Abstract

We report a coherent tracking system based on fiber nutation for inter-satellite beaconless laser communication, which uses a piezo-electric ceramic tube (PCT) to drive the end face of single mode fiber (SMF) for nutation, and uses coherent demodulation method to directly calculate the boresight error from the intensity envelope fluctuation of signal light. The method is given theoretically and verified experimentally. Under the condition of fiber nutation frequency is 2000Hz and nutation radius is 1.1um, the experimental verification results in our interested range of signal light power (1nW-10nW) meet our design requirements. The receiving field of view (FOV) of tracking system is more than 300urad, and the closed-loop tracking bandwidth (−3dB) is about 115 Hz. When the boresight error is fixed at 80urad, the real calculation error is less than 10%. The closed-loop performance of tracking system is insensitive to the change of signal light power. Our coherent tracking system is of great significance to the inter-satellite beaconless laser communication.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

5 November 2019: A typographical correction was made to the author affiliations.


OSA Recommended Articles
Principle and performance analysis of coherent tracking sensor based on local oscillator beam nutation

Ke Deng, Bing-Zhong Wang, Gu-Hao Zhao, Jian Huang, Peng Zhang, Da-Gang Jiang, and Zhou-Shi Yao
Opt. Express 22(19) 23528-23538 (2014)

Inter-satellite laser communication system based on double Risley prisms beam steering

Shaowen Lu, Min Gao, Yan Yang, Ren Zhu, Xia Hou, Jianfeng Sun, Weibiao Chen, and Xiaolei Zhu
Appl. Opt. 58(27) 7517-7522 (2019)

Fiber-based free-space optical coherent receiver with vibration compensation mechanism

Ruochi Zhang, Jianmin Wang, Guang Zhao, and Junyi Lv
Opt. Express 21(15) 18434-18441 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Wittig, L. V. Holtz, D. E. L. Tunbridge, and H. C. Vermeulen, “In-orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” Proceedings of SPIE - The International Society for Optical Engineering 1218(1990).
  2. M. Toyoshima and K. Araki, “In-orbit measurements of short term attitude and vibrational environment on the Engineering Test Satellite VI using laser communication equipment,” Opt. Eng. 40(5), 827–832 (2001).
    [Crossref]
  3. T. J. Schneeberger, “Limits on Line-of-Site Jitter Derived from Image-Resolution Requirements,” Acquisition, Tracking, and Pointing Viii 2221, 704–710 (1994).
    [Crossref]
  4. T. T. Nielsen, “Pointing, Acquisition and Tracking System for the Free Space Laser Communication System, Silex,” Free-Space Laser Communication Technologies Vii 2381, 194–205 (1995).
    [Crossref]
  5. E. Perez, M. Bailly, and J. Pairot, “Pointing acquisition and tracking system for silex inter satellite optical link,” in 1989 Orlando Symposium, (International Society for Optics and Photonics, 1989), 277–288.
    [Crossref]
  6. K. Nakagawa, A. Yamamoto, and Y. Suzuki, “OICETS optical link communications experiment in space,” Semiconductor Lasers Ii 2886, 172–180 (1996).
    [Crossref]
  7. R. Zhang, J. Wang, G. Zhao, and J. Lv, “Fiber-based free-space optical coherent receiver with vibration compensation mechanism,” Opt. Express 21(15), 18434–18441 (2013).
    [Crossref] [PubMed]
  8. K. Deng, B.-Z. Wang, G.-H. Zhao, J. Huang, P. Zhang, D.-G. Jiang, and Z.-S. Yao, “Principle and performance analysis of coherent tracking sensor based on local oscillator beam nutation,” Opt. Express 22(19), 23528–23538 (2014).
    [Crossref] [PubMed]
  9. D. Giggenbach, A. Schex, and B. Wandernoth, “Prototype of a coherent tracking and detection receiver with wide band vibration compensation for free-space laser communications,” Free-Space Laser Communication Technologies Viii 2699, 186–191 (1996).
    [Crossref]
  10. R. Fields, C. Lunde, R. Wong, J. Wicker, D. Kozlowski, J. Jordan, B. Hansen, G. Muehlnikel, W. Scheel, U. Sterr, R. Kahle, and R. Meyer, “NFIRE-to-TerraSAR-X laser communication results: satellite pointing, disturbances, and other attributes consistent with successful performance,” Sensors and Systems for Space Applications Iii 7330(2009).
  11. E. A. SWANSON and R. S. BONDURANT, “Fiber-based receiver for free-space coherent optical communication systems,” in Optical Fiber Communication Conference, (Optical Society of America, 1989), THC5.
  12. D. M. Boroson, J. J. Scozzafava, D. V. Murphy, B. S. Robinson, and M. Lincoln, “The lunar laser communications demonstration (LLCD),” in Space Mission Challenges for Information Technology, 2009. SMC-IT 2009. Third IEEE International Conference on, (IEEE, 2009), 23–28.
    [Crossref]
  13. R. Garreis, “90-Degrees Optical Hybrid for Coherent Receivers,” Optical Space Communications Ii 1522, 210–219 (1991).
    [Crossref]
  14. O. Wallner, P. J. Winzer, and W. R. Leeb, “Alignment tolerances for plane-wave to single-mode fiber coupling and their mitigation by use of pigtailed collimators,” Appl. Opt. 41(4), 637–643 (2002).
    [Crossref] [PubMed]
  15. M. Toyoshima, “Maximum fiber coupling efficiency and optimum beam size in the presence of random angular jitter for free-space laser systems and their applications,” J. Opt. Soc. Am. A 23(9), 2246–2250 (2006).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

