Abstract

Insufficient receiver bandwidth destroys the orthogonality of Nyquist-shaped pulses, generating inter-symbol interference (ISI). We propose using an optical pre-sampler to alleviate the requirement on the receiver bandwidth through pulse re-shaping. Experiments and simulations using an optically shaped 40-Gbaud Nyquist-shaped on-off-keying signal (N-OOK) show receiver sensitivity improvements of 4- and 7.1-dB under 18- and 11-GHz receiver electrical bandwidths, respectively.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
320 Gb/s Nyquist OTDM received by polarization-insensitive time-domain OFT

H. Hu, D. Kong, E. Palushani, M. Galili, H. C. H. Mulvad, and L. K. Oxenløwe
Opt. Express 22(1) 110-118 (2014)

Ultrafast Nyquist OTDM demultiplexing using optical Nyquist pulse sampling in an all-optical nonlinear switch

Toshihiko Hirooka, Daiki Seya, Koudai Harako, Daiki Suzuki, and Masataka Nakazawa
Opt. Express 23(16) 20858-20866 (2015)

Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train

Masataka Nakazawa, Toshihiko Hirooka, Peng Ruan, and Pengyu Guan
Opt. Express 20(2) 1129-1140 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Light. Technol. 25, 131–138 (2007).
    [Crossref]
  2. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Light. Technol. 29, 53–61 (2011).
    [Crossref]
  3. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20, 1129–1140 (2012).
    [Crossref] [PubMed]
  4. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22, 1129–1131 (2010).
    [Crossref]
  5. S. Kilmurray, T. Fehenberger, P. Bayvel, and R. I. Killey, “Comparison of the nonlinear transmission performance of quasi-Nyquist WDM and reduced guard interval OFDM,” Opt. Express 20, 4198–4205 (2012).
    [Crossref] [PubMed]
  6. H. N. Tan, T. Inoue, T. Kurosu, and S. Namiki, “Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network,” Opt. Express 21, 20313–20321 (2013).
    [Crossref] [PubMed]
  7. H. N. Tan, T. Inoue, K. Tanizawa, T. Kurosu, and S. Namiki, “All-optical nyquist filtering for elastic OTDM signals and their spectral defragmentation for inter-datacenter networks,” in European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.
  8. H. Trees, “Detection, estimation and modulation theory, part 1,” (Wiley, 1968).
  9. P. S. Henry, “Error-rate performance of optical amplifiers,” in Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 1989), p. THK3.
    [Crossref]
  10. D. Caplan and W. Atia, “A quantum-limited optically-matched communication link,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2001), pp. MM2.
    [Crossref]
  11. P. J. Winzer, M. Pfennigbauer, M. M. Strasser, and W. R. Leeb, “Optimum filter bandwidths for optically preamplified NRZ receivers,” J. Light. Technol. 19, 1263–1273 (2001).
    [Crossref]
  12. M. Strasser, M. Pfennigbauer, M. Pauer, and P. J. Winzer, “Experimental verification of optimum filter bandwidths in direct-detection (N) RZ receivers limited by optical noise,” in 14th Annual Meeting ofLasers and Electro-Optics Society (LEOS), (IEEE, 2001), pp. 485–486.
  13. P. J. Winzer and A. Kalmár, “Sensitivity enhancement of optical receivers by impulsive coding,” J. Light. Technol. 17, 171–177 (1999).
    [Crossref]
  14. M. M. Strasser, P. J. Winzer, and A. Napoli, “Noise and intersymbol-interference properties of OTDM and ETDM receivers,” IEEE Photonics Technol. Lett. 16, 248–250 (2004).
    [Crossref]
  15. S. Randel, J. K. Fischer, A. M. de Melo, and K. Petermann, “Equivalent low-pass model for OTDM receivers,” IEEE Photonics Technol. Lett. 17, 1070–1072 (2005).
    [Crossref]
  16. Z. Geng, B. Corcoran, A. Boes, A. Mitchell, L. Zhuang, Y. Xie, and A. J. Lowery, “Mitigation of electrical bandwidth limitations using optical pre-sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.
  17. A. J. Lowery, J. Schröder, and L. B. Du, “Flexible all-optical frequency allocation of OFDM subcarriers,” Opt. Express 22, 1045–1057 (2014).
    [Crossref] [PubMed]
  18. B. Corcoran, Z. Geng, V. Rozental, and A. J. Lowery, “Cyclic spectra for wavelength-routed optical networks,” Opt. Lett. 42, 1101–1104 (2017).
    [Crossref] [PubMed]
  19. B. Corcoran, C. Zhu, B. Song, and A. J. Lowery, “Folded orthogonal frequency division multiplexing,” Opt. Express 24, 29670–29681 (2016).
    [Crossref]
  20. H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, and S. Forchhammer, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTh5D–5.
  21. L. Zhuang, C. Zhu, B. Corcoran, M. Burla, C. G. H. Roeloffzen, A. Leinse, J. Schröder, and A. J. Lowery, “Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit,” Opt. Express 24, 5715–5727 (2016).
    [Crossref] [PubMed]
  22. Z. Geng, L. Zhuang, B. Corcoran, B. Foo, and A. J. Lowery, “Full C-band Nyquist-WDM interleaver chip,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.
  23. B. Corcoran, Z. Geng, V. Rozental, L. Zhuang, M. Lillieholm, and A. Lowery, “Photonic-chip-enabled 25 Tb/s optical superchannel using cyclic spectra,” in European Conference on Optical Communication (ECOC), (IEEE, 2017), p. M.1.F.3.
  24. M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 3898 (2013).
    [Crossref]
  25. J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
    [Crossref]
  26. A. J. Lowery, Y. Xie, and C. Zhu, “Systems performance comparison of three all-optical generation schemes for quasi-Nyquist WDM,” Opt. Express 23, 21706–21718 (2015).
    [Crossref] [PubMed]
  27. M. M. Strasser, P. J. Winzer, and A. Napoli, “Noise and intersymbol-interference properties of OTDM and ETDM receivers,” IEEE Photonics Technol. Lett. 16, 248–250 (2004).
    [Crossref]
  28. L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-filtering (de) multiplexer using a ring resonator assisted interferometer circuit,” J. Light. Technol. 34, 1732–1738 (2016).
    [Crossref]
  29. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274 (2017).
    [Crossref] [PubMed]
  30. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17, 4324–4329 (2009).
    [Crossref] [PubMed]
  31. L. Zhuang, C. Zhu, B. Corcoran, Z. Geng, B. Song, and A. Lowery, “On-chip optical sampling using an integrated SOA-based nonlinear optical loop mirror,” in European Conference on Optical Communication (ECOC), (VDE, 2016), pp. 1–3.
  32. M. Westlund, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Software-synchronized all-optical sampling for fiber communication systems,” J. Light. Technol. 23, 1088 (2005).
    [Crossref]
  33. J. K. Fischer, R. Ludwig, L. Molle, C. Schmidt-Langhorst, C. C. Leonhardt, A. Matiss, and C. Schubert, “High-speed digital coherent receiver based on parallel optical sampling,” J. Light. Technol. 29, 378–385 (2011).
    [Crossref]
  34. X. Chen, I. Kim, G. Li, H. Zhang, and B. Zhou, “Coherent detection using optical time-domain sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 2008), p. JThA62.

