Abstract

The blue laser beam-excited surface-enhanced Raman scattering (SERS)-based pH sensing holds great promise for avoiding undesired thermal heating effect on some special temperature-vulnerable molecules, as compared to the vast majority studies by exciting in the red or near-infrared (NIR). Herein, we report an ingenious approach to support core-shell Au@Ag nanodendrites (NDs) on TiO2 nanowires, which can possess enhanced SERS activity under 473 nm laser excitation, owing to the improved charge-transfer effect on modified TiO2 support by inserting plasmonic Au@Ag. By using pH-indicating 4-mercaptobenzoic acid (4-MBA), the obtained TiO2/Au@Ag NDs can not only exhibit high sensitive linear-responses of pH changes ranging from pH 4.0 to 9.0 in different solutions (deionized water, NaCl, CaCl2, and MgCl2) but also provide excellent temperature stability under 4°C, 25°C and 37°C temperatures as well as good time stability after storage for 10 days. The established SERS-pH sensing by using shorter wavelength laser excitation is highly desirable for understanding physiological process in temperature-vulnerable microenvironment.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Construction of optimized Au@Ag core-shell nanorods for ultralow SERS detection of antibiotic levofloxacin molecules

Yue Tian, Guanhua Li, Hua Zhang, Linlin Xu, Anxin Jiao, Feng Chen, and Ming Chen
Opt. Express 26(18) 23347-23358 (2018)

Colorimetric and SERS dual-mode detection of lead Ions based on Au-Ag core-shell nanospheres: featuring quick screening with ultra-high sensitivity

Zheng Zhang, Pei Ma, Junying Li, Yu Sun, Hao Shi, Nan Chen, Xuedian Zhang, and Hui Chen
Opt. Express 27(20) 29248-29260 (2019)

3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure

Jihua Xu, Chonghui Li, Haipeng Si, Xiaofei Zhao, Lin Wang, Shouzhen Jiang, Dongmei Wei, Jing Yu, Xianwu Xiu, and Chao Zhang
Opt. Express 26(17) 21546-21557 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Z. Q. Zhang, K. Bando, K. Mochizuki, A. Taguchi, K. Fujita, and S. Kawata, “Quantitative evaluation of surface-enhanced Raman scattering nanoparticles for intracellular pH sensing at a single particle level,” Anal. Chem. 91(5), 3254–3262 (2019).
    [Crossref]
  2. X. S. Zheng, P. Hu, Y. Cui, C. Zong, J. M. Feng, X. Wang, and B. Ren, “BSA-coated nanoparticles for improved SERS-based intracellular pH sensing,” Anal. Chem. 86(24), 12250–12257 (2014).
    [Crossref]
  3. Y. T. Shen, L. J. Liang, S. Q. Zhang, D. S. Huang, J. Zhang, S. P. Xu, C. Y. Liang, and W. Q. Xu, “Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing,” Nanoscale 10(4), 1622–1630 (2018).
    [Crossref]
  4. L. Y. Bi, Y. Q. Wang, Y. Yang, Y. L. Li, S. S. Mo, Q. Y. Zheng, and L. X. Chen, “Highly sensitive and reproducible SERS sensor for biological pH detection based on a uniform gold nanorod array platform,” ACS Appl. Mater. Interfaces 10(18), 15381–15387 (2018).
    [Crossref]
  5. T. Yang, J. Ma, S. J. Zhen, and C. Z. Huang, “Electrostatic assemblies of well-dispersed Ag NPs on the surface of electrospun nanofibers as highly active SERS substrates for wide-range pH sensing,” ACS Appl. Mater. Interfaces 8(23), 14802–14811 (2016).
    [Crossref]
  6. B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
    [Crossref]
  7. F. Sun, P. Zhang, T. Bai, D. D. Galvan, H. C. Hung, N. Zhou, S. Y. Jiang, and Q. M. Yu, “Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS,” Biosens. Bioelectron. 73(15), 202–207 (2015).
    [Crossref]
  8. F. L. Wang, R. G. Widejko, Z. Q. Yang, K. T. Nguyen, H. Y. Chen, L. P. Fernando, K. A. Christensen, and J. N. Anker, “Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles,” Anal. Chem. 84(18), 8013–8019 (2012).
    [Crossref]
  9. H. Hou, Y. Y. Zhao, C. P. Li, M. M. Wang, X. L. Xu, and Y. D. Jin, “Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells,” Sci. Rep. 7(1), 1759 (2017).
    [Crossref]
  10. F. Scholz, “From the Leiden jar to the discovery of the glass electrode by Max Cremer,” J. Solid State Electrochem. 15(1), 5–14 (2011).
    [Crossref]
  11. P. Chen, Z. Y. Wang, S. F. Zong, H. Chen, D. Zhu, Y. Zhong, and Y. P. Cui, “A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals,” Anal. Bioanal. Chem. 406(25), 6337–6346 (2014).
    [Crossref]
  12. M. Guhlke, Z. Heiner, and J. Kneipp, “Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures,” Phys. Chem. Chem. Phys. 17(39), 26093–26100 (2015).
    [Crossref]
  13. A. M. Schwartzberg, T. Y. Oshiro, J. Z. Zhang, T. Huser, and C. E. Talley, “Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles,” Anal. Chem. 78(13), 4732–4736 (2006).
    [Crossref]
  14. S. F. Zong, Z. Y. Wang, J. Yang, and Y. P. Cui, “Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity,” Anal. Chem. 83(11), 4178–4183 (2011).
    [Crossref]
  15. Y. Liu, H. Yuan, A. M. Fales, and T. Vo-Dinh, “pH-sensing nanostar probe using surface-enhanced Raman scattering (SERS): theoretical and experimental studies,” J. Raman Spectrosc. 44(7), 980–986 (2013).
    [Crossref]
  16. G. M. Denning, M. P. Anderson, J. F. Amara, J. Marshall, A. E. Smith, and M. J. Welsh, “Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive,” Nature 358(6389), 761–764 (1992).
    [Crossref]
  17. J. Moradian-Oldak, W. Leung, and A. G. Fincham, “Temperature and pH-dependent supramolecular self-assembly of amelogenin molecules: a dynamic light scattering analysis,” J. Struct. Biol. 122(3), 320–327 (1998).
    [Crossref]
  18. C. Viets and W. Hill, “Laser power effects in SERS spectroscopy at thin metal films,” J. Phys. Chem. B 105(27), 6330–6336 (2001).
    [Crossref]
  19. R. A. Alvarez-Puebla, “Effect of the excitation wavelength on the SERS spectrum,” J. Phys. Chem. Lett. 3(7), 857–866 (2012).
    [Crossref]
  20. T. Kang, S. Hong, Y. Choi, and L. P. Lee, “The effect of thermal gradients in SERS spectroscopy,” Small 6(23), 2649–2652 (2010).
    [Crossref]
  21. Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B 108(2), 673–678 (2004).
    [Crossref]
  22. H. B. Wu, H. H. Hng, and X. W. D. Lou, “Direct synthesis of anatase TiO2 nanowires with enhanced photocatalytic activity,” Adv. Mater. 24(19), 2567–2571 (2012).
    [Crossref]
  23. H. Zhang, G. H. Li, S. Li, L. L. Xu, Y. Tian, A. X. Jiao, X. D. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457(1), 684–694 (2018).
    [Crossref]
  24. L. L. Xu, H. Zhang, Y. Tian, A. X. Jiao, F. Chen, and M. Chen, “Photochemical synthesis of ZnO@Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater,” Talanta 194(1), 680–688 (2019).
    [Crossref]
  25. H. Zhang, L. L. Xu, Y. Tian, M. Chen, X. D. Liu, and F. Chen, “Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy,” Opt. Express 25(23), 29389–29400 (2017).
    [Crossref]
  26. P. Ramasamy, D. M. Seo, S. H. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver nanowires,” J. Mater. Chem. 22(23), 11651–11657 (2012).
    [Crossref]
  27. S. Kaciulis, G. Mattogno, A. Napoli, E. Bemporad, F. Ferrari, A. Montenero, and G. Gnappi, “Surface analysis of biocompatible coatings on titanium,” J. Electron Spectrosc. Relat. Phenom. 95(1), 61–69 (1998).
    [Crossref]
  28. J. J. Yu, M. Z. Shen, S. Y. Liu, F. Li, D. P. Sun, and T. H. Wang, “A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate,” Appl. Surf. Sci. 406, 285–293 (2017).
    [Crossref]
  29. M. Meng, Z. C. Fang, C. Zhang, H. Y. Su, R. He, R. P. Zhang, H. L. Li, Z. Y. Li, X. J. Wu, and C. Ma, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
    [Crossref]
  30. B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).
    [Crossref]
  31. X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
    [Crossref]
  32. S. M. Novikov, J. Beermann, C. Frydendahl, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “Enhancement of two-photon photoluminescence and SERS for low-coverage gold films,” Opt. Express 24(15), 16743–16751 (2016).
    [Crossref]
  33. X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
    [Crossref]
  34. Q. Zhang, N. Large, P. Nordlander, and H. Wang, “Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS,” J. Phys. Chem. Lett. 5(2), 370–374 (2014).
    [Crossref]
  35. L. Yang, W. H. Wang, H. Y. Jiang, Q. H. Zhang, H. H. Shan, M. Zhang, K. R. Zhu, J. G. Lv, G. He, and Z. Q. Sun, “Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles,” Sens. Actuators, B 242, 932–939 (2017).
    [Crossref]
  36. W. Zhou, B. C. Yin, and B. C. Ye, “Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate,” Biosens. Bioelectron. 87(15), 187–194 (2017).
    [Crossref]
  37. A. Michota and J. Bukowska, “Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates,” J. Raman Spectrosc. 34(1), 21–25 (2003).
    [Crossref]
  38. S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
    [Crossref]
  39. C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH sensors based on surface-enhanced Raman scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
    [Crossref]

