Abstract

This paper investigates the performance of the neural network (NN) assisted motion detection (MD) over an indoor optical camera communication (OCC) link. The proposed study is based on the performance evaluation of various NN training algorithms, which provide efficient and reliable MD functionality along with vision, illumination, data communications and sensing in indoor OCC. To evaluate the proposed scheme, we have carried out an experimental investigation of a static indoor downlink OCC link employing a mobile phone front camera as the receiver and an 8 × 8 red, green and blue light-emitting diodes array as the transmitter. In addition to data transmission, MD is achieved using a camera to observe user’s finger movement in the form of centroids via the OCC link. The captured motion is applied to the NN and is evaluated for a number of MD schemes. The results show that, resilient backpropagation based NN offers the fastest convergence with a minimum error of 10−5 within the processing time window of 0.67 s and a success probability of 100 % for MD compared to other algorithms. We demonstrate that, the proposed system with motion offers a bit error rate which is below the forward error correction limit of 3.8 × 10−3, over a transmission distance of 1.17 m.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Non-line-of-sight 2 × N indoor optical camera communications

Navid Bani Hassan, Zabih Ghassemlooy, Stanislav Zvanovec, Pengfei Luo, and Hoa Le-Minh
Appl. Opt. 57(7) B144-B149 (2018)

Correlation-based receiver for optical camera communications

Cristo Jurado-Verdu, Vicente Matus, Jose Rabadan, Victor Guerra, and Rafael Perez-Jimenez
Opt. Express 27(14) 19150-19155 (2019)

Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms

Kevin Liang, Chi-Wai Chow, Yang Liu, and Chien-Hung Yeh
Opt. Express 24(22) 25641-25646 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17, 2047–2077 (2015).
    [Crossref]
  2. Z. Ghassemlooy, S. Zvanovec, M.-A. Khalighi, W. O. Popoola, and J. Perez, “Optical wireless communication systems,” Optik 151, 1–6 (2017).
    [Crossref]
  3. S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24, 1–9 (2015).
    [Crossref]
  4. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab (CRC press, 2019).
    [Crossref]
  5. S. R. Teli, S. Zvanovec, and Z. Ghassemlooy, “Optical internet of things within 5G: Applications and challenges,” in 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), (IEEE, 2018), pp. 40–45.
    [Crossref]
  6. R. Boubezari, H. Le Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Light. Technol. 34, 4121–4127 (2016).
    [Crossref]
  7. T. Nguyen, A. Islam, T. Hossan, and Y. M. Jang, “Current status and performance analysis of optical camera communication technologies for 5G networks,” IEEE Access 5, 4574–4594 (2017).
    [Crossref]
  8. I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
    [Crossref]
  9. M. J. Jang, “IEEE 802.15 WPAN 15.7 amendment-optical camera communications study group (SG 7a),” (2019 [Online accessed 6 March 2019]).
  10. S. Teli, W. A. Cahyadi, and Y. H. Chung, “Optical camera communication: Motion over camera,” IEEE Commun. Mag. 55, 156–162 (2017).
    [Crossref]
  11. Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications (CRC press, 2017).
    [Crossref]
  12. S. R. Teli, W. A. Cahyadi, and Y. H. Chung, “Trained neurons-based motion detection in optical camera communications,” Opt. Eng. 57, 1–4 (2018).
    [Crossref]
  13. A. Sewaiwar, S. V. Tiwari, and Y.-H. Chung, “Visible light communication based motion detection,” Opt. Express 23, 18769–18776 (2015).
    [Crossref] [PubMed]
  14. N. Lalithamani, “Gesture control using single camera for PC,” Procedia Comput. Sci. 78, 146–152 (2016).
    [Crossref]
  15. D. Ionescu, V. Suse, C. Gadea, B. Solomon, B. Ionescu, and S. Islam, “A new infrared 3D camera for gesture control,” in 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), (IEEE, 2013), pp. 629–634.
    [Crossref]
  16. E. Alizadeh Jarchlo, X. Tang, H. Doroud, V. P. G. Jimenez, B. Lin, P. Casari, and Z. Ghassemlooy, “Li-Tect: 3-D monitoring and shape detection using visible light sensors,” IEEE Sensors J. 19, 940–949 (2019).
    [Crossref]
  17. T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou, “Human sensing using visible light communication,” in Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, (ACM, 2015), MobiCom ’15, pp. 331–344.
  18. Y. Lecun, Y. Bengio, and G. Hintin, “Deep learning,” Nature 521, 436–444 (2015).
    [Crossref] [PubMed]
  19. Atmel datasheet, “8-Bit microcontroller with 4/8/16/32K bytes in-system programmable flash,” (Atmel Corporation, 2009).
  20. J. C. Nascimento, A. J. Abrantes, and J. S. Marques, “An algorithm for centroid-based tracking of moving objects,” in 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), vol. 6 (IEEE, 1999), pp. 3305–3308.
    [Crossref]
  21. Y. H. Kim and Y. H. Chung, “Experimental outdoor visible light data communication system using differential decision threshold with optical and color filters,” Opt. Eng. 54, 1–3 (2015).
    [Crossref]
  22. Mathworks, “Choose a multilayer neural network training function,” https://in.mathworks.com/help/deeplearning/ug/choose-a-multilayer-neural-network-training-function.html;jsessionid=2e10b001e2c1c97fcac09f6004e6 .
  23. C. K. I. Williams, “Computation with infinite neural networks,” Neural Comput. 10, 1203–1216 (1998).
    [Crossref]
  24. Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett. 44, 800–801 (2008).
    [Crossref]