2017 (2)

B. Corcoran, Z. Geng, V. Rozental, and A. J. Lowery, “Cyclic spectra for wavelength-routed optical networks,” Opt. Lett. 42, 1101–1104 (2017).
[Crossref] [PubMed]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (1)

2014 (2)

A. J. Lowery, J. Schröder, and L. B. Du, “Flexible all-optical frequency allocation of OFDM subcarriers,” Opt. Express 22, 1045–1057 (2014).
[Crossref] [PubMed]

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref]

2013 (2)

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 3898 (2013).
[Crossref]

H. N. Tan, T. Inoue, T. Kurosu, and S. Namiki, “Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network,” Opt. Express 21, 20313–20321 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (2)

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Light. Technol. 29, 53–61 (2011).
[Crossref]

J. K. Fischer, R. Ludwig, L. Molle, C. Schmidt-Langhorst, C. C. Leonhardt, A. Matiss, and C. Schubert, “High-speed digital coherent receiver based on parallel optical sampling,” J. Light. Technol. 29, 378–385 (2011).
[Crossref]

2010 (1)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22, 1129–1131 (2010).
[Crossref]

2009 (1)

2007 (1)

A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Light. Technol. 25, 131–138 (2007).
[Crossref]

2005 (2)

S. Randel, J. K. Fischer, A. M. de Melo, and K. Petermann, “Equivalent low-pass model for OTDM receivers,” IEEE Photonics Technol. Lett. 17, 1070–1072 (2005).
[Crossref]

M. Westlund, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Software-synchronized all-optical sampling for fiber communication systems,” J. Light. Technol. 23, 1088 (2005).
[Crossref]

2004 (2)

M. M. Strasser, P. J. Winzer, and A. Napoli, “Noise and intersymbol-interference properties of OTDM and ETDM receivers,” IEEE Photonics Technol. Lett. 16, 248–250 (2004).
[Crossref]

M. M. Strasser, P. J. Winzer, and A. Napoli, “Noise and intersymbol-interference properties of OTDM and ETDM receivers,” IEEE Photonics Technol. Lett. 16, 248–250 (2004).
[Crossref]

2001 (1)

P. J. Winzer, M. Pfennigbauer, M. M. Strasser, and W. R. Leeb, “Optimum filter bandwidths for optically preamplified NRZ receivers,” J. Light. Technol. 19, 1263–1273 (2001).
[Crossref]

1999 (1)

P. J. Winzer and A. Kalmár, “Sensitivity enhancement of optical receivers by impulsive coding,” J. Light. Technol. 17, 171–177 (1999).
[Crossref]

Alem, M.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 3898 (2013).
[Crossref]

Andersen, J. D.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, and S. Forchhammer, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTh5D–5.

Anderson, M. H.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274 (2017).
[Crossref] [PubMed]

Andrekson, P. A.

M. Westlund, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Software-synchronized all-optical sampling for fiber communication systems,” J. Light. Technol. 23, 1088 (2005).
[Crossref]

Armstrong, J.

A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Light. Technol. 25, 131–138 (2007).
[Crossref]

Atia, W.

D. Caplan and W. Atia, “A quantum-limited optically-matched communication link,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2001), pp. MM2.
[Crossref]

Bayvel, P.

Boes, A.

Z. Geng, B. Corcoran, A. Boes, A. Mitchell, L. Zhuang, Y. Xie, and A. J. Lowery, “Mitigation of electrical bandwidth limitations using optical pre-sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.

Bosco, G.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Light. Technol. 29, 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22, 1129–1131 (2010).
[Crossref]

Brasch, V.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274 (2017).
[Crossref] [PubMed]

Brès, C.-S.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 3898 (2013).
[Crossref]

Burla, M.