2019 (2)

Z. Q. Zhang, K. Bando, K. Mochizuki, A. Taguchi, K. Fujita, and S. Kawata, “Quantitative evaluation of surface-enhanced Raman scattering nanoparticles for intracellular pH sensing at a single particle level,” Anal. Chem. 91(5), 3254–3262 (2019).
[Crossref]

L. L. Xu, H. Zhang, Y. Tian, A. X. Jiao, F. Chen, and M. Chen, “Photochemical synthesis of ZnO@Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater,” Talanta 194(1), 680–688 (2019).
[Crossref]

2018 (3)

H. Zhang, G. H. Li, S. Li, L. L. Xu, Y. Tian, A. X. Jiao, X. D. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457(1), 684–694 (2018).
[Crossref]

Y. T. Shen, L. J. Liang, S. Q. Zhang, D. S. Huang, J. Zhang, S. P. Xu, C. Y. Liang, and W. Q. Xu, “Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing,” Nanoscale 10(4), 1622–1630 (2018).
[Crossref]

L. Y. Bi, Y. Q. Wang, Y. Yang, Y. L. Li, S. S. Mo, Q. Y. Zheng, and L. X. Chen, “Highly sensitive and reproducible SERS sensor for biological pH detection based on a uniform gold nanorod array platform,” ACS Appl. Mater. Interfaces 10(18), 15381–15387 (2018).
[Crossref]

2017 (7)

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
[Crossref]

H. Hou, Y. Y. Zhao, C. P. Li, M. M. Wang, X. L. Xu, and Y. D. Jin, “Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells,” Sci. Rep. 7(1), 1759 (2017).
[Crossref]

H. Zhang, L. L. Xu, Y. Tian, M. Chen, X. D. Liu, and F. Chen, “Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy,” Opt. Express 25(23), 29389–29400 (2017).
[Crossref]

J. J. Yu, M. Z. Shen, S. Y. Liu, F. Li, D. P. Sun, and T. H. Wang, “A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate,” Appl. Surf. Sci. 406, 285–293 (2017).
[Crossref]

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref]

L. Yang, W. H. Wang, H. Y. Jiang, Q. H. Zhang, H. H. Shan, M. Zhang, K. R. Zhu, J. G. Lv, G. He, and Z. Q. Sun, “Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles,” Sens. Actuators, B 242, 932–939 (2017).
[Crossref]

W. Zhou, B. C. Yin, and B. C. Ye, “Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate,” Biosens. Bioelectron. 87(15), 187–194 (2017).
[Crossref]

2016 (4)

M. Meng, Z. C. Fang, C. Zhang, H. Y. Su, R. He, R. P. Zhang, H. L. Li, Z. Y. Li, X. J. Wu, and C. Ma, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref]

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).
[Crossref]

T. Yang, J. Ma, S. J. Zhen, and C. Z. Huang, “Electrostatic assemblies of well-dispersed Ag NPs on the surface of electrospun nanofibers as highly active SERS substrates for wide-range pH sensing,” ACS Appl. Mater. Interfaces 8(23), 14802–14811 (2016).
[Crossref]

S. M. Novikov, J. Beermann, C. Frydendahl, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “Enhancement of two-photon photoluminescence and SERS for low-coverage gold films,” Opt. Express 24(15), 16743–16751 (2016).
[Crossref]

2015 (3)

F. Sun, P. Zhang, T. Bai, D. D. Galvan, H. C. Hung, N. Zhou, S. Y. Jiang, and Q. M. Yu, “Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS,” Biosens. Bioelectron. 73(15), 202–207 (2015).
[Crossref]

M. Guhlke, Z. Heiner, and J. Kneipp, “Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures,” Phys. Chem. Chem. Phys. 17(39), 26093–26100 (2015).
[Crossref]