2006 (1)

2002 (1)

2001 (1)

M. Toyoshima and K. Araki, “In-orbit measurements of short term attitude and vibrational environment on the Engineering Test Satellite VI using laser communication equipment,” Opt. Eng. 40(5), 827–832 (2001).
[Crossref]

1996 (2)

K. Nakagawa, A. Yamamoto, and Y. Suzuki, “OICETS optical link communications experiment in space,” Semiconductor Lasers Ii 2886, 172–180 (1996).
[Crossref]

D. Giggenbach, A. Schex, and B. Wandernoth, “Prototype of a coherent tracking and detection receiver with wide band vibration compensation for free-space laser communications,” Free-Space Laser Communication Technologies Viii 2699, 186–191 (1996).
[Crossref]

1995 (1)

T. T. Nielsen, “Pointing, Acquisition and Tracking System for the Free Space Laser Communication System, Silex,” Free-Space Laser Communication Technologies Vii 2381, 194–205 (1995).
[Crossref]

1994 (1)

T. J. Schneeberger, “Limits on Line-of-Site Jitter Derived from Image-Resolution Requirements,” Acquisition, Tracking, and Pointing Viii 2221, 704–710 (1994).
[Crossref]

1991 (1)

R. Garreis, “90-Degrees Optical Hybrid for Coherent Receivers,” Optical Space Communications Ii 1522, 210–219 (1991).
[Crossref]

Araki, K.

M. Toyoshima and K. Araki, “In-orbit measurements of short term attitude and vibrational environment on the Engineering Test Satellite VI using laser communication equipment,” Opt. Eng. 40(5), 827–832 (2001).
[Crossref]

Bailly, M.

E. Perez, M. Bailly, and J. Pairot, “Pointing acquisition and tracking system for silex inter satellite optical link,” in 1989 Orlando Symposium, (International Society for Optics and Photonics, 1989), 277–288.
[Crossref]

Deng, K.

Garreis, R.

R. Garreis, “90-Degrees Optical Hybrid for Coherent Receivers,” Optical Space Communications Ii 1522, 210–219 (1991).
[Crossref]

Giggenbach, D.