2019 (1)

E. Alizadeh Jarchlo, X. Tang, H. Doroud, V. P. G. Jimenez, B. Lin, P. Casari, and Z. Ghassemlooy, “Li-Tect: 3-D monitoring and shape detection using visible light sensors,” IEEE Sensors J. 19, 940–949 (2019).
[Crossref]

2018 (1)

S. R. Teli, W. A. Cahyadi, and Y. H. Chung, “Trained neurons-based motion detection in optical camera communications,” Opt. Eng. 57, 1–4 (2018).
[Crossref]

2017 (3)

T. Nguyen, A. Islam, T. Hossan, and Y. M. Jang, “Current status and performance analysis of optical camera communication technologies for 5G networks,” IEEE Access 5, 4574–4594 (2017).
[Crossref]

Z. Ghassemlooy, S. Zvanovec, M.-A. Khalighi, W. O. Popoola, and J. Perez, “Optical wireless communication systems,” Optik 151, 1–6 (2017).
[Crossref]

S. Teli, W. A. Cahyadi, and Y. H. Chung, “Optical camera communication: Motion over camera,” IEEE Commun. Mag. 55, 156–162 (2017).
[Crossref]

2016 (2)

N. Lalithamani, “Gesture control using single camera for PC,” Procedia Comput. Sci. 78, 146–152 (2016).
[Crossref]

R. Boubezari, H. Le Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Light. Technol. 34, 4121–4127 (2016).
[Crossref]

2015 (5)

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17, 2047–2077 (2015).
[Crossref]

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24, 1–9 (2015).
[Crossref]

A. Sewaiwar, S. V. Tiwari, and Y.-H. Chung, “Visible light communication based motion detection,” Opt. Express 23, 18769–18776 (2015).
[Crossref] [PubMed]

Y. Lecun, Y. Bengio, and G. Hintin, “Deep learning,” Nature 521, 436–444 (2015).
[Crossref] [PubMed]

Y. H. Kim and Y. H. Chung, “Experimental outdoor visible light data communication system using differential decision threshold with optical and color filters,” Opt. Eng. 54, 1–3 (2015).
[Crossref]

2013 (1)

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

2008 (1)

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett. 44, 800–801 (2008).
[Crossref]

1998 (1)

C. K. I. Williams, “Computation with infinite neural networks,” Neural Comput. 10, 1203–1216 (1998).
[Crossref]

Abrantes, A. J.

J. C. Nascimento, A. J. Abrantes, and J. S. Marques, “An algorithm for centroid-based tracking of moving objects,” in 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), vol. 6 (IEEE, 1999), pp. 3305–3308.
[Crossref]

Alizadeh Jarchlo, E.

E. Alizadeh Jarchlo, X. Tang, H. Doroud, V. P. G. Jimenez, B. Lin, P. Casari, and Z. Ghassemlooy, “Li-Tect: 3-D monitoring and shape detection using visible light sensors,” IEEE Sensors J. 19, 940–949 (2019).
[Crossref]

Alves, L. N.

Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications (CRC press, 2017).
[Crossref]

An, C.

T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou, “Human sensing using visible light communication,” in Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, (ACM, 2015), MobiCom ’15, pp. 331–344.

Andoh, M.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

Bengio, Y.

Y. Lecun, Y. Bengio, and G. Hintin, “Deep learning,” Nature 521, 436–444 (2015).
[Crossref] [PubMed]

Boubezari, R.

R. Boubezari, H. Le Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Light. Technol. 34, 4121–4127 (2016).
[Crossref]

Bouridane, A.

R. Boubezari, H. Le Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Light. Technol. 34, 4121–4127 (2016).
[Crossref]

Cahyadi, W. A.

S. R. Teli, W. A. Cahyadi, and Y. H. Chung, “Trained neurons-based motion detection in optical camera communications,” Opt. Eng. 57, 1–4 (2018).
[Crossref]

S. Teli, W. A. Cahyadi, and Y. H. Chung, “Optical camera communication: Motion over camera,” IEEE Commun. Mag. 55, 156–162 (2017).
[Crossref]

Campbell, A. T.

T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou, “Human sensing using visible light communication,” in Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, (ACM, 2015), MobiCom ’15, pp. 331–344.

Casari, P.

E. Alizadeh Jarchlo, X. Tang, H. Doroud, V. P. G. Jimenez, B. Lin, P. Casari, and Z. Ghassemlooy, “Li-Tect: 3-D monitoring and shape detection using visible light sensors,” IEEE Sensors J. 19, 940–949 (2019).
[Crossref]

Chung, Y. H.

S. R. Teli, W. A. Cahyadi, and Y. H. Chung, “Trained neurons-based motion detection in optical camera communications,” Opt. Eng. 57, 1–4 (2018).
[Crossref]

S. Teli, W. A. Cahyadi, and Y. H. Chung, “Optical camera communication: Motion over camera,” IEEE Commun. Mag. 55, 156–162 (2017).
[Crossref]

Y. H. Kim and Y. H. Chung, “Experimental outdoor visible light data communication system using differential decision threshold with optical and color filters,” Opt. Eng. 54, 1–3 (2015).
[Crossref]

Chung, Y.-H.

Chvojka, P.

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24, 1–9 (2015).
[Crossref]

Doroud, H.

E. Alizadeh Jarchlo, X. Tang, H. Doroud, V. P. G. Jimenez, B. Lin, P. Casari, and Z. Ghassemlooy, “Li-Tect: 3-D monitoring and shape detection using visible light sensors,” IEEE Sensors J. 19, 940–949 (2019).
[Crossref]

Feng, X.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17, 2047–2077 (2015).
[Crossref]

Gadea, C.

D. Ionescu, V. Suse, C. Gadea, B. Solomon, B. Ionescu, and S. Islam, “A new infrared 3D camera for gesture control,” in 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), (IEEE, 2013), pp. 629–634.
[Crossref]

Ghanbari, M.

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett. 44, 800–801 (2008).
[Crossref]

Ghassemlooy, Z.

E. Alizadeh Jarchlo, X. Tang, H. Doroud, V. P. G. Jimenez, B. Lin, P. Casari, and Z. Ghassemlooy, “Li-Tect: 3-D monitoring and shape detection using visible light sensors,” IEEE Sensors J. 19, 940–949 (2019).
[Crossref]

Z. Ghassemlooy, S. Zvanovec, M.-A. Khalighi, W. O. Popoola, and J. Perez, “Optical wireless communication systems,” Optik 151, 1–6 (2017).
[Crossref]

R. Boubezari, H. Le Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Light. Technol. 34, 4121–4127 (2016).
[Crossref]

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24, 1–9 (2015).
[Crossref]

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab (CRC press, 2019).
[Crossref]

S. R. Teli, S. Zvanovec, and Z. Ghassemlooy, “Optical internet of things within 5G: Applications and challenges,” in 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), (IEEE, 2018), pp. 40–45.
[Crossref]

Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications (CRC press, 2017).
[Crossref]

Haigh, P. A.

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24, 1–9 (2015).
[Crossref]

Hintin, G.

Y. Lecun, Y. Bengio, and G. Hintin, “Deep learning,” Nature 521, 436–444 (2015).
[Crossref] [PubMed]

Hossan, T.