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref]

2014 (3)

Q. Zhang, N. Large, P. Nordlander, and H. Wang, “Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS,” J. Phys. Chem. Lett. 5(2), 370–374 (2014).
[Crossref]

P. Chen, Z. Y. Wang, S. F. Zong, H. Chen, D. Zhu, Y. Zhong, and Y. P. Cui, “A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals,” Anal. Bioanal. Chem. 406(25), 6337–6346 (2014).
[Crossref]

X. S. Zheng, P. Hu, Y. Cui, C. Zong, J. M. Feng, X. Wang, and B. Ren, “BSA-coated nanoparticles for improved SERS-based intracellular pH sensing,” Anal. Chem. 86(24), 12250–12257 (2014).
[Crossref]

2013 (1)

Y. Liu, H. Yuan, A. M. Fales, and T. Vo-Dinh, “pH-sensing nanostar probe using surface-enhanced Raman scattering (SERS): theoretical and experimental studies,” J. Raman Spectrosc. 44(7), 980–986 (2013).
[Crossref]

2012 (4)

F. L. Wang, R. G. Widejko, Z. Q. Yang, K. T. Nguyen, H. Y. Chen, L. P. Fernando, K. A. Christensen, and J. N. Anker, “Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles,” Anal. Chem. 84(18), 8013–8019 (2012).
[Crossref]

P. Ramasamy, D. M. Seo, S. H. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver nanowires,” J. Mater. Chem. 22(23), 11651–11657 (2012).
[Crossref]

H. B. Wu, H. H. Hng, and X. W. D. Lou, “Direct synthesis of anatase TiO2 nanowires with enhanced photocatalytic activity,” Adv. Mater. 24(19), 2567–2571 (2012).
[Crossref]

R. A. Alvarez-Puebla, “Effect of the excitation wavelength on the SERS spectrum,” J. Phys. Chem. Lett. 3(7), 857–866 (2012).
[Crossref]

2011 (2)

F. Scholz, “From the Leiden jar to the discovery of the glass electrode by Max Cremer,” J. Solid State Electrochem. 15(1), 5–14 (2011).
[Crossref]

S. F. Zong, Z. Y. Wang, J. Yang, and Y. P. Cui, “Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity,” Anal. Chem. 83(11), 4178–4183 (2011).
[Crossref]

2010 (1)

T. Kang, S. Hong, Y. Choi, and L. P. Lee, “The effect of thermal gradients in SERS spectroscopy,” Small 6(23), 2649–2652 (2010).
[Crossref]

2006 (2)

A. M. Schwartzberg, T. Y. Oshiro, J. Z. Zhang, T. Huser, and C. E. Talley, “Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles,” Anal. Chem. 78(13), 4732–4736 (2006).
[Crossref]

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[Crossref]

2004 (2)

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH sensors based on surface-enhanced Raman scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
[Crossref]

Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B 108(2), 673–678 (2004).
[Crossref]

2003 (1)

A. Michota and J. Bukowska, “Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates,” J. Raman Spectrosc. 34(1), 21–25 (2003).
[Crossref]

2001 (1)

C. Viets and W. Hill, “Laser power effects in SERS spectroscopy at thin metal films,” J. Phys. Chem. B 105(27), 6330–6336 (2001).
[Crossref]

1998 (2)

J. Moradian-Oldak, W. Leung, and A. G. Fincham, “Temperature and pH-dependent supramolecular self-assembly of amelogenin molecules: a dynamic light scattering analysis,” J. Struct. Biol. 122(3), 320–327 (1998).
[Crossref]

S. Kaciulis, G. Mattogno, A. Napoli, E. Bemporad, F. Ferrari, A. Montenero, and G. Gnappi, “Surface analysis of biocompatible coatings on titanium,” J. Electron Spectrosc. Relat. Phenom. 95(1), 61–69 (1998).
[Crossref]

1992 (1)

G. M. Denning, M. P. Anderson, J. F. Amara, J. Marshall, A. E. Smith, and M. J. Welsh, “Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive,” Nature 358(6389), 761–764 (1992).
[Crossref]

Alvarez-Puebla, R. A.

R. A. Alvarez-Puebla, “Effect of the excitation wavelength on the SERS spectrum,” J. Phys. Chem. Lett. 3(7), 857–866 (2012).
[Crossref]

Amara, J. F.

G. M. Denning, M. P. Anderson, J. F. Amara, J. Marshall, A. E. Smith, and M. J. Welsh, “Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive,” Nature 358(6389), 761–764 (1992).
[Crossref]

Anderson, M. P.

G. M. Denning, M. P. Anderson, J. F. Amara, J. Marshall, A. E. Smith, and M. J. Welsh, “Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive,” Nature 358(6389), 761–764 (1992).
[Crossref]

Anker, J. N.

F. L. Wang, R. G. Widejko, Z. Q. Yang, K. T. Nguyen, H. Y. Chen, L. P. Fernando, K. A. Christensen, and J. N. Anker, “Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles,” Anal. Chem. 84(18), 8013–8019 (2012).
[Crossref]

Bai, T.

F. Sun, P. Zhang, T. Bai, D. D. Galvan, H. C. Hung, N. Zhou, S. Y. Jiang, and Q. M. Yu, “Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS,” Biosens. Bioelectron. 73(15), 202–207 (2015).
[Crossref]

Bando, K.

Z. Q. Zhang, K. Bando, K. Mochizuki, A. Taguchi, K. Fujita, and S. Kawata, “Quantitative evaluation of surface-enhanced Raman scattering nanoparticles for intracellular pH sensing at a single particle level,” Anal. Chem. 91(5), 3254–3262 (2019).
[Crossref]

Beermann, J.

Bemporad, E.

S. Kaciulis, G. Mattogno, A. Napoli, E. Bemporad, F. Ferrari, A. Montenero, and G. Gnappi, “Surface analysis of biocompatible coatings on titanium,” J. Electron Spectrosc. Relat. Phenom. 95(1), 61–69 (1998).
[Crossref]

Bi, L. Y.

L. Y. Bi, Y. Q. Wang, Y. Yang, Y. L. Li, S. S. Mo, Q. Y. Zheng, and L. X. Chen, “Highly sensitive and reproducible SERS sensor for biological pH detection based on a uniform gold nanorod array platform,” ACS Appl. Mater. Interfaces 10(18), 15381–15387 (2018).
[Crossref]

Bishnoi, S. W.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[Crossref]

Bozhevolnyi, S. I.

Bukowska, J.

A. Michota and J. Bukowska, “Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates,” J. Raman Spectrosc. 34(1), 21–25 (2003).
[Crossref]

Chen, F.