D. Giggenbach, A. Schex, and B. Wandernoth, “Prototype of a coherent tracking and detection receiver with wide band vibration compensation for free-space laser communications,” Free-Space Laser Communication Technologies Viii 2699, 186–191 (1996).
[Crossref]

Huang, J.

Jiang, D.-G.

Leeb, W. R.

Lv, J.

Nakagawa, K.

K. Nakagawa, A. Yamamoto, and Y. Suzuki, “OICETS optical link communications experiment in space,” Semiconductor Lasers Ii 2886, 172–180 (1996).
[Crossref]

Nielsen, T. T.

T. T. Nielsen, “Pointing, Acquisition and Tracking System for the Free Space Laser Communication System, Silex,” Free-Space Laser Communication Technologies Vii 2381, 194–205 (1995).
[Crossref]

Pairot, J.

E. Perez, M. Bailly, and J. Pairot, “Pointing acquisition and tracking system for silex inter satellite optical link,” in 1989 Orlando Symposium, (International Society for Optics and Photonics, 1989), 277–288.
[Crossref]

Perez, E.

E. Perez, M. Bailly, and J. Pairot, “Pointing acquisition and tracking system for silex inter satellite optical link,” in 1989 Orlando Symposium, (International Society for Optics and Photonics, 1989), 277–288.
[Crossref]

Schex, A.

D. Giggenbach, A. Schex, and B. Wandernoth, “Prototype of a coherent tracking and detection receiver with wide band vibration compensation for free-space laser communications,” Free-Space Laser Communication Technologies Viii 2699, 186–191 (1996).
[Crossref]

Schneeberger, T. J.

T. J. Schneeberger, “Limits on Line-of-Site Jitter Derived from Image-Resolution Requirements,” Acquisition, Tracking, and Pointing Viii 2221, 704–710 (1994).
[Crossref]

Suzuki, Y.

K. Nakagawa, A. Yamamoto, and Y. Suzuki, “OICETS optical link communications experiment in space,” Semiconductor Lasers Ii 2886, 172–180 (1996).
[Crossref]

Toyoshima, M.

M. Toyoshima, “Maximum fiber coupling efficiency and optimum beam size in the presence of random angular jitter for free-space laser systems and their applications,” J. Opt. Soc. Am. A 23(9), 2246–2250 (2006).
[Crossref] [PubMed]

M. Toyoshima and K. Araki, “In-orbit measurements of short term attitude and vibrational environment on the Engineering Test Satellite VI using laser communication equipment,” Opt. Eng. 40(5), 827–832 (2001).
[Crossref]

Wallner, O.

Wandernoth, B.

D. Giggenbach, A. Schex, and B. Wandernoth, “Prototype of a coherent tracking and detection receiver with wide band vibration compensation for free-space laser communications,” Free-Space Laser Communication Technologies Viii 2699, 186–191 (1996).
[Crossref]

Wang, B.-Z.

Wang, J.

Winzer, P. J.

Yamamoto, A.

K. Nakagawa, A. Yamamoto, and Y. Suzuki, “OICETS optical link communications experiment in space,” Semiconductor Lasers Ii 2886, 172–180 (1996).
[Crossref]

Yao, Z.-S.

Zhang, P.

Zhang, R.

Zhao, G.

Zhao, G.-H.

Acquisition, Tracking, and Pointing Viii (1)

T. J. Schneeberger, “Limits on Line-of-Site Jitter Derived from Image-Resolution Requirements,” Acquisition, Tracking, and Pointing Viii 2221, 704–710 (1994).
[Crossref]

Appl. Opt. (1)

Free-Space Laser Communication Technologies Vii (1)

T. T. Nielsen, “Pointing, Acquisition and Tracking System for the Free Space Laser Communication System, Silex,” Free-Space Laser Communication Technologies Vii 2381, 194–205 (1995).
[Crossref]

Free-Space Laser Communication Technologies Viii (1)