L. Zhuang, C. Zhu, B. Corcoran, M. Burla, C. G. H. Roeloffzen, A. Leinse, J. Schröder, and A. J. Lowery, “Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit,” Opt. Express 24, 5715–5727 (2016).
[Crossref] [PubMed]

L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-filtering (de) multiplexer using a ring resonator assisted interferometer circuit,” J. Light. Technol. 34, 1732–1738 (2016).
[Crossref]

Caplan, D.

D. Caplan and W. Atia, “A quantum-limited optically-matched communication link,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2001), pp. MM2.
[Crossref]

Carena, A.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Light. Technol. 29, 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22, 1129–1131 (2010).
[Crossref]

Chen, X.

X. Chen, I. Kim, G. Li, H. Zhang, and B. Zhou, “Coherent detection using optical time-domain sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 2008), p. JThA62.

Chi, N.

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref]

Corcoran, B.

B. Corcoran, Z. Geng, V. Rozental, and A. J. Lowery, “Cyclic spectra for wavelength-routed optical networks,” Opt. Lett. 42, 1101–1104 (2017).
[Crossref] [PubMed]

B. Corcoran, C. Zhu, B. Song, and A. J. Lowery, “Folded orthogonal frequency division multiplexing,” Opt. Express 24, 29670–29681 (2016).
[Crossref]

L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-filtering (de) multiplexer using a ring resonator assisted interferometer circuit,” J. Light. Technol. 34, 1732–1738 (2016).
[Crossref]

L. Zhuang, C. Zhu, B. Corcoran, M. Burla, C. G. H. Roeloffzen, A. Leinse, J. Schröder, and A. J. Lowery, “Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit,” Opt. Express 24, 5715–5727 (2016).
[Crossref] [PubMed]

B. Corcoran, Z. Geng, V. Rozental, L. Zhuang, M. Lillieholm, and A. Lowery, “Photonic-chip-enabled 25 Tb/s optical superchannel using cyclic spectra,” in European Conference on Optical Communication (ECOC), (IEEE, 2017), p. M.1.F.3.

Z. Geng, L. Zhuang, B. Corcoran, B. Foo, and A. J. Lowery, “Full C-band Nyquist-WDM interleaver chip,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.

L. Zhuang, C. Zhu, B. Corcoran, Z. Geng, B. Song, and A. Lowery, “On-chip optical sampling using an integrated SOA-based nonlinear optical loop mirror,” in European Conference on Optical Communication (ECOC), (VDE, 2016), pp. 1–3.

Z. Geng, B. Corcoran, A. Boes, A. Mitchell, L. Zhuang, Y. Xie, and A. J. Lowery, “Mitigation of electrical bandwidth limitations using optical pre-sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.

Curri, V.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Light. Technol. 29, 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22, 1129–1131 (2010).
[Crossref]

de Melo, A. M.

S. Randel, J. K. Fischer, A. M. de Melo, and K. Petermann, “Equivalent low-pass model for OTDM receivers,” IEEE Photonics Technol. Lett. 17, 1070–1072 (2005).
[Crossref]

Du, L. B.

A. J. Lowery, J. Schröder, and L. B. Du, “Flexible all-optical frequency allocation of OFDM subcarriers,” Opt. Express 22, 1045–1057 (2014).
[Crossref] [PubMed]

A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Light. Technol. 25, 131–138 (2007).
[Crossref]

Fang, Y.

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref]

Fehenberger, T.

Fischer, J. K.

J. K. Fischer, R. Ludwig, L. Molle, C. Schmidt-Langhorst, C. C. Leonhardt, A. Matiss, and C. Schubert, “High-speed digital coherent receiver based on parallel optical sampling,” J. Light. Technol. 29, 378–385 (2011).
[Crossref]

S. Randel, J. K. Fischer, A. M. de Melo, and K. Petermann, “Equivalent low-pass model for OTDM receivers,” IEEE Photonics Technol. Lett. 17, 1070–1072 (2005).
[Crossref]

Foo, B.

Z. Geng, L. Zhuang, B. Corcoran, B. Foo, and A. J. Lowery, “Full C-band Nyquist-WDM interleaver chip,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.

Forchhammer, S.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, and S. Forchhammer, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTh5D–5.

Forghieri, F.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Light. Technol. 29, 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22, 1129–1131 (2010).
[Crossref]

Foster, M. A.

Gaeta, A. L.

Galili, M.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, and S. Forchhammer, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTh5D–5.

Geng, Z.

B. Corcoran, Z. Geng, V. Rozental, and A. J. Lowery, “Cyclic spectra for wavelength-routed optical networks,” Opt. Lett. 42, 1101–1104 (2017).
[Crossref] [PubMed]

Z. Geng, B. Corcoran, A. Boes, A. Mitchell, L. Zhuang, Y. Xie, and A. J. Lowery, “Mitigation of electrical bandwidth limitations using optical pre-sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.

Z. Geng, L. Zhuang, B. Corcoran, B. Foo, and A. J. Lowery, “Full C-band Nyquist-WDM interleaver chip,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.

B. Corcoran, Z. Geng, V. Rozental, L. Zhuang, M. Lillieholm, and A. Lowery, “Photonic-chip-enabled 25 Tb/s optical superchannel using cyclic spectra,” in European Conference on Optical Communication (ECOC), (IEEE, 2017), p. M.1.F.3.

L. Zhuang, C. Zhu, B. Corcoran, Z. Geng, B. Song, and A. Lowery, “On-chip optical sampling using an integrated SOA-based nonlinear optical loop mirror,” in European Conference on Optical Communication (ECOC), (VDE, 2016), pp. 1–3.