L. L. Xu, H. Zhang, Y. Tian, A. X. Jiao, F. Chen, and M. Chen, “Photochemical synthesis of ZnO@Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater,” Talanta 194(1), 680–688 (2019).
[Crossref]

H. Zhang, G. H. Li, S. Li, L. L. Xu, Y. Tian, A. X. Jiao, X. D. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457(1), 684–694 (2018).
[Crossref]

H. Zhang, L. L. Xu, Y. Tian, M. Chen, X. D. Liu, and F. Chen, “Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy,” Opt. Express 25(23), 29389–29400 (2017).
[Crossref]

Chen, H.

P. Chen, Z. Y. Wang, S. F. Zong, H. Chen, D. Zhu, Y. Zhong, and Y. P. Cui, “A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals,” Anal. Bioanal. Chem. 406(25), 6337–6346 (2014).
[Crossref]

Chen, H. Y.

F. L. Wang, R. G. Widejko, Z. Q. Yang, K. T. Nguyen, H. Y. Chen, L. P. Fernando, K. A. Christensen, and J. N. Anker, “Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles,” Anal. Chem. 84(18), 8013–8019 (2012).
[Crossref]

Chen, L. X.

L. Y. Bi, Y. Q. Wang, Y. Yang, Y. L. Li, S. S. Mo, Q. Y. Zheng, and L. X. Chen, “Highly sensitive and reproducible SERS sensor for biological pH detection based on a uniform gold nanorod array platform,” ACS Appl. Mater. Interfaces 10(18), 15381–15387 (2018).
[Crossref]

Chen, M.

L. L. Xu, H. Zhang, Y. Tian, A. X. Jiao, F. Chen, and M. Chen, “Photochemical synthesis of ZnO@Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater,” Talanta 194(1), 680–688 (2019).
[Crossref]

H. Zhang, G. H. Li, S. Li, L. L. Xu, Y. Tian, A. X. Jiao, X. D. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457(1), 684–694 (2018).
[Crossref]

H. Zhang, L. L. Xu, Y. Tian, M. Chen, X. D. Liu, and F. Chen, “Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy,” Opt. Express 25(23), 29389–29400 (2017).
[Crossref]

Chen, P.

P. Chen, Z. Y. Wang, S. F. Zong, H. Chen, D. Zhu, Y. Zhong, and Y. P. Cui, “A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals,” Anal. Bioanal. Chem. 406(25), 6337–6346 (2014).
[Crossref]

Choi, Y.

T. Kang, S. Hong, Y. Choi, and L. P. Lee, “The effect of thermal gradients in SERS spectroscopy,” Small 6(23), 2649–2652 (2010).
[Crossref]

Christensen, K. A.

F. L. Wang, R. G. Widejko, Z. Q. Yang, K. T. Nguyen, H. Y. Chen, L. P. Fernando, K. A. Christensen, and J. N. Anker, “Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles,” Anal. Chem. 84(18), 8013–8019 (2012).
[Crossref]

Coello, V.

Cui, Y.

X. S. Zheng, P. Hu, Y. Cui, C. Zong, J. M. Feng, X. Wang, and B. Ren, “BSA-coated nanoparticles for improved SERS-based intracellular pH sensing,” Anal. Chem. 86(24), 12250–12257 (2014).
[Crossref]

Cui, Y. P.

P. Chen, Z. Y. Wang, S. F. Zong, H. Chen, D. Zhu, Y. Zhong, and Y. P. Cui, “A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals,” Anal. Bioanal. Chem. 406(25), 6337–6346 (2014).
[Crossref]

S. F. Zong, Z. Y. Wang, J. Yang, and Y. P. Cui, “Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity,” Anal. Chem. 83(11), 4178–4183 (2011).
[Crossref]

Denning, G. M.

G. M. Denning, M. P. Anderson, J. F. Amara, J. Marshall, A. E. Smith, and M. J. Welsh, “Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive,” Nature 358(6389), 761–764 (1992).
[Crossref]

Fales, A. M.

Y. Liu, H. Yuan, A. M. Fales, and T. Vo-Dinh, “pH-sensing nanostar probe using surface-enhanced Raman scattering (SERS): theoretical and experimental studies,” J. Raman Spectrosc. 44(7), 980–986 (2013).
[Crossref]

Fang, Z. C.

M. Meng, Z. C. Fang, C. Zhang, H. Y. Su, R. He, R. P. Zhang, H. L. Li, Z. Y. Li, X. J. Wu, and C. Ma, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref]

Feng, J. M.

X. S. Zheng, P. Hu, Y. Cui, C. Zong, J. M. Feng, X. Wang, and B. Ren, “BSA-coated nanoparticles for improved SERS-based intracellular pH sensing,” Anal. Chem. 86(24), 12250–12257 (2014).
[Crossref]

Fernando, L. P.

F. L. Wang, R. G. Widejko, Z. Q. Yang, K. T. Nguyen, H. Y. Chen, L. P. Fernando, K. A. Christensen, and J. N. Anker, “Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles,” Anal. Chem. 84(18), 8013–8019 (2012).
[Crossref]

Ferrari, F.

S. Kaciulis, G. Mattogno, A. Napoli, E. Bemporad, F. Ferrari, A. Montenero, and G. Gnappi, “Surface analysis of biocompatible coatings on titanium,” J. Electron Spectrosc. Relat. Phenom. 95(1), 61–69 (1998).
[Crossref]

Fincham, A. G.

J. Moradian-Oldak, W. Leung, and A. G. Fincham, “Temperature and pH-dependent supramolecular self-assembly of amelogenin molecules: a dynamic light scattering analysis,” J. Struct. Biol. 122(3), 320–327 (1998).
[Crossref]

Fortuni, B.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
[Crossref]

Frydendahl, C.

Fujita, K.

Z. Q. Zhang, K. Bando, K. Mochizuki, A. Taguchi, K. Fujita, and S. Kawata, “Quantitative evaluation of surface-enhanced Raman scattering nanoparticles for intracellular pH sensing at a single particle level,” Anal. Chem. 91(5), 3254–3262 (2019).
[Crossref]

Fujita, Y.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
[Crossref]

Futamata, M.

Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B 108(2), 673–678 (2004).
[Crossref]

Galvan, D. D.

F. Sun, P. Zhang, T. Bai, D. D. Galvan, H. C. Hung, N. Zhou, S. Y. Jiang, and Q. M. Yu, “Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS,” Biosens. Bioelectron. 73(15), 202–207 (2015).
[Crossref]

Gheith, M. K.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[Crossref]

Gnappi, G.

S. Kaciulis, G. Mattogno, A. Napoli, E. Bemporad, F. Ferrari, A. Montenero, and G. Gnappi, “Surface analysis of biocompatible coatings on titanium,” J. Electron Spectrosc. Relat. Phenom. 95(1), 61–69 (1998).
[Crossref]

Guhlke, M.