D. Giggenbach, A. Schex, and B. Wandernoth, “Prototype of a coherent tracking and detection receiver with wide band vibration compensation for free-space laser communications,” Free-Space Laser Communication Technologies Viii 2699, 186–191 (1996).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

M. Toyoshima and K. Araki, “In-orbit measurements of short term attitude and vibrational environment on the Engineering Test Satellite VI using laser communication equipment,” Opt. Eng. 40(5), 827–832 (2001).
[Crossref]

Opt. Express (2)

Optical Space Communications Ii (1)

R. Garreis, “90-Degrees Optical Hybrid for Coherent Receivers,” Optical Space Communications Ii 1522, 210–219 (1991).
[Crossref]

Semiconductor Lasers Ii (1)

K. Nakagawa, A. Yamamoto, and Y. Suzuki, “OICETS optical link communications experiment in space,” Semiconductor Lasers Ii 2886, 172–180 (1996).
[Crossref]

Other (5)

M. E. Wittig, L. V. Holtz, D. E. L. Tunbridge, and H. C. Vermeulen, “In-orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” Proceedings of SPIE - The International Society for Optical Engineering 1218(1990).

E. Perez, M. Bailly, and J. Pairot, “Pointing acquisition and tracking system for silex inter satellite optical link,” in 1989 Orlando Symposium, (International Society for Optics and Photonics, 1989), 277–288.
[Crossref]

R. Fields, C. Lunde, R. Wong, J. Wicker, D. Kozlowski, J. Jordan, B. Hansen, G. Muehlnikel, W. Scheel, U. Sterr, R. Kahle, and R. Meyer, “NFIRE-to-TerraSAR-X laser communication results: satellite pointing, disturbances, and other attributes consistent with successful performance,” Sensors and Systems for Space Applications Iii 7330(2009).

E. A. SWANSON and R. S. BONDURANT, “Fiber-based receiver for free-space coherent optical communication systems,” in Optical Fiber Communication Conference, (Optical Society of America, 1989), THC5.

D. M. Boroson, J. J. Scozzafava, D. V. Murphy, B. S. Robinson, and M. Lincoln, “The lunar laser communications demonstration (LLCD),” in Space Mission Challenges for Information Technology, 2009. SMC-IT 2009. Third IEEE International Conference on, (IEEE, 2009), 23–28.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Structure of the coherent tracking system based on fiber nutation
Fig. 2
Fig. 2 Schematic diagram of fiber nutation scanning spot. The area in the black circle represents the spot at the focal plane, and the black dot represents the geometric center of the spot. The area in the red circle represents the fiber core of SMF, and the green circle represents the nutation trail of the end face of SMF. (x, y) is the position coordinate of fiber core center on the nutation trail. The area in the brown circle is the scanning range in the process of fiber nutation.
Fig. 3
Fig. 3 The block diagram of desktop experiment system
Fig. 4
Fig. 4 The calculated signal intensity as a function of the power coupled into SMF
Fig. 5
Fig. 5 the boresight error calculated by Eq. (24). (a) With FSM1 scanning the end face of SMF. (b) With the signal power change when FSM1 deflected 80urad.
Fig. 6
Fig. 6 Relative coupling efficiency. (a) In closed loop and open loop for different scanning frequency. (b) With different power coupled into SMF in closed loop

Tables (2)

