[Crossref]

W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008).
[Crossref]

Duane, R.

C. O’Mahony, M. Hill, M. Brunet, R. Duane, and A. Mathewson, “Characterization of micromechanical structures using white-light interferometry,” Meas. Sci. Technol. 14, 1807–1814 (2003).
[Crossref]

Dudley, J. M.

H. Wu, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging using wavelength conversion and two-color detection,” Optica 6, 902–906 (2019).
[Crossref]

C. Amiot, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Supercontinuum spectral-domain ghost imaging,” Opt. Lett. 43, 5025–5028 (2018).
[Crossref] [PubMed]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Edgar, M. P.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2, 405–450 (2010).
[Crossref]

Fan, C.

Fercher, A. F.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Fink, M.

Flueraru, C.

D. P. Popescu, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155–169 (2011).
[Crossref] [PubMed]

Friberg, A. T.

Fujimoto, J.

J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57, OCT1–OCT13 (2016).
[Crossref]

W. Drexler, U. Morgner, F. Kärtner, C. Pitris, S. Boppart, X. Li, E. Ippen, and J. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[Crossref]

Fujimoto, J. G.

W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008).
[Crossref]

Gatti, A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Genty, G.

H. Wu, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging using wavelength conversion and two-color detection,” Optica 6, 902–906 (2019).
[Crossref]

C. Amiot, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Supercontinuum spectral-domain ghost imaging,” Opt. Lett. 43, 5025–5028 (2018).
[Crossref] [PubMed]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, and F. Dias, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P.-A. Lacourt, J.-M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, and F. Dias, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Gigan, S.

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

Godin, T.

Hill, M.

C. O’Mahony, M. Hill, M. Brunet, R. Duane, and A. Mathewson, “Characterization of micromechanical structures using white-light interferometry,” Meas. Sci. Technol. 14, 1807–1814 (2003).
[Crossref]

Hitzenberger, C. K.

Howell, J. C.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref] [PubMed]

Ippen, E.

Jackson, D. A.

Jalali, B.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

Kärtner, F.

Katz, O.

Kolenderska, S. M.

Kudlinski, A.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, and F. Dias, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P.-A. Lacourt, J.-M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, and F. Dias, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Lacourt, P.-A.

B. Wetzel, A. Stefani, L. Larger, P.-A. Lacourt, J.-M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, and F. Dias, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Lantz, E.

Larger, L.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, and F. Dias, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P.-A. Lacourt, J.-M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, and F. Dias, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Leitgeb, R.

Li, X.

Lugiato, L. A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Magatti, D.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Mahjoubfar, A.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Mao, Y.

D. P. Popescu, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155–169 (2011).
[Crossref] [PubMed]

Mathewson, A.

C. O’Mahony, M. Hill, M. Brunet, R. Duane, and A. Mathewson, “Characterization of micromechanical structures using white-light interferometry,” Meas. Sci. Technol. 14, 1807–1814 (2003).
[Crossref]

Merolla, J.-M.

B. Wetzel, A. Stefani, L. Larger, P.-A. Lacourt, J.-M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, and F. Dias, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Moreau, P.-A.

Morgner, U.

Mussot, A.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, and F. Dias, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P.-A. Lacourt, J.-M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, and F. Dias, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

O’Mahony, C.

C. O’Mahony, M. Hill, M. Brunet, R. Duane, and A. Mathewson, “Characterization of micromechanical structures using white-light interferometry,” Meas. Sci. Technol. 14, 1807–1814 (2003).
[Crossref]

O’Sullivan, M. N.

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[Crossref]

Padgett, M.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Padgett, M. J.

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Phil. Trans. R. Soc. A 375, 20160233 (2017).
[Crossref] [PubMed]

Park, B. H.

Pierce, M. C.

Pitris, C.

Podoleanu, A. G.

Popescu, D. P.

D. P. Popescu, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155–169 (2011).
[Crossref] [PubMed]

Qiao, C.

Ryczkowski, P.

Salem, A. B.

Shapiro, J. H.

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2, 405–450 (2010).
[Crossref]

Shen, H.

Sherif, S.