T. Nguyen, A. Islam, T. Hossan, and Y. M. Jang, “Current status and performance analysis of optical camera communication technologies for 5G networks,” IEEE Access 5, 4574–4594 (2017).
[Crossref]

Hu, P.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17, 2047–2077 (2015).
[Crossref]

Huynh-Thu, Q.

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett. 44, 800–801 (2008).
[Crossref]

Ionescu, B.

D. Ionescu, V. Suse, C. Gadea, B. Solomon, B. Ionescu, and S. Islam, “A new infrared 3D camera for gesture control,” in 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), (IEEE, 2013), pp. 629–634.
[Crossref]

Ionescu, D.

D. Ionescu, V. Suse, C. Gadea, B. Solomon, B. Ionescu, and S. Islam, “A new infrared 3D camera for gesture control,” in 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), (IEEE, 2013), pp. 629–634.
[Crossref]

Islam, A.

T. Nguyen, A. Islam, T. Hossan, and Y. M. Jang, “Current status and performance analysis of optical camera communication technologies for 5G networks,” IEEE Access 5, 4574–4594 (2017).
[Crossref]

Islam, S.

D. Ionescu, V. Suse, C. Gadea, B. Solomon, B. Ionescu, and S. Islam, “A new infrared 3D camera for gesture control,” in 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), (IEEE, 2013), pp. 629–634.
[Crossref]

Ito, S.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

Jang, M. J.

M. J. Jang, “IEEE 802.15 WPAN 15.7 amendment-optical camera communications study group (SG 7a),” (2019 [Online accessed 6 March 2019]).

Jang, Y. M.

T. Nguyen, A. Islam, T. Hossan, and Y. M. Jang, “Current status and performance analysis of optical camera communication technologies for 5G networks,” IEEE Access 5, 4574–4594 (2017).
[Crossref]

Jimenez, V. P. G.

E. Alizadeh Jarchlo, X. Tang, H. Doroud, V. P. G. Jimenez, B. Lin, P. Casari, and Z. Ghassemlooy, “Li-Tect: 3-D monitoring and shape detection using visible light sensors,” IEEE Sensors J. 19, 940–949 (2019).
[Crossref]

Kagawa, K.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

Kawahito, S.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

Khalighi, M.-A.

Z. Ghassemlooy, S. Zvanovec, M.-A. Khalighi, W. O. Popoola, and J. Perez, “Optical wireless communication systems,” Optik 151, 1–6 (2017).
[Crossref]

Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications (CRC press, 2017).
[Crossref]

Kim, Y. H.

Y. H. Kim and Y. H. Chung, “Experimental outdoor visible light data communication system using differential decision threshold with optical and color filters,” Opt. Eng. 54, 1–3 (2015).
[Crossref]

Lalithamani, N.

N. Lalithamani, “Gesture control using single camera for PC,” Procedia Comput. Sci. 78, 146–152 (2016).
[Crossref]

Le Minh, H.

R. Boubezari, H. Le Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Light. Technol. 34, 4121–4127 (2016).
[Crossref]

Lecun, Y.

Y. Lecun, Y. Bengio, and G. Hintin, “Deep learning,” Nature 521, 436–444 (2015).
[Crossref] [PubMed]

Li, T.

T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou, “Human sensing using visible light communication,” in Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, (ACM, 2015), MobiCom ’15, pp. 331–344.

Lin, B.

E. Alizadeh Jarchlo, X. Tang, H. Doroud, V. P. G. Jimenez, B. Lin, P. Casari, and Z. Ghassemlooy, “Li-Tect: 3-D monitoring and shape detection using visible light sensors,” IEEE Sensors J. 19, 940–949 (2019).
[Crossref]

Marques, J. S.

J. C. Nascimento, A. J. Abrantes, and J. S. Marques, “An algorithm for centroid-based tracking of moving objects,” in 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), vol. 6 (IEEE, 1999), pp. 3305–3308.
[Crossref]

Mohapatra, P.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17, 2047–2077 (2015).
[Crossref]

Nascimento, J. C.

J. C. Nascimento, A. J. Abrantes, and J. S. Marques, “An algorithm for centroid-based tracking of moving objects,” in 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), vol. 6 (IEEE, 1999), pp. 3305–3308.
[Crossref]

Nguyen, T.