Tables Icon

Table 1 Information about experiment instruments

Tables Icon

Table 2 System parameters not mentioned above

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

E s ( t ) = E s cos ( ω s t + φ ( t ) )
A s ( t ) = A s cos ( ω s t + φ ( t ) )
E l ( t ) = E l cos ( ω l t + φ l )
I 0 = k 1 2 | A s | 2 r 2 + k 3 2 | E L O | 2 t 2 + 2 k 1 k 3 r t | A s E L O | cos [ ϕ ( t ) + ( ρ τ ) π / 2 ( ψ π / 4 ) ]
I 90 = k 2 2 | A s | 2 r 2 + k 4 2 | E L O | 2 t 2 + 2 k 2 k 4 r t | A s E L O | cos [ ϕ ( t ) + ( ρ τ ) ( ψ π / 4 ) ]
I 180 = k 1 2 | A s | 2 t 2 + k 3 2 | E L O | 2 r 2 + 2 k 1 k 3 r t | A s E L O | cos [ ϕ ( t ) + ( τ ρ ) π / 2 ( ψ π / 4 ) ]
I 270 = k 2 2 | A s | 2 t 2 + k 4 2 | E L O | 2 r 2 + 2 k 2 k 4 r t | A s E L O | cos [ ϕ ( t ) + ( τ ρ ) ( ψ π / 4 ) ]
V 0 = k 1 2 R r L | A s | 2 r 2 + k 1 k 3 R r L | A s E L O | cos [ ω I F t + φ ( t ) ]
V 90 = k 2 2 R r L | A s | 2 r 2 + k 2 k 4 R r L | A s E L O | sin [ ω I F t + φ ( t ) ]
V 180 = k 1 2 R r L | A s | 2 t 2 k 1 k 3 R r L | A s E L O | cos [ ω I F t + φ ( t ) ]
V 270 = k 2 2 R r L | A s | 2 t 2 k 2 k 4 R r L | A s E L O | sin [ ω I F t + φ ( t ) ]
V I ( t ) = 2 k 1 k 3 R r L | A s E L O | cos [ ω I F t + φ ( t ) ]
V Q ( t ) = 2 k 2 k 4 R r L | A s E L O | sin [ ω I F t + φ ( t ) ]
V ( t ) = V I 2 ( t ) + V Q 2 ( t ) = 4 k 4 R 2 r L 2 G η ( t ) | E s | 2 | E L O | 2
η ( t ) = P c P i n
V I 2 ( t ) + V Q 2 ( t ) = 8 k 4 R 2 r L 2 G P c | E L O | 2
{ x ( t ) = a cos ( 2 π f t ) y ( t ) = a sin ( 2 π f t )
η c = P c P i n = c exp ( ρ 2 ω 0 2 )
η ( t ) = P 1 P i n ( t ) = c exp ( ( a cos ( 2 π f t ) ρ x 1 ) 2 + ( a sin ( 2 π f t ) ρ y 1 ) 2 ω 0 2 )
η ( t ' ) = P 2 P i n ( t ' ) = c exp ( ( a cos ( 2 π f t ' ) ρ x 2 ) 2 + ( a sin ( 2 π f t ' ) ρ y 2 ) 2 ω 0 2 )
ω 0 2 ln ( P 1 P i n ( t ' ) P 2 P i n ( t ) ) = 2 a ( ρ x 1 cos ( 2 π f t ) ρ x 2 cos ( 2 π f t ' ) ) + 2 a ( ρ y 1 sin ( 2 π f t ) ρ y 2 sin ( 2 π f t ' ) )
ω 0 2 ln ( P 1 P 2 ) = 2 a ρ x ( cos ( 2 π f t ) cos ( 2 π f t ' ) ) + 2 a ρ y ( sin ( 2 π f t ) sin ( 2 π f t ' ) )
{ ρ x = ω 0 2 4 a ln ( P ( n T ) P ( n T + T / 2 ) ) ρ y = ω 0 2 4 a ln ( P ( n T + T / 4 ) P ( n T + 3 T / 4 ) )
{ θ x = ω 0 2 4 a f l ln ( V I 2 ( n T ) + V Q 2 ( n T ) V I 2 ( n T + T / 2 ) + V Q 2 ( n T + T / 2 ) ) θ y = ω 0 2 4 a f l ln ( V I 2 ( n T + T / 4 ) + V Q 2 ( n T + T / 4 ) V I 2 ( n T + 3 T / 4 ) + V Q 2 ( n T + 3 T / 4 ) )
η r ( t ) = η ( t ) η max = P ( t ) / P i n P c max / P i n = P ( t ) P c max

Metrics