M. Guhlke, Z. Heiner, and J. Kneipp, “Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures,” Phys. Chem. Chem. Phys. 17(39), 26093–26100 (2015).
[Crossref]

Halas, N. J.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[Crossref]

Han, S. Q.

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref]

Han, X.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref]

Hasi, W. L.

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref]

He, G.

L. Yang, W. H. Wang, H. Y. Jiang, Q. H. Zhang, H. H. Shan, M. Zhang, K. R. Zhu, J. G. Lv, G. He, and Z. Q. Sun, “Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles,” Sens. Actuators, B 242, 932–939 (2017).
[Crossref]

He, R.

M. Meng, Z. C. Fang, C. Zhang, H. Y. Su, R. He, R. P. Zhang, H. L. Li, Z. Y. Li, X. J. Wu, and C. Ma, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref]

Heiner, Z.

M. Guhlke, Z. Heiner, and J. Kneipp, “Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures,” Phys. Chem. Chem. Phys. 17(39), 26093–26100 (2015).
[Crossref]

Hill, W.

C. Viets and W. Hill, “Laser power effects in SERS spectroscopy at thin metal films,” J. Phys. Chem. B 105(27), 6330–6336 (2001).
[Crossref]

Hng, H. H.

H. B. Wu, H. H. Hng, and X. W. D. Lou, “Direct synthesis of anatase TiO2 nanowires with enhanced photocatalytic activity,” Adv. Mater. 24(19), 2567–2571 (2012).
[Crossref]

Hollars, C. W.

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH sensors based on surface-enhanced Raman scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
[Crossref]

Hong, S.

T. Kang, S. Hong, Y. Choi, and L. P. Lee, “The effect of thermal gradients in SERS spectroscopy,” Small 6(23), 2649–2652 (2010).
[Crossref]

Hou, H.

H. Hou, Y. Y. Zhao, C. P. Li, M. M. Wang, X. L. Xu, and Y. D. Jin, “Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells,” Sci. Rep. 7(1), 1759 (2017).
[Crossref]

Hu, P.

X. S. Zheng, P. Hu, Y. Cui, C. Zong, J. M. Feng, X. Wang, and B. Ren, “BSA-coated nanoparticles for improved SERS-based intracellular pH sensing,” Anal. Chem. 86(24), 12250–12257 (2014).
[Crossref]

Huang, C. Z.

T. Yang, J. Ma, S. J. Zhen, and C. Z. Huang, “Electrostatic assemblies of well-dispersed Ag NPs on the surface of electrospun nanofibers as highly active SERS substrates for wide-range pH sensing,” ACS Appl. Mater. Interfaces 8(23), 14802–14811 (2016).
[Crossref]

Huang, D. S.

Y. T. Shen, L. J. Liang, S. Q. Zhang, D. S. Huang, J. Zhang, S. P. Xu, C. Y. Liang, and W. Q. Xu, “Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing,” Nanoscale 10(4), 1622–1630 (2018).
[Crossref]

Hung, H. C.

F. Sun, P. Zhang, T. Bai, D. D. Galvan, H. C. Hung, N. Zhou, S. Y. Jiang, and Q. M. Yu, “Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS,” Biosens. Bioelectron. 73(15), 202–207 (2015).
[Crossref]

Huser, T.

A. M. Schwartzberg, T. Y. Oshiro, J. Z. Zhang, T. Huser, and C. E. Talley, “Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles,” Anal. Chem. 78(13), 4732–4736 (2006).
[Crossref]

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH sensors based on surface-enhanced Raman scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
[Crossref]

Hutchison, J. A.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
[Crossref]

Inose, T.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
[Crossref]

Ishikawa, M.

Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B 108(2), 673–678 (2004).
[Crossref]

Jiang, H. Y.

L. Yang, W. H. Wang, H. Y. Jiang, Q. H. Zhang, H. H. Shan, M. Zhang, K. R. Zhu, J. G. Lv, G. He, and Z. Q. Sun, “Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles,” Sens. Actuators, B 242, 932–939 (2017).
[Crossref]

Jiang, S. Y.

F. Sun, P. Zhang, T. Bai, D. D. Galvan, H. C. Hung, N. Zhou, S. Y. Jiang, and Q. M. Yu, “Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS,” Biosens. Bioelectron. 73(15), 202–207 (2015).
[Crossref]

Jiang, X.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref]

Jiao, A. X.

L. L. Xu, H. Zhang, Y. Tian, A. X. Jiao, F. Chen, and M. Chen, “Photochemical synthesis of ZnO@Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater,” Talanta 194(1), 680–688 (2019).
[Crossref]

H. Zhang, G. H. Li, S. Li, L. L. Xu, Y. Tian, A. X. Jiao, X. D. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457(1), 684–694 (2018).
[Crossref]

Jin, Y. D.

H. Hou, Y. Y. Zhao, C. P. Li, M. M. Wang, X. L. Xu, and Y. D. Jin, “Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells,” Sci. Rep. 7(1), 1759 (2017).
[Crossref]

Johnson, B. R.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[Crossref]

Johnson, D. H.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[Crossref]

Jusinski, L.

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH sensors based on surface-enhanced Raman scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
[Crossref]

Kaciulis, S.

S. Kaciulis, G. Mattogno, A. Napoli, E. Bemporad, F. Ferrari, A. Montenero, and G. Gnappi, “Surface analysis of biocompatible coatings on titanium,” J. Electron Spectrosc. Relat. Phenom. 95(1), 61–69 (1998).
[Crossref]

Kang, T.

T. Kang, S. Hong, Y. Choi, and L. P. Lee, “The effect of thermal gradients in SERS spectroscopy,” Small 6(23), 2649–2652 (2010).
[Crossref]

Kawata, S.

Z. Q. Zhang, K. Bando, K. Mochizuki, A. Taguchi, K. Fujita, and S. Kawata, “Quantitative evaluation of surface-enhanced Raman scattering nanoparticles for intracellular pH sensing at a single particle level,” Anal. Chem. 91(5), 3254–3262 (2019).
[Crossref]

Khanadeev, V.

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).
[Crossref]

Khlebtsov, B.

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).
[Crossref]

Khlebtsov, N.

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).
[Crossref]

Kim, J.

P. Ramasamy, D. M. Seo, S. H. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver nanowires,” J. Mater. Chem. 22(23), 11651–11657 (2012).
[Crossref]

Kim, S. H.

P. Ramasamy, D. M. Seo, S. H. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver nanowires,” J. Mater. Chem. 22(23), 11651–11657 (2012).
[Crossref]

Kneipp, J.

M. Guhlke, Z. Heiner, and J. Kneipp, “Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures,” Phys. Chem. Chem. Phys. 17(39), 26093–26100 (2015).
[Crossref]

Lane, S. M.

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH sensors based on surface-enhanced Raman scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
[Crossref]

Large, N.