Geraghty, D. F.

Guan, P.

Henry, P. S.

P. S. Henry, “Error-rate performance of optical amplifiers,” in Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 1989), p. THK3.
[Crossref]

Hirooka, T.

Hoekman, M.

L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-filtering (de) multiplexer using a ring resonator assisted interferometer circuit,” J. Light. Technol. 34, 1732–1738 (2016).
[Crossref]

Hu, H.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, and S. Forchhammer, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTh5D–5.

Inoue, T.

H. N. Tan, T. Inoue, T. Kurosu, and S. Namiki, “Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network,” Opt. Express 21, 20313–20321 (2013).
[Crossref] [PubMed]

H. N. Tan, T. Inoue, K. Tanizawa, T. Kurosu, and S. Namiki, “All-optical nyquist filtering for elastic OTDM signals and their spectral defragmentation for inter-datacenter networks,” in European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.

Kalmár, A.

P. J. Winzer and A. Kalmár, “Sensitivity enhancement of optical receivers by impulsive coding,” J. Light. Technol. 17, 171–177 (1999).
[Crossref]

Karlsson, M.

M. Westlund, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Software-synchronized all-optical sampling for fiber communication systems,” J. Light. Technol. 23, 1088 (2005).
[Crossref]

Karpov, M.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274 (2017).
[Crossref] [PubMed]

Kemal, J. N.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274 (2017).
[Crossref] [PubMed]

Killey, R. I.

Kilmurray, S.

Kim, I.

X. Chen, I. Kim, G. Li, H. Zhang, and B. Zhou, “Coherent detection using optical time-domain sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 2008), p. JThA62.

Kong, D.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, and S. Forchhammer, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTh5D–5.

Kordts, A.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274 (2017).
[Crossref] [PubMed]

Kurosu, T.

H. N. Tan, T. Inoue, T. Kurosu, and S. Namiki, “Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network,” Opt. Express 21, 20313–20321 (2013).
[Crossref] [PubMed]

H. N. Tan, T. Inoue, K. Tanizawa, T. Kurosu, and S. Namiki, “All-optical nyquist filtering for elastic OTDM signals and their spectral defragmentation for inter-datacenter networks,” in European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.

Larsen, K. J.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, and S. Forchhammer, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTh5D–5.

Leeb, W. R.

P. J. Winzer, M. Pfennigbauer, M. M. Strasser, and W. R. Leeb, “Optimum filter bandwidths for optically preamplified NRZ receivers,” J. Light. Technol. 19, 1263–1273 (2001).
[Crossref]

Leinse, A.

Leonhardt, C. C.

J. K. Fischer, R. Ludwig, L. Molle, C. Schmidt-Langhorst, C. C. Leonhardt, A. Matiss, and C. Schubert, “High-speed digital coherent receiver based on parallel optical sampling,” J. Light. Technol. 29, 378–385 (2011).
[Crossref]

Li, G.

X. Chen, I. Kim, G. Li, H. Zhang, and B. Zhou, “Coherent detection using optical time-domain sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 2008), p. JThA62.

Lillieholm, M.

B. Corcoran, Z. Geng, V. Rozental, L. Zhuang, M. Lillieholm, and A. Lowery, “Photonic-chip-enabled 25 Tb/s optical superchannel using cyclic spectra,” in European Conference on Optical Communication (ECOC), (IEEE, 2017), p. M.1.F.3.

Lipson, M.

Lowery, A.

B. Corcoran, Z. Geng, V. Rozental, L. Zhuang, M. Lillieholm, and A. Lowery, “Photonic-chip-enabled 25 Tb/s optical superchannel using cyclic spectra,” in European Conference on Optical Communication (ECOC), (IEEE, 2017), p. M.1.F.3.

L. Zhuang, C. Zhu, B. Corcoran, Z. Geng, B. Song, and A. Lowery, “On-chip optical sampling using an integrated SOA-based nonlinear optical loop mirror,” in European Conference on Optical Communication (ECOC), (VDE, 2016), pp. 1–3.

Lowery, A. J.

B. Corcoran, Z. Geng, V. Rozental, and A. J. Lowery, “Cyclic spectra for wavelength-routed optical networks,” Opt. Lett. 42, 1101–1104 (2017).
[Crossref] [PubMed]

L. Zhuang, C. Zhu, B. Corcoran, M. Burla, C. G. H. Roeloffzen, A. Leinse, J. Schröder, and A. J. Lowery, “Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit,” Opt. Express 24, 5715–5727 (2016).
[Crossref] [PubMed]

B. Corcoran, C. Zhu, B. Song, and A. J. Lowery, “Folded orthogonal frequency division multiplexing,” Opt. Express 24, 29670–29681 (2016).
[Crossref]

L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-filtering (de) multiplexer using a ring resonator assisted interferometer circuit,” J. Light. Technol. 34, 1732–1738 (2016).
[Crossref]

A. J. Lowery, Y. Xie, and C. Zhu, “Systems performance comparison of three all-optical generation schemes for quasi-Nyquist WDM,” Opt. Express 23, 21706–21718 (2015).
[Crossref] [PubMed]

A. J. Lowery, J. Schröder, and L. B. Du, “Flexible all-optical frequency allocation of OFDM subcarriers,” Opt. Express 22, 1045–1057 (2014).
[Crossref] [PubMed]

A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Light. Technol. 25, 131–138 (2007).
[Crossref]

Z. Geng, B. Corcoran, A. Boes, A. Mitchell, L. Zhuang, Y. Xie, and A. J. Lowery, “Mitigation of electrical bandwidth limitations using optical pre-sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.