D. P. Popescu, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155–169 (2011).
[Crossref] [PubMed]

Shi, D.

Sowa, M. G.

D. P. Popescu, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155–169 (2011).
[Crossref] [PubMed]

Stefani, A.

B. Wetzel, A. Stefani, L. Larger, P.-A. Lacourt, J.-M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, and F. Dias, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Sun, B.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Swanson, E.

J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57, OCT1–OCT13 (2016).
[Crossref]

Sylvestre, T.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, and F. Dias, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P.-A. Lacourt, J.-M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, and F. Dias, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Tearney, G. J.

Turitsyn, S. K.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Wang, Y.

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Wetzel, B.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, and F. Dias, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P.-A. Lacourt, J.-M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, and F. Dias, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Wu, H.

Zghal, M.

Zhang, J.

Zhang, P.

Adv. Opt. Photonics (1)

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2, 405–450 (2010).
[Crossref]

Biophys. Rev. (1)

D. P. Popescu, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155–169 (2011).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57, OCT1–OCT13 (2016).
[Crossref]

Meas. Sci. Technol. (1)

C. O’Mahony, M. Hill, M. Brunet, R. Duane, and A. Mathewson, “Characterization of micromechanical structures using white-light interferometry,” Meas. Sci. Technol. 14, 1807–1814 (2003).
[Crossref]

Nat. Photonics (3)

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Optica (2)

Phil. Trans. R. Soc. A (1)

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Phil. Trans. R. Soc. A 375, 20160233 (2017).
[Crossref] [PubMed]

Phys. Rev. A (1)

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[Crossref]

Phys. Rev. Lett. (3)

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Sci. Rep. (1)

B. Wetzel, A. Stefani, L. Larger, P.-A. Lacourt, J.-M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, and F. Dias, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref] [PubMed]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Other (2)

B. Bouma, Handbook of optical coherence tomography (CRC Press, 2001).
[Crossref]

W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of (a) a conventional spectral-domain OCT system and (b) the ghost spectral-domain OCT scheme. FT: Fourier transform.
Fig. 2
Fig. 2 Experimental setup. BS: beam splitter, BPF: band-pass filter, DCF: dispersion compensating fiber, M: mirror.
Fig. 3
Fig. 3 (a) Coefficient of variation of the supercontinuum fluctuations and (b) supercontinuum average spectrum after the band-pass filter. (c) Average of Fourier transform of the single-shot spectra measured in the reference arm. The inset shows a close-up of the main peak with the FWHM representing the axial resolution limit of the ghost OCT system. The residual peak around 3 mm corresponds to the thickness of the free space filter used before the beam splitter and does not appear in the ghost images as it is not part of the object.
Fig. 4
Fig. 4 Optical distance corresponding to half of the optical path difference between the two arms of the Michelson interferometer measured by (a) conventional OCT and (b) the ghost OCT configuration. The arrow indicates the direction of the mirror displacement increasing the optical path difference. The ghost OCT measurements were performed for 10,000 distinct realizations. The conventional OCT measurements performed with the OSA used a virtual bandwidth of 100 Hz corresponding to averaging over 1000 SC pulses. The bottom plots shows the Fourier transform of the interferogram in logarithmic scale for a specific mirror position for (c) conventional OCT and (d) the ghost OCT configuration.
Fig. 5
Fig. 5 Fourier transform of the ghost interferogram in logarithmic scale for an optical path difference of 1.1 mm (optical distance of 0.55 mm) between the two arms of the interferometer and for a different number of realizations as indicated. For convenience, the different measurements are arbitrarily shifted vertically.
Fig. 6
Fig. 6 Fourier transform of the interferogram in logarithmic scale measured by (a) conventional OCT and (b) the ghost OCT configuration when one of the mirrors is replaced by a 210 μm microscope cover slip (optical thickness). The ghost OCT measurements were performed for 10 000 distinct realizations. The conventional OCT measurements performed with the OSA used a virtual bandwidth of 100 Hz corresponding to averaging over 1000 SC pulses.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C ( λ ) = Δ I ref ( λ ) × Δ I test N Δ I ref 2 ( λ ) N Δ I test 2 N .

Metrics