Q. Zhang, N. Large, P. Nordlander, and H. Wang, “Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS,” J. Phys. Chem. Lett. 5(2), 370–374 (2014).
[Crossref]

Latterini, L.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
[Crossref]

Lee, L. P.

T. Kang, S. Hong, Y. Choi, and L. P. Lee, “The effect of thermal gradients in SERS spectroscopy,” Small 6(23), 2649–2652 (2010).
[Crossref]

Leung, W.

J. Moradian-Oldak, W. Leung, and A. G. Fincham, “Temperature and pH-dependent supramolecular self-assembly of amelogenin molecules: a dynamic light scattering analysis,” J. Struct. Biol. 122(3), 320–327 (1998).
[Crossref]

Levin, C. S.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[Crossref]

Li, C. P.

H. Hou, Y. Y. Zhao, C. P. Li, M. M. Wang, X. L. Xu, and Y. D. Jin, “Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells,” Sci. Rep. 7(1), 1759 (2017).
[Crossref]

Li, F.

J. J. Yu, M. Z. Shen, S. Y. Liu, F. Li, D. P. Sun, and T. H. Wang, “A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate,” Appl. Surf. Sci. 406, 285–293 (2017).
[Crossref]

Li, G. H.

H. Zhang, G. H. Li, S. Li, L. L. Xu, Y. Tian, A. X. Jiao, X. D. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457(1), 684–694 (2018).
[Crossref]

Li, H. L.

M. Meng, Z. C. Fang, C. Zhang, H. Y. Su, R. He, R. P. Zhang, H. L. Li, Z. Y. Li, X. J. Wu, and C. Ma, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref]

Li, S.

H. Zhang, G. H. Li, S. Li, L. L. Xu, Y. Tian, A. X. Jiao, X. D. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457(1), 684–694 (2018).
[Crossref]

Li, X.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref]

Li, Y. L.

L. Y. Bi, Y. Q. Wang, Y. Yang, Y. L. Li, S. S. Mo, Q. Y. Zheng, and L. X. Chen, “Highly sensitive and reproducible SERS sensor for biological pH detection based on a uniform gold nanorod array platform,” ACS Appl. Mater. Interfaces 10(18), 15381–15387 (2018).
[Crossref]

Li, Z. Y.

M. Meng, Z. C. Fang, C. Zhang, H. Y. Su, R. He, R. P. Zhang, H. L. Li, Z. Y. Li, X. J. Wu, and C. Ma, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref]

Liang, C. Y.

Y. T. Shen, L. J. Liang, S. Q. Zhang, D. S. Huang, J. Zhang, S. P. Xu, C. Y. Liang, and W. Q. Xu, “Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing,” Nanoscale 10(4), 1622–1630 (2018).
[Crossref]

Liang, L. J.

Y. T. Shen, L. J. Liang, S. Q. Zhang, D. S. Huang, J. Zhang, S. P. Xu, C. Y. Liang, and W. Q. Xu, “Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing,” Nanoscale 10(4), 1622–1630 (2018).
[Crossref]

Lin, D. Y.

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref]

Lin, X.

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref]

Liu, S. Y.

J. J. Yu, M. Z. Shen, S. Y. Liu, F. Li, D. P. Sun, and T. H. Wang, “A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate,” Appl. Surf. Sci. 406, 285–293 (2017).
[Crossref]

Liu, X. D.

H. Zhang, G. H. Li, S. Li, L. L. Xu, Y. Tian, A. X. Jiao, X. D. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457(1), 684–694 (2018).
[Crossref]

H. Zhang, L. L. Xu, Y. Tian, M. Chen, X. D. Liu, and F. Chen, “Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy,” Opt. Express 25(23), 29389–29400 (2017).
[Crossref]

Liu, Y.

Y. Liu, H. Yuan, A. M. Fales, and T. Vo-Dinh, “pH-sensing nanostar probe using surface-enhanced Raman scattering (SERS): theoretical and experimental studies,” J. Raman Spectrosc. 44(7), 980–986 (2013).
[Crossref]

Lou, X. T.

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref]

Lou, X. W. D.

H. B. Wu, H. H. Hng, and X. W. D. Lou, “Direct synthesis of anatase TiO2 nanowires with enhanced photocatalytic activity,” Adv. Mater. 24(19), 2567–2571 (2012).
[Crossref]

Lu, G.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
[Crossref]

Lu, Z. W.

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref]

Lv, J. G.

L. Yang, W. H. Wang, H. Y. Jiang, Q. H. Zhang, H. H. Shan, M. Zhang, K. R. Zhu, J. G. Lv, G. He, and Z. Q. Sun, “Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles,” Sens. Actuators, B 242, 932–939 (2017).
[Crossref]

Ma, C.

M. Meng, Z. C. Fang, C. Zhang, H. Y. Su, R. He, R. P. Zhang, H. L. Li, Z. Y. Li, X. J. Wu, and C. Ma, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref]

Ma, J.

T. Yang, J. Ma, S. J. Zhen, and C. Z. Huang, “Electrostatic assemblies of well-dispersed Ag NPs on the surface of electrospun nanofibers as highly active SERS substrates for wide-range pH sensing,” ACS Appl. Mater. Interfaces 8(23), 14802–14811 (2016).
[Crossref]

Marshall, J.

G. M. Denning, M. P. Anderson, J. F. Amara, J. Marshall, A. E. Smith, and M. J. Welsh, “Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive,” Nature 358(6389), 761–764 (1992).
[Crossref]

Maruyama, Y.

Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B 108(2), 673–678 (2004).
[Crossref]

Masuhara, A.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
[Crossref]

Mattogno, G.

S. Kaciulis, G. Mattogno, A. Napoli, E. Bemporad, F. Ferrari, A. Montenero, and G. Gnappi, “Surface analysis of biocompatible coatings on titanium,” J. Electron Spectrosc. Relat. Phenom. 95(1), 61–69 (1998).
[Crossref]

Meng, M.

M. Meng, Z. C. Fang, C. Zhang, H. Y. Su, R. He, R. P. Zhang, H. L. Li, Z. Y. Li, X. J. Wu, and C. Ma, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref]

Michota, A.

A. Michota and J. Bukowska, “Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates,” J. Raman Spectrosc. 34(1), 21–25 (2003).
[Crossref]

Mo, S. S.

L. Y. Bi, Y. Q. Wang, Y. Yang, Y. L. Li, S. S. Mo, Q. Y. Zheng, and L. X. Chen, “Highly sensitive and reproducible SERS sensor for biological pH detection based on a uniform gold nanorod array platform,” ACS Appl. Mater. Interfaces 10(18), 15381–15387 (2018).
[Crossref]

Mochizuki, K.