T. Nguyen, A. Islam, T. Hossan, and Y. M. Jang, “Current status and performance analysis of optical camera communication technologies for 5G networks,” IEEE Access 5, 4574–4594 (2017).
[Crossref]

Pathak, P. H.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17, 2047–2077 (2015).
[Crossref]

Perez, J.

Z. Ghassemlooy, S. Zvanovec, M.-A. Khalighi, W. O. Popoola, and J. Perez, “Optical wireless communication systems,” Optik 151, 1–6 (2017).
[Crossref]

Popoola, W.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab (CRC press, 2019).
[Crossref]

Popoola, W. O.

Z. Ghassemlooy, S. Zvanovec, M.-A. Khalighi, W. O. Popoola, and J. Perez, “Optical wireless communication systems,” Optik 151, 1–6 (2017).
[Crossref]

Rajbhandari, S.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab (CRC press, 2019).
[Crossref]

Sewaiwar, A.

Solomon, B.

D. Ionescu, V. Suse, C. Gadea, B. Solomon, B. Ionescu, and S. Islam, “A new infrared 3D camera for gesture control,” in 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), (IEEE, 2013), pp. 629–634.
[Crossref]

Suse, V.

D. Ionescu, V. Suse, C. Gadea, B. Solomon, B. Ionescu, and S. Islam, “A new infrared 3D camera for gesture control,” in 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), (IEEE, 2013), pp. 629–634.
[Crossref]

Takai, I.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

Tang, X.

E. Alizadeh Jarchlo, X. Tang, H. Doroud, V. P. G. Jimenez, B. Lin, P. Casari, and Z. Ghassemlooy, “Li-Tect: 3-D monitoring and shape detection using visible light sensors,” IEEE Sensors J. 19, 940–949 (2019).
[Crossref]

Teli, S.

S. Teli, W. A. Cahyadi, and Y. H. Chung, “Optical camera communication: Motion over camera,” IEEE Commun. Mag. 55, 156–162 (2017).
[Crossref]

Teli, S. R.

S. R. Teli, W. A. Cahyadi, and Y. H. Chung, “Trained neurons-based motion detection in optical camera communications,” Opt. Eng. 57, 1–4 (2018).
[Crossref]

S. R. Teli, S. Zvanovec, and Z. Ghassemlooy, “Optical internet of things within 5G: Applications and challenges,” in 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), (IEEE, 2018), pp. 40–45.
[Crossref]

Tian, Z.

T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou, “Human sensing using visible light communication,” in Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, (ACM, 2015), MobiCom ’15, pp. 331–344.

Tiwari, S. V.

Williams, C. K. I.

C. K. I. Williams, “Computation with infinite neural networks,” Neural Comput. 10, 1203–1216 (1998).
[Crossref]

Yasutomi, K.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

Zhou, X.

T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou, “Human sensing using visible light communication,” in Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, (ACM, 2015), MobiCom ’15, pp. 331–344.

Zvanovec, S.

Z. Ghassemlooy, S. Zvanovec, M.-A. Khalighi, W. O. Popoola, and J. Perez, “Optical wireless communication systems,” Optik 151, 1–6 (2017).
[Crossref]

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24, 1–9 (2015).
[Crossref]

S. R. Teli, S. Zvanovec, and Z. Ghassemlooy, “Optical internet of things within 5G: Applications and challenges,” in 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), (IEEE, 2018), pp. 40–45.
[Crossref]

Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications (CRC press, 2017).
[Crossref]

Electron. Lett. (1)

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett. 44, 800–801 (2008).
[Crossref]

IEEE Access (1)

T. Nguyen, A. Islam, T. Hossan, and Y. M. Jang, “Current status and performance analysis of optical camera communication technologies for 5G networks,” IEEE Access 5, 4574–4594 (2017).
[Crossref]

IEEE Commun. Mag. (1)

S. Teli, W. A. Cahyadi, and Y. H. Chung, “Optical camera communication: Motion over camera,” IEEE Commun. Mag. 55, 156–162 (2017).
[Crossref]

IEEE Commun. Surv. Tutorials (1)

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17, 2047–2077 (2015).
[Crossref]

IEEE Photonics J. (1)

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

IEEE Sensors J. (1)

E. Alizadeh Jarchlo, X. Tang, H. Doroud, V. P. G. Jimenez, B. Lin, P. Casari, and Z. Ghassemlooy, “Li-Tect: 3-D monitoring and shape detection using visible light sensors,” IEEE Sensors J. 19, 940–949 (2019).
[Crossref]