Z. Geng, L. Zhuang, B. Corcoran, B. Foo, and A. J. Lowery, “Full C-band Nyquist-WDM interleaver chip,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.

Ludwig, R.

J. K. Fischer, R. Ludwig, L. Molle, C. Schmidt-Langhorst, C. C. Leonhardt, A. Matiss, and C. Schubert, “High-speed digital coherent receiver based on parallel optical sampling,” J. Light. Technol. 29, 378–385 (2011).
[Crossref]

Marin-Palomo, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274 (2017).
[Crossref] [PubMed]

Matiss, A.

J. K. Fischer, R. Ludwig, L. Molle, C. Schmidt-Langhorst, C. C. Leonhardt, A. Matiss, and C. Schubert, “High-speed digital coherent receiver based on parallel optical sampling,” J. Light. Technol. 29, 378–385 (2011).
[Crossref]

Mitchell, A.

Z. Geng, B. Corcoran, A. Boes, A. Mitchell, L. Zhuang, Y. Xie, and A. J. Lowery, “Mitigation of electrical bandwidth limitations using optical pre-sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.

Molle, L.

J. K. Fischer, R. Ludwig, L. Molle, C. Schmidt-Langhorst, C. C. Leonhardt, A. Matiss, and C. Schubert, “High-speed digital coherent receiver based on parallel optical sampling,” J. Light. Technol. 29, 378–385 (2011).
[Crossref]

Mulvad, H. C. H.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, and S. Forchhammer, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTh5D–5.

Nakazawa, M.

Namiki, S.

H. N. Tan, T. Inoue, T. Kurosu, and S. Namiki, “Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network,” Opt. Express 21, 20313–20321 (2013).
[Crossref] [PubMed]

H. N. Tan, T. Inoue, K. Tanizawa, T. Kurosu, and S. Namiki, “All-optical nyquist filtering for elastic OTDM signals and their spectral defragmentation for inter-datacenter networks,” in European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.

Napoli, A.

M. M. Strasser, P. J. Winzer, and A. Napoli, “Noise and intersymbol-interference properties of OTDM and ETDM receivers,” IEEE Photonics Technol. Lett. 16, 248–250 (2004).
[Crossref]

M. M. Strasser, P. J. Winzer, and A. Napoli, “Noise and intersymbol-interference properties of OTDM and ETDM receivers,” IEEE Photonics Technol. Lett. 16, 248–250 (2004).
[Crossref]

Palushani, E.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, and S. Forchhammer, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTh5D–5.

Pauer, M.

M. Strasser, M. Pfennigbauer, M. Pauer, and P. J. Winzer, “Experimental verification of optimum filter bandwidths in direct-detection (N) RZ receivers limited by optical noise,” in 14th Annual Meeting ofLasers and Electro-Optics Society (LEOS), (IEEE, 2001), pp. 485–486.

Petermann, K.

S. Randel, J. K. Fischer, A. M. de Melo, and K. Petermann, “Equivalent low-pass model for OTDM receivers,” IEEE Photonics Technol. Lett. 17, 1070–1072 (2005).
[Crossref]

Pfeiffer, M. H.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274 (2017).
[Crossref] [PubMed]

Pfeifle, J.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274 (2017).
[Crossref] [PubMed]

Pfennigbauer, M.

P. J. Winzer, M. Pfennigbauer, M. M. Strasser, and W. R. Leeb, “Optimum filter bandwidths for optically preamplified NRZ receivers,” J. Light. Technol. 19, 1263–1273 (2001).
[Crossref]

M. Strasser, M. Pfennigbauer, M. Pauer, and P. J. Winzer, “Experimental verification of optimum filter bandwidths in direct-detection (N) RZ receivers limited by optical noise,” in 14th Annual Meeting ofLasers and Electro-Optics Society (LEOS), (IEEE, 2001), pp. 485–486.

Poggiolini, P.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Light. Technol. 29, 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22, 1129–1131 (2010).
[Crossref]

Randel, S.

S. Randel, J. K. Fischer, A. M. de Melo, and K. Petermann, “Equivalent low-pass model for OTDM receivers,” IEEE Photonics Technol. Lett. 17, 1070–1072 (2005).
[Crossref]

Rasmussen, A.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, and S. Forchhammer, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTh5D–5.

Roeloffzen, C. G.

L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-filtering (de) multiplexer using a ring resonator assisted interferometer circuit,” J. Light. Technol. 34, 1732–1738 (2016).
[Crossref]

Roeloffzen, C. G. H.

Rozental, V.

B. Corcoran, Z. Geng, V. Rozental, and A. J. Lowery, “Cyclic spectra for wavelength-routed optical networks,” Opt. Lett. 42, 1101–1104 (2017).
[Crossref] [PubMed]

B. Corcoran, Z. Geng, V. Rozental, L. Zhuang, M. Lillieholm, and A. Lowery, “Photonic-chip-enabled 25 Tb/s optical superchannel using cyclic spectra,” in European Conference on Optical Communication (ECOC), (IEEE, 2017), p. M.1.F.3.

Ruan, P.

Salem, R.

Schmidt-Langhorst, C.

J. K. Fischer, R. Ludwig, L. Molle, C. Schmidt-Langhorst, C. C. Leonhardt, A. Matiss, and C. Schubert, “High-speed digital coherent receiver based on parallel optical sampling,” J. Light. Technol. 29, 378–385 (2011).
[Crossref]

Schneider, T.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 3898 (2013).
[Crossref]

Schröder, J.

