Abstract

We report the first realization of widely tunable continuous-wave (cw) optical parametric oscillator (OPO) based on periodically-poled KTiOPO4 (PPKTP) at room temperature. By exploiting fan-out grating design in a 30-mm PPKTP crystal, and configured in an output-coupled singly-resonant oscillator (OC-SRO) configuration pumped at 532 nm in the green, the OPO provides finely tunable radiation across 741-922 nm in the signal and 1258-1884 nm in the idler, at a fixed temperature of 25 °C. The use of output coupling for the signal wave enables enhancement of OPO extraction efficiency to 30%, providing a maximum total output power of 1.65 W (450 mW of signal at 901 nm and 1.2 W of idler at 1299 nm) for 5.5 W of pump power. The output idler exhibits passive power stability better than 3.2% rms over >2 mins, and the extracted signal exhibits frequency stability of 194 MHz over more than 35 seconds, in excellent beam quality. The OPO performance in pure SRO configuration has also been investigated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4 and its application to spectroscopy

G. M. Gibson, M. Ebrahimzadeh, M. J. Padgett, and M. H. Dunn
Opt. Lett. 24(6) 397-399 (1999)

Continuous-wave, singly-resonant, optical parametric oscillator based on periodically poled KTiOPO4

T.J. Edwards, G.A. Turnbull, M.H. Dunn, and M. Ebrahimzadeh
Opt. Express 6(3) 58-63 (2000)

Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4

A. Garashi, A. Arie, A. Skliar, and G. Rosenman
Opt. Lett. 23(22) 1739-1741 (1998)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  2. M. Ebrahim-Zadeh, “Continuous-wave optical parametric oscillators,” in Handbook of Optics (OSA/McGraw-Hill, 2010), pp. 1–33.
  3. M. Ebrahim-Zadeh, S. C. Kumar, and K. Devi, “Yb-Fiber-Laser-Pumped Continuous-Wave Frequency Conversion Sources from the Mid-Infrared to the Ultraviolet,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902823 (2014).
    [Crossref]
  4. U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 microm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24(22), 1602–1604 (1999).
    [Crossref] [PubMed]
  5. G. K. Samanta and M. Ebrahim-Zadeh, “Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling,” Opt. Express 16(10), 6883–6888 (2008).
    [Crossref] [PubMed]
  6. S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98(4), 729–735 (2010).
    [Crossref]
  7. K. Devi and M. Ebrahim-Zadeh, “Room-temperature, rapidly tunable, green-pumped continuous-wave optical parametric oscillator,” Opt. Lett. 42(13), 2635–2638 (2017).
    [Crossref] [PubMed]
  8. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6(4), 622–633 (1989).
    [Crossref]
  9. A. Garashi, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4.,” Opt. Lett. 23(22), 1739–1741 (1998).
    [Crossref] [PubMed]
  10. G. M. Gibson, M. Ebrahimzadeh, M. J. Padgett, and M. H. Dunn, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4 and its application to spectroscopy,” Opt. Lett. 24(6), 397–399 (1999).
    [Crossref] [PubMed]
  11. M. Ebrahim-Zadeh, G. A. Turnbull, T. J. Edwards, D. J. M. Stothard, I. D. Lindsay, and M. H. Dunn, “Intracavity continuous-wave singly resonant optical parametric oscillators,” J. Opt. Soc. Am. B 16(9), 1499–1511 (1999).
    [Crossref]
  12. D. R. Weise, U. Strößner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 18, 329–333 (2000).
    [Crossref]
  13. U. Strößner, J.-P. Meyn, R. Wallenstein, P. Urenski, A. Arie, G. Rosenman, J. Mlynek, S. Schiller, and A. Peters, “Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830 nm,” J. Opt. Soc. Am. B 19(6), 1419–1424 (2002).
    [Crossref]
  14. C. Liu, X. Guo, Z. Bai, X. Wang, and Y. Li, “High-efficiency continuously tunable single-frequency doubly resonant optical parametric oscillator,” Appl. Opt. 50(10), 1477–1481 (2011).
    [Crossref] [PubMed]
  15. G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39(27), 5058–5069 (2000).
    [Crossref] [PubMed]
  16. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, “Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4,” Appl. Opt. 26(12), 2390–2394 (1987).
    [Crossref] [PubMed]
  17. W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett. 18(15), 1208–1210 (1993).
    [Crossref] [PubMed]
  18. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
    [Crossref]
  19. K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41(24), 5040–5044 (2002).
    [Crossref] [PubMed]
  20. S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4.,” Appl. Opt. 42(33), 6661–6665 (2003).
    [Crossref] [PubMed]

2017 (1)

2014 (1)

M. Ebrahim-Zadeh, S. C. Kumar, and K. Devi, “Yb-Fiber-Laser-Pumped Continuous-Wave Frequency Conversion Sources from the Mid-Infrared to the Ultraviolet,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902823 (2014).
[Crossref]

2011 (1)

2010 (1)

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98(4), 729–735 (2010).
[Crossref]

2008 (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

G. K. Samanta and M. Ebrahim-Zadeh, “Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling,” Opt. Express 16(10), 6883–6888 (2008).
[Crossref] [PubMed]

2003 (1)

2002 (2)

2000 (2)

D. R. Weise, U. Strößner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 18, 329–333 (2000).
[Crossref]

G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39(27), 5058–5069 (2000).
[Crossref] [PubMed]

1999 (4)

1998 (1)

1993 (1)

1989 (1)

1987 (1)

Arie, A.

Bai, Z.

Becher, C.

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98(4), 729–735 (2010).
[Crossref]

Bierlein, J. D.

Byer, R. L.

Devi, K.