Z. Q. Zhang, K. Bando, K. Mochizuki, A. Taguchi, K. Fujita, and S. Kawata, “Quantitative evaluation of surface-enhanced Raman scattering nanoparticles for intracellular pH sensing at a single particle level,” Anal. Chem. 91(5), 3254–3262 (2019).
[Crossref]

Montenero, A.

S. Kaciulis, G. Mattogno, A. Napoli, E. Bemporad, F. Ferrari, A. Montenero, and G. Gnappi, “Surface analysis of biocompatible coatings on titanium,” J. Electron Spectrosc. Relat. Phenom. 95(1), 61–69 (1998).
[Crossref]

Moradian-Oldak, J.

J. Moradian-Oldak, W. Leung, and A. G. Fincham, “Temperature and pH-dependent supramolecular self-assembly of amelogenin molecules: a dynamic light scattering analysis,” J. Struct. Biol. 122(3), 320–327 (1998).
[Crossref]

Mortensen, N. A.

Napoli, A.

S. Kaciulis, G. Mattogno, A. Napoli, E. Bemporad, F. Ferrari, A. Montenero, and G. Gnappi, “Surface analysis of biocompatible coatings on titanium,” J. Electron Spectrosc. Relat. Phenom. 95(1), 61–69 (1998).
[Crossref]

Nguyen, K. T.

F. L. Wang, R. G. Widejko, Z. Q. Yang, K. T. Nguyen, H. Y. Chen, L. P. Fernando, K. A. Christensen, and J. N. Anker, “Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles,” Anal. Chem. 84(18), 8013–8019 (2012).
[Crossref]

Nordlander, P.

Q. Zhang, N. Large, P. Nordlander, and H. Wang, “Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS,” J. Phys. Chem. Lett. 5(2), 370–374 (2014).
[Crossref]

Novikov, S. M.

Oshiro, T. Y.

A. M. Schwartzberg, T. Y. Oshiro, J. Z. Zhang, T. Huser, and C. E. Talley, “Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles,” Anal. Chem. 78(13), 4732–4736 (2006).
[Crossref]

Ramasamy, P.

P. Ramasamy, D. M. Seo, S. H. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver nanowires,” J. Mater. Chem. 22(23), 11651–11657 (2012).
[Crossref]

Ren, B.

X. S. Zheng, P. Hu, Y. Cui, C. Zong, J. M. Feng, X. Wang, and B. Ren, “BSA-coated nanoparticles for improved SERS-based intracellular pH sensing,” Anal. Chem. 86(24), 12250–12257 (2014).
[Crossref]

Ricci, M.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
[Crossref]

Rozell, C. J.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[Crossref]

Scholz, F.

F. Scholz, “From the Leiden jar to the discovery of the glass electrode by Max Cremer,” J. Solid State Electrochem. 15(1), 5–14 (2011).
[Crossref]

Schwartzberg, A. M.

A. M. Schwartzberg, T. Y. Oshiro, J. Z. Zhang, T. Huser, and C. E. Talley, “Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles,” Anal. Chem. 78(13), 4732–4736 (2006).
[Crossref]

Sekine, S.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
[Crossref]

Seo, D. M.

P. Ramasamy, D. M. Seo, S. H. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver nanowires,” J. Mater. Chem. 22(23), 11651–11657 (2012).
[Crossref]

Shan, H. H.

L. Yang, W. H. Wang, H. Y. Jiang, Q. H. Zhang, H. H. Shan, M. Zhang, K. R. Zhu, J. G. Lv, G. He, and Z. Q. Sun, “Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles,” Sens. Actuators, B 242, 932–939 (2017).
[Crossref]

Shen, M. Z.

J. J. Yu, M. Z. Shen, S. Y. Liu, F. Li, D. P. Sun, and T. H. Wang, “A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate,” Appl. Surf. Sci. 406, 285–293 (2017).
[Crossref]

Shen, Y. T.

Y. T. Shen, L. J. Liang, S. Q. Zhang, D. S. Huang, J. Zhang, S. P. Xu, C. Y. Liang, and W. Q. Xu, “Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing,” Nanoscale 10(4), 1622–1630 (2018).
[Crossref]

Smith, A. E.

G. M. Denning, M. P. Anderson, J. F. Amara, J. Marshall, A. E. Smith, and M. J. Welsh, “Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive,” Nature 358(6389), 761–764 (1992).
[Crossref]

Stenger, N.

Su, H. Y.

M. Meng, Z. C. Fang, C. Zhang, H. Y. Su, R. He, R. P. Zhang, H. L. Li, Z. Y. Li, X. J. Wu, and C. Ma, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref]

Sun, D. P.

J. J. Yu, M. Z. Shen, S. Y. Liu, F. Li, D. P. Sun, and T. H. Wang, “A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate,” Appl. Surf. Sci. 406, 285–293 (2017).
[Crossref]

Sun, F.

F. Sun, P. Zhang, T. Bai, D. D. Galvan, H. C. Hung, N. Zhou, S. Y. Jiang, and Q. M. Yu, “Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS,” Biosens. Bioelectron. 73(15), 202–207 (2015).
[Crossref]

Sun, X.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref]

Sun, Z. Q.

L. Yang, W. H. Wang, H. Y. Jiang, Q. H. Zhang, H. H. Shan, M. Zhang, K. R. Zhu, J. G. Lv, G. He, and Z. Q. Sun, “Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles,” Sens. Actuators, B 242, 932–939 (2017).
[Crossref]

Taguchi, A.

Z. Q. Zhang, K. Bando, K. Mochizuki, A. Taguchi, K. Fujita, and S. Kawata, “Quantitative evaluation of surface-enhanced Raman scattering nanoparticles for intracellular pH sensing at a single particle level,” Anal. Chem. 91(5), 3254–3262 (2019).
[Crossref]

Talley, C. E.

A. M. Schwartzberg, T. Y. Oshiro, J. Z. Zhang, T. Huser, and C. E. Talley, “Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles,” Anal. Chem. 78(13), 4732–4736 (2006).
[Crossref]

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH sensors based on surface-enhanced Raman scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
[Crossref]

Tian, Y.

L. L. Xu, H. Zhang, Y. Tian, A. X. Jiao, F. Chen, and M. Chen, “Photochemical synthesis of ZnO@Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater,” Talanta 194(1), 680–688 (2019).
[Crossref]

H. Zhang, G. H. Li, S. Li, L. L. Xu, Y. Tian, A. X. Jiao, X. D. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457(1), 684–694 (2018).
[Crossref]

H. Zhang, L. L. Xu, Y. Tian, M. Chen, X. D. Liu, and F. Chen, “Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy,” Opt. Express 25(23), 29389–29400 (2017).
[Crossref]

Toyouchi, S.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
[Crossref]

Uezono, S.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
[Crossref]

Uji-I, H.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
[Crossref]

Umemoto, K.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
[Crossref]

Viets, C.