Schubert, C.

J. K. Fischer, R. Ludwig, L. Molle, C. Schmidt-Langhorst, C. C. Leonhardt, A. Matiss, and C. Schubert, “High-speed digital coherent receiver based on parallel optical sampling,” J. Light. Technol. 29, 378–385 (2011).
[Crossref]

Shoaie, M. A.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 3898 (2013).
[Crossref]

Song, B.

B. Corcoran, C. Zhu, B. Song, and A. J. Lowery, “Folded orthogonal frequency division multiplexing,” Opt. Express 24, 29670–29681 (2016).
[Crossref]

L. Zhuang, C. Zhu, B. Corcoran, Z. Geng, B. Song, and A. Lowery, “On-chip optical sampling using an integrated SOA-based nonlinear optical loop mirror,” in European Conference on Optical Communication (ECOC), (VDE, 2016), pp. 1–3.

Sørensen, B. M.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, and S. Forchhammer, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTh5D–5.

Soto, M. A.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 3898 (2013).
[Crossref]

Strasser, M.

M. Strasser, M. Pfennigbauer, M. Pauer, and P. J. Winzer, “Experimental verification of optimum filter bandwidths in direct-detection (N) RZ receivers limited by optical noise,” in 14th Annual Meeting ofLasers and Electro-Optics Society (LEOS), (IEEE, 2001), pp. 485–486.

Strasser, M. M.

M. M. Strasser, P. J. Winzer, and A. Napoli, “Noise and intersymbol-interference properties of OTDM and ETDM receivers,” IEEE Photonics Technol. Lett. 16, 248–250 (2004).
[Crossref]

M. M. Strasser, P. J. Winzer, and A. Napoli, “Noise and intersymbol-interference properties of OTDM and ETDM receivers,” IEEE Photonics Technol. Lett. 16, 248–250 (2004).
[Crossref]

P. J. Winzer, M. Pfennigbauer, M. M. Strasser, and W. R. Leeb, “Optimum filter bandwidths for optically preamplified NRZ receivers,” J. Light. Technol. 19, 1263–1273 (2001).
[Crossref]

Sunnerud, H.

M. Westlund, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Software-synchronized all-optical sampling for fiber communication systems,” J. Light. Technol. 23, 1088 (2005).
[Crossref]

Tan, H. N.

H. N. Tan, T. Inoue, T. Kurosu, and S. Namiki, “Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network,” Opt. Express 21, 20313–20321 (2013).
[Crossref] [PubMed]

H. N. Tan, T. Inoue, K. Tanizawa, T. Kurosu, and S. Namiki, “All-optical nyquist filtering for elastic OTDM signals and their spectral defragmentation for inter-datacenter networks,” in European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.

Tanizawa, K.

H. N. Tan, T. Inoue, K. Tanizawa, T. Kurosu, and S. Namiki, “All-optical nyquist filtering for elastic OTDM signals and their spectral defragmentation for inter-datacenter networks,” in European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.

Thévenaz, L.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 3898 (2013).
[Crossref]

Trees, H.

H. Trees, “Detection, estimation and modulation theory, part 1,” (Wiley, 1968).

Trocha, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274 (2017).
[Crossref] [PubMed]

Turner-Foster, A. C.

Vedadi, A.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 3898 (2013).
[Crossref]

Westlund, M.

M. Westlund, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Software-synchronized all-optical sampling for fiber communication systems,” J. Light. Technol. 23, 1088 (2005).
[Crossref]

Winzer, P. J.

M. M. Strasser, P. J. Winzer, and A. Napoli, “Noise and intersymbol-interference properties of OTDM and ETDM receivers,” IEEE Photonics Technol. Lett. 16, 248–250 (2004).
[Crossref]

M. M. Strasser, P. J. Winzer, and A. Napoli, “Noise and intersymbol-interference properties of OTDM and ETDM receivers,” IEEE Photonics Technol. Lett. 16, 248–250 (2004).
[Crossref]

P. J. Winzer, M. Pfennigbauer, M. M. Strasser, and W. R. Leeb, “Optimum filter bandwidths for optically preamplified NRZ receivers,” J. Light. Technol. 19, 1263–1273 (2001).
[Crossref]

P. J. Winzer and A. Kalmár, “Sensitivity enhancement of optical receivers by impulsive coding,” J. Light. Technol. 17, 171–177 (1999).
[Crossref]

M. Strasser, M. Pfennigbauer, M. Pauer, and P. J. Winzer, “Experimental verification of optimum filter bandwidths in direct-detection (N) RZ receivers limited by optical noise,” in 14th Annual Meeting ofLasers and Electro-Optics Society (LEOS), (IEEE, 2001), pp. 485–486.

Wolf, S.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274 (2017).
[Crossref] [PubMed]

Xie, Y.

L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-filtering (de) multiplexer using a ring resonator assisted interferometer circuit,” J. Light. Technol. 34, 1732–1738 (2016).
[Crossref]

A. J. Lowery, Y. Xie, and C. Zhu, “Systems performance comparison of three all-optical generation schemes for quasi-Nyquist WDM,” Opt. Express 23, 21706–21718 (2015).
[Crossref] [PubMed]

Z. Geng, B. Corcoran, A. Boes, A. Mitchell, L. Zhuang, Y. Xie, and A. J. Lowery, “Mitigation of electrical bandwidth limitations using optical pre-sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.

Yu, J.

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref]

Zhang, H.

X. Chen, I. Kim, G. Li, H. Zhang, and B. Zhou, “Coherent detection using optical time-domain sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 2008), p. JThA62.