J. Light. Technol. (1)

R. Boubezari, H. Le Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Light. Technol. 34, 4121–4127 (2016).
[Crossref]

Nature (1)

Y. Lecun, Y. Bengio, and G. Hintin, “Deep learning,” Nature 521, 436–444 (2015).
[Crossref] [PubMed]

Neural Comput. (1)

C. K. I. Williams, “Computation with infinite neural networks,” Neural Comput. 10, 1203–1216 (1998).
[Crossref]

Opt. Eng. (2)

Y. H. Kim and Y. H. Chung, “Experimental outdoor visible light data communication system using differential decision threshold with optical and color filters,” Opt. Eng. 54, 1–3 (2015).
[Crossref]

S. R. Teli, W. A. Cahyadi, and Y. H. Chung, “Trained neurons-based motion detection in optical camera communications,” Opt. Eng. 57, 1–4 (2018).
[Crossref]

Opt. Express (1)

Optik (1)

Z. Ghassemlooy, S. Zvanovec, M.-A. Khalighi, W. O. Popoola, and J. Perez, “Optical wireless communication systems,” Optik 151, 1–6 (2017).
[Crossref]

Procedia Comput. Sci. (1)

N. Lalithamani, “Gesture control using single camera for PC,” Procedia Comput. Sci. 78, 146–152 (2016).
[Crossref]

Radioengineering (1)

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24, 1–9 (2015).
[Crossref]

Other (9)

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab (CRC press, 2019).
[Crossref]

S. R. Teli, S. Zvanovec, and Z. Ghassemlooy, “Optical internet of things within 5G: Applications and challenges,” in 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), (IEEE, 2018), pp. 40–45.
[Crossref]

M. J. Jang, “IEEE 802.15 WPAN 15.7 amendment-optical camera communications study group (SG 7a),” (2019 [Online accessed 6 March 2019]).

Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications (CRC press, 2017).
[Crossref]

D. Ionescu, V. Suse, C. Gadea, B. Solomon, B. Ionescu, and S. Islam, “A new infrared 3D camera for gesture control,” in 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), (IEEE, 2013), pp. 629–634.
[Crossref]

Atmel datasheet, “8-Bit microcontroller with 4/8/16/32K bytes in-system programmable flash,” (Atmel Corporation, 2009).

J. C. Nascimento, A. J. Abrantes, and J. S. Marques, “An algorithm for centroid-based tracking of moving objects,” in 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), vol. 6 (IEEE, 1999), pp. 3305–3308.
[Crossref]

T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou, “Human sensing using visible light communication,” in Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, (ACM, 2015), MobiCom ’15, pp. 331–344.

Mathworks, “Choose a multilayer neural network training function,” https://in.mathworks.com/help/deeplearning/ug/choose-a-multilayer-neural-network-training-function.html;jsessionid=2e10b001e2c1c97fcac09f6004e6 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 System overview: (a) proposed NN assisted MD in OCC, and (b) a flowchart of MD and communication analysis.
Fig. 2
Fig. 2 Example of MC detection in two frames.
Fig. 3
Fig. 3 (a) Transmitter configuration and (b) damaged frames due to blocking of one and two anchor LEDs.
Fig. 4
Fig. 4 (a) Identified data area excluding anchor and synchronization bits and (b) quantized intensity of the detected data.
Fig. 5
Fig. 5 NN structure for MD performance evaluation.
Fig. 6
Fig. 6 Experiment results for MC representing variants of (a) linear motion, (b) circular motion, and (c) curvatures. Note, the solid grey line represents actual motion pattern while the dots represent MC.
Fig. 7
Fig. 7 MD performance: (a) the MSE and the PT, and (b) the percentage of success vs. the transmission distance L.
Fig. 8
Fig. 8 OCC performance analysis: the BER performance as a function of the transmission span L, and the PSNR with respect to BER.

Tables (4)

Tables Icon

Table 1 Training algorithms used for MD [21]

Tables Icon

Table 2 System parameters.

Tables Icon

Table 4 Comparison of existing MD schemes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R d = N L × L FR N A ,
PSNR = 10 log 10 I peak 2 Avg ( I Tx I Rx ) 2 ,

Metrics