K. Devi and M. Ebrahim-Zadeh, “Room-temperature, rapidly tunable, green-pumped continuous-wave optical parametric oscillator,” Opt. Lett. 42(13), 2635–2638 (2017).
[Crossref] [PubMed]

M. Ebrahim-Zadeh, S. C. Kumar, and K. Devi, “Yb-Fiber-Laser-Pumped Continuous-Wave Frequency Conversion Sources from the Mid-Infrared to the Ultraviolet,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902823 (2014).
[Crossref]

Dunn, M. H.

Ebrahimzadeh, M.

Ebrahim-Zadeh, M.

Eckardt, R. C.

Edwards, T. J.

Emanueli, S.

Fan, T. Y.

Fan, Y. X.

Feigelson, R. S.

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Fukui, T.

Garashi, A.

Gibson, G. M.

Guo, X.

Hansson, G.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Hu, B. Q.

Huang, C. E.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Karlsson, H.

Kato, K.

Kubota, S.

Kumar, S. C.

M. Ebrahim-Zadeh, S. C. Kumar, and K. Devi, “Yb-Fiber-Laser-Pumped Continuous-Wave Frequency Conversion Sources from the Mid-Infrared to the Ultraviolet,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902823 (2014).
[Crossref]

Laurell, F.

Lee, D.-H.

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98(4), 729–735 (2010).
[Crossref]

Li, Y.

Lindsay, I. D.

Liu, C.

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Masuda, H.

Meyn, J.-P.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Mlynek, J.

Padgett, M. J.

Peters, A.

Rosenman, G.

U. Strößner, J.-P. Meyn, R. Wallenstein, P. Urenski, A. Arie, G. Rosenman, J. Mlynek, S. Schiller, and A. Peters, “Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830 nm,” J. Opt. Soc. Am. B 19(6), 1419–1424 (2002).
[Crossref]

D. R. Weise, U. Strößner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 18, 329–333 (2000).
[Crossref]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

A. Garashi, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4.,” Opt. Lett. 23(22), 1739–1741 (1998).
[Crossref] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Samanta, G. K.

Schiller, S.

Skliar, A.

D. R. Weise, U. Strößner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 18, 329–333 (2000).
[Crossref]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

A. Garashi, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4.,” Opt. Lett. 23(22), 1739–1741 (1998).
[Crossref] [PubMed]

Stothard, D. J. M.

Strößner, U.

U. Strößner, J.-P. Meyn, R. Wallenstein, P. Urenski, A. Arie, G. Rosenman, J. Mlynek, S. Schiller, and A. Peters, “Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830 nm,” J. Opt. Soc. Am. B 19(6), 1419–1424 (2002).
[Crossref]

D. R. Weise, U. Strößner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 18, 329–333 (2000).
[Crossref]

Strössner, U.

Takaoka, E.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Turnbull, G. A.

Urenski, P.

Vanherzeele, H.

Wallenstein, R.

Wang, S.

Wang, X.

Weise, D. R.

D. R. Weise, U. Strößner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 18, 329–333 (2000).
[Crossref]

Wiechmann, W.

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Zaske, S.

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98(4), 729–735 (2010).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (1)

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98(4), 729–735 (2010).
[Crossref]

Appl. Phys. Lett. (1)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ebrahim-Zadeh, S. C. Kumar, and K. Devi, “Yb-Fiber-Laser-Pumped Continuous-Wave Frequency Conversion Sources from the Mid-Infrared to the Ultraviolet,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902823 (2014).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

D. R. Weise, U. Strößner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 18, 329–333 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Science (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Other (1)

M. Ebrahim-Zadeh, “Continuous-wave optical parametric oscillators,” in Handbook of Optics (OSA/McGraw-Hill, 2010), pp. 1–33.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the fan-out grating design PPKTP-based cw OPO. HWP: half-wave plate, PBS: polarizing beam splitter, L: lens, M1-4: mirrors, M’: dichroic mirror. Inset: laboratory picture of the PPKTP crystal.
Fig. 2
Fig. 2 Variation of transmission of the fan-out-grating PPKTP crystal with pump intensity at temperature, T~25 °C, 50 °C and 170 °C under (a) phase-matched polarization and (b) orthogonal non-phase-matched polarization.
Fig. 3
Fig. 3 (a) Wide wavelength tuning with lateral translation of PPKTP crystal at room temperature. Temperature tuning across the tuning range for crystal positions of (b) 0.492 mm and (c) 8.08 mm.
Fig. 4
Fig. 4 (a) Theoretically calculated grating period corresponding to the crystal position at room temperature using Sellmeier equations for PPKTP [16,18,19]. (b) Theoretical temperature tuning curves obtained from the calculated grating periods at crystal position of 0.492 mm at room temperature and using thermo-optic dispersion relations [16–20] in four different sets.
Fig. 5
Fig. 5 Variation of signal and idler power across the (a) grating period tuning range at room temperature, and across the temperature tuning range for grating period of (b) Λ = 9.28 μm and (c) Λ = 10.58 μm.
Fig. 6
Fig. 6 (a) Idler and signal output power as a function of pump power at room temperature and (b) corresponding variation of signal wavelength with pump power.
Fig. 7
Fig. 7 Variation of signal and idler power, and corresponding signal wavelength with time when the crystal is exposed to the varying pump power over initial time period of 20 seconds.
Fig. 8
Fig. 8 Passive power stability of the (a) idler output and (b) extracted signal over 2.6 minutes. (c) Pump power stability over 1.6 hours.
Fig. 9
Fig. 9 (a) Single-frequency spectrum of the extracted signal at 831nm, (b) signal spectra across the rapidly-tunable spectral range, (c) frequency stability, and (d) far-field energy distribution of the extracted signal beam at 831 nm at room temperature.

Tables (1)

Tables Icon

Table 1 Continuous-wave tunable OPOs based on PPKTP

Metrics