Zhang, J.

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref]

Zhou, B.

X. Chen, I. Kim, G. Li, H. Zhang, and B. Zhou, “Coherent detection using optical time-domain sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 2008), p. JThA62.

Zhu, C.

L. Zhuang, C. Zhu, B. Corcoran, M. Burla, C. G. H. Roeloffzen, A. Leinse, J. Schröder, and A. J. Lowery, “Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit,” Opt. Express 24, 5715–5727 (2016).
[Crossref] [PubMed]

L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-filtering (de) multiplexer using a ring resonator assisted interferometer circuit,” J. Light. Technol. 34, 1732–1738 (2016).
[Crossref]

B. Corcoran, C. Zhu, B. Song, and A. J. Lowery, “Folded orthogonal frequency division multiplexing,” Opt. Express 24, 29670–29681 (2016).
[Crossref]

A. J. Lowery, Y. Xie, and C. Zhu, “Systems performance comparison of three all-optical generation schemes for quasi-Nyquist WDM,” Opt. Express 23, 21706–21718 (2015).
[Crossref] [PubMed]

L. Zhuang, C. Zhu, B. Corcoran, Z. Geng, B. Song, and A. Lowery, “On-chip optical sampling using an integrated SOA-based nonlinear optical loop mirror,” in European Conference on Optical Communication (ECOC), (VDE, 2016), pp. 1–3.

Zhuang, L.

L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-filtering (de) multiplexer using a ring resonator assisted interferometer circuit,” J. Light. Technol. 34, 1732–1738 (2016).
[Crossref]

L. Zhuang, C. Zhu, B. Corcoran, M. Burla, C. G. H. Roeloffzen, A. Leinse, J. Schröder, and A. J. Lowery, “Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit,” Opt. Express 24, 5715–5727 (2016).
[Crossref] [PubMed]

Z. Geng, L. Zhuang, B. Corcoran, B. Foo, and A. J. Lowery, “Full C-band Nyquist-WDM interleaver chip,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.

B. Corcoran, Z. Geng, V. Rozental, L. Zhuang, M. Lillieholm, and A. Lowery, “Photonic-chip-enabled 25 Tb/s optical superchannel using cyclic spectra,” in European Conference on Optical Communication (ECOC), (IEEE, 2017), p. M.1.F.3.

L. Zhuang, C. Zhu, B. Corcoran, Z. Geng, B. Song, and A. Lowery, “On-chip optical sampling using an integrated SOA-based nonlinear optical loop mirror,” in European Conference on Optical Communication (ECOC), (VDE, 2016), pp. 1–3.

Z. Geng, B. Corcoran, A. Boes, A. Mitchell, L. Zhuang, Y. Xie, and A. J. Lowery, “Mitigation of electrical bandwidth limitations using optical pre-sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.

IEEE Photonics Technol. Lett. (4)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22, 1129–1131 (2010).
[Crossref]

M. M. Strasser, P. J. Winzer, and A. Napoli, “Noise and intersymbol-interference properties of OTDM and ETDM receivers,” IEEE Photonics Technol. Lett. 16, 248–250 (2004).
[Crossref]

S. Randel, J. K. Fischer, A. M. de Melo, and K. Petermann, “Equivalent low-pass model for OTDM receivers,” IEEE Photonics Technol. Lett. 17, 1070–1072 (2005).
[Crossref]

M. M. Strasser, P. J. Winzer, and A. Napoli, “Noise and intersymbol-interference properties of OTDM and ETDM receivers,” IEEE Photonics Technol. Lett. 16, 248–250 (2004).
[Crossref]

J. Light. Technol. (7)

L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-filtering (de) multiplexer using a ring resonator assisted interferometer circuit,” J. Light. Technol. 34, 1732–1738 (2016).
[Crossref]

P. J. Winzer and A. Kalmár, “Sensitivity enhancement of optical receivers by impulsive coding,” J. Light. Technol. 17, 171–177 (1999).
[Crossref]

M. Westlund, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Software-synchronized all-optical sampling for fiber communication systems,” J. Light. Technol. 23, 1088 (2005).
[Crossref]

J. K. Fischer, R. Ludwig, L. Molle, C. Schmidt-Langhorst, C. C. Leonhardt, A. Matiss, and C. Schubert, “High-speed digital coherent receiver based on parallel optical sampling,” J. Light. Technol. 29, 378–385 (2011).
[Crossref]

A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Light. Technol. 25, 131–138 (2007).
[Crossref]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Light. Technol. 29, 53–61 (2011).
[Crossref]

P. J. Winzer, M. Pfennigbauer, M. M. Strasser, and W. R. Leeb, “Optimum filter bandwidths for optically preamplified NRZ receivers,” J. Light. Technol. 19, 1263–1273 (2001).
[Crossref]

Nat. Commun. (1)

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 3898 (2013).
[Crossref]

Nature (1)

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274 (2017).
[Crossref] [PubMed]

Opt. Express (8)

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17, 4324–4329 (2009).
[Crossref] [PubMed]

A. J. Lowery, Y. Xie, and C. Zhu, “Systems performance comparison of three all-optical generation schemes for quasi-Nyquist WDM,” Opt. Express 23, 21706–21718 (2015).
[Crossref] [PubMed]

M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20, 1129–1140 (2012).
[Crossref] [PubMed]

S. Kilmurray, T. Fehenberger, P. Bayvel, and R. I. Killey, “Comparison of the nonlinear transmission performance of quasi-Nyquist WDM and reduced guard interval OFDM,” Opt. Express 20, 4198–4205 (2012).
[Crossref] [PubMed]

H. N. Tan, T. Inoue, T. Kurosu, and S. Namiki, “Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network,” Opt. Express 21, 20313–20321 (2013).
[Crossref] [PubMed]

A. J. Lowery, J. Schröder, and L. B. Du, “Flexible all-optical frequency allocation of OFDM subcarriers,” Opt. Express 22, 1045–1057 (2014).
[Crossref] [PubMed]

B. Corcoran, C. Zhu, B. Song, and A. J. Lowery, “Folded orthogonal frequency division multiplexing,” Opt. Express 24, 29670–29681 (2016).
[Crossref]

L. Zhuang, C. Zhu, B. Corcoran, M. Burla, C. G. H. Roeloffzen, A. Leinse, J. Schröder, and A. J. Lowery, “Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit,” Opt. Express 24, 5715–5727 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

Sci. Rep. (1)

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref]

Other (11)

L. Zhuang, C. Zhu, B. Corcoran, Z. Geng, B. Song, and A. Lowery, “On-chip optical sampling using an integrated SOA-based nonlinear optical loop mirror,” in European Conference on Optical Communication (ECOC), (VDE, 2016), pp. 1–3.

X. Chen, I. Kim, G. Li, H. Zhang, and B. Zhou, “Coherent detection using optical time-domain sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 2008), p. JThA62.

Z. Geng, B. Corcoran, A. Boes, A. Mitchell, L. Zhuang, Y. Xie, and A. J. Lowery, “Mitigation of electrical bandwidth limitations using optical pre-sampling,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.

Z. Geng, L. Zhuang, B. Corcoran, B. Foo, and A. J. Lowery, “Full C-band Nyquist-WDM interleaver chip,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2017), pp. 1–3.

B. Corcoran, Z. Geng, V. Rozental, L. Zhuang, M. Lillieholm, and A. Lowery, “Photonic-chip-enabled 25 Tb/s optical superchannel using cyclic spectra,” in European Conference on Optical Communication (ECOC), (IEEE, 2017), p. M.1.F.3.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, and S. Forchhammer, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTh5D–5.

H. N. Tan, T. Inoue, K. Tanizawa, T. Kurosu, and S. Namiki, “All-optical nyquist filtering for elastic OTDM signals and their spectral defragmentation for inter-datacenter networks,” in European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.

H. Trees, “Detection, estimation and modulation theory, part 1,” (Wiley, 1968).

P. S. Henry, “Error-rate performance of optical amplifiers,” in Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 1989), p. THK3.
[Crossref]

D. Caplan and W. Atia, “A quantum-limited optically-matched communication link,” in Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2001), pp. MM2.
[Crossref]

M. Strasser, M. Pfennigbauer, M. Pauer, and P. J. Winzer, “Experimental verification of optimum filter bandwidths in direct-detection (N) RZ receivers limited by optical noise,” in 14th Annual Meeting ofLasers and Electro-Optics Society (LEOS), (IEEE, 2001), pp. 485–486.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Principle of optical pre-sampling before bandwidth-limited receivers. (b) Optical field of optically shaped 40-Gbaud N-OOK before and after optical sampling.
Fig. 2
Fig. 2 Optical and electrical spectra and eye-diagrams of 40-Gbaud (a) optically shaped N-OOK and (b) RZ direct detection with no electrical band limitation, or with 20-GHz or 15- GHz 4th-order Bessel electrical low pass filter. The results are from a VPItransmissionMaker simulation without additional noise.
Fig. 3
Fig. 3 Simulation Setup of receiver enhanced by optical pre-sampler. EDFA: erbium-doped fiber amplifier. VOA: variable optical attenuator. HNLF: highly nonlinear fiber.
Fig. 4
Fig. 4 Simulated BER versus received optical power plots for signals and idlers filtered by 4th order Bessel electrical filter (circles), and rectangular electrical filter (squares) after photo-detection. Filter bandwidths change with each sub-figure, as indicated on each.
Fig. 5
Fig. 5 (a) Sensitivity (received optical average power at BER = 3.8 × 10−3) versus electrical filter bandwidth, with 120-GHz pump and 4th order Bessel electrical filter. (b) BER versus pump (sampling pulse) bandwidth, with 18-GHz low-pass 4th order Bessel electrical filter.
Fig. 6
Fig. 6 Experimental setup of receiver enhanced by optical pre-sampling. MLL: mode-locked laser. MOD: modulator. WSS: wavelength selective switch. PC: polarization controller. PBS: polarization beam splitter. DI: delay line interferometer. OMUX: optical multiplexer. ODL: optical delay line. OC: optical coupler. MON: monitor. ZDW: zero dispersion wavelength. WDM: wave division multiplexing. PD: photodiode. DSO: digital sampling oscilloscope.
Fig. 7
Fig. 7 (a) Red: spectrum of the signal before FWM process. Green: spectrum of the sampling frequency comb (pump) before FWM process. Blue: spectrum at the output of the HNLF2. (b) Electrical spectrum of the idler limited by 62-GHz electrical bandwidth.(c) Eye diagram of the 40-Gbaud N-OOK signal detected with 62-GHz electrical bandwidth receiver.
Fig. 8
Fig. 8 Experimental eye-diagrams of signal optically sampled by a 80-GHz sampling pulse train (pump) at −36 dBm average power and BER versus received optical power curves for (a) 18-GHz (b) 19-GHz (c) 20-GHz (d) 62-GHz bandwidth-limited signal and idler.

Metrics