C. Viets and W. Hill, “Laser power effects in SERS spectroscopy at thin metal films,” J. Phys. Chem. B 105(27), 6330–6336 (2001).
[Crossref]

Vo-Dinh, T.

Y. Liu, H. Yuan, A. M. Fales, and T. Vo-Dinh, “pH-sensing nanostar probe using surface-enhanced Raman scattering (SERS): theoretical and experimental studies,” J. Raman Spectrosc. 44(7), 980–986 (2013).
[Crossref]

Wang, F. L.

F. L. Wang, R. G. Widejko, Z. Q. Yang, K. T. Nguyen, H. Y. Chen, L. P. Fernando, K. A. Christensen, and J. N. Anker, “Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles,” Anal. Chem. 84(18), 8013–8019 (2012).
[Crossref]

Wang, H.

Q. Zhang, N. Large, P. Nordlander, and H. Wang, “Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS,” J. Phys. Chem. Lett. 5(2), 370–374 (2014).
[Crossref]

Wang, M. M.

H. Hou, Y. Y. Zhao, C. P. Li, M. M. Wang, X. L. Xu, and Y. D. Jin, “Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells,” Sci. Rep. 7(1), 1759 (2017).
[Crossref]

Wang, T. H.

J. J. Yu, M. Z. Shen, S. Y. Liu, F. Li, D. P. Sun, and T. H. Wang, “A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate,” Appl. Surf. Sci. 406, 285–293 (2017).
[Crossref]

Wang, W. H.

L. Yang, W. H. Wang, H. Y. Jiang, Q. H. Zhang, H. H. Shan, M. Zhang, K. R. Zhu, J. G. Lv, G. He, and Z. Q. Sun, “Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles,” Sens. Actuators, B 242, 932–939 (2017).
[Crossref]

Wang, X.

X. S. Zheng, P. Hu, Y. Cui, C. Zong, J. M. Feng, X. Wang, and B. Ren, “BSA-coated nanoparticles for improved SERS-based intracellular pH sensing,” Anal. Chem. 86(24), 12250–12257 (2014).
[Crossref]

Wang, Y. Q.

L. Y. Bi, Y. Q. Wang, Y. Yang, Y. L. Li, S. S. Mo, Q. Y. Zheng, and L. X. Chen, “Highly sensitive and reproducible SERS sensor for biological pH detection based on a uniform gold nanorod array platform,” ACS Appl. Mater. Interfaces 10(18), 15381–15387 (2018).
[Crossref]

Wang, Z. Y.

P. Chen, Z. Y. Wang, S. F. Zong, H. Chen, D. Zhu, Y. Zhong, and Y. P. Cui, “A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals,” Anal. Bioanal. Chem. 406(25), 6337–6346 (2014).
[Crossref]

S. F. Zong, Z. Y. Wang, J. Yang, and Y. P. Cui, “Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity,” Anal. Chem. 83(11), 4178–4183 (2011).
[Crossref]

Welsh, M. J.

G. M. Denning, M. P. Anderson, J. F. Amara, J. Marshall, A. E. Smith, and M. J. Welsh, “Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive,” Nature 358(6389), 761–764 (1992).
[Crossref]

Widejko, R. G.

F. L. Wang, R. G. Widejko, Z. Q. Yang, K. T. Nguyen, H. Y. Chen, L. P. Fernando, K. A. Christensen, and J. N. Anker, “Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles,” Anal. Chem. 84(18), 8013–8019 (2012).
[Crossref]

Wu, H. B.

H. B. Wu, H. H. Hng, and X. W. D. Lou, “Direct synthesis of anatase TiO2 nanowires with enhanced photocatalytic activity,” Adv. Mater. 24(19), 2567–2571 (2012).
[Crossref]

Wu, X. J.

M. Meng, Z. C. Fang, C. Zhang, H. Y. Su, R. He, R. P. Zhang, H. L. Li, Z. Y. Li, X. J. Wu, and C. Ma, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref]

Xu, L. L.

L. L. Xu, H. Zhang, Y. Tian, A. X. Jiao, F. Chen, and M. Chen, “Photochemical synthesis of ZnO@Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater,” Talanta 194(1), 680–688 (2019).
[Crossref]

H. Zhang, G. H. Li, S. Li, L. L. Xu, Y. Tian, A. X. Jiao, X. D. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457(1), 684–694 (2018).
[Crossref]

H. Zhang, L. L. Xu, Y. Tian, M. Chen, X. D. Liu, and F. Chen, “Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy,” Opt. Express 25(23), 29389–29400 (2017).
[Crossref]

Xu, S. P.

Y. T. Shen, L. J. Liang, S. Q. Zhang, D. S. Huang, J. Zhang, S. P. Xu, C. Y. Liang, and W. Q. Xu, “Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing,” Nanoscale 10(4), 1622–1630 (2018).
[Crossref]

Xu, W. Q.

Y. T. Shen, L. J. Liang, S. Q. Zhang, D. S. Huang, J. Zhang, S. P. Xu, C. Y. Liang, and W. Q. Xu, “Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing,” Nanoscale 10(4), 1622–1630 (2018).
[Crossref]

Xu, X. L.

H. Hou, Y. Y. Zhao, C. P. Li, M. M. Wang, X. L. Xu, and Y. D. Jin, “Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells,” Sci. Rep. 7(1), 1759 (2017).
[Crossref]

Yang, J.

S. F. Zong, Z. Y. Wang, J. Yang, and Y. P. Cui, “Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity,” Anal. Chem. 83(11), 4178–4183 (2011).
[Crossref]

Yang, L.

L. Yang, W. H. Wang, H. Y. Jiang, Q. H. Zhang, H. H. Shan, M. Zhang, K. R. Zhu, J. G. Lv, G. He, and Z. Q. Sun, “Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles,” Sens. Actuators, B 242, 932–939 (2017).
[Crossref]

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref]

Yang, M.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref]

Yang, T.

T. Yang, J. Ma, S. J. Zhen, and C. Z. Huang, “Electrostatic assemblies of well-dispersed Ag NPs on the surface of electrospun nanofibers as highly active SERS substrates for wide-range pH sensing,” ACS Appl. Mater. Interfaces 8(23), 14802–14811 (2016).
[Crossref]

Yang, Y.

L. Y. Bi, Y. Q. Wang, Y. Yang, Y. L. Li, S. S. Mo, Q. Y. Zheng, and L. X. Chen, “Highly sensitive and reproducible SERS sensor for biological pH detection based on a uniform gold nanorod array platform,” ACS Appl. Mater. Interfaces 10(18), 15381–15387 (2018).
[Crossref]

Yang, Z. Q.

F. L. Wang, R. G. Widejko, Z. Q. Yang, K. T. Nguyen, H. Y. Chen, L. P. Fernando, K. A. Christensen, and J. N. Anker, “Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles,” Anal. Chem. 84(18), 8013–8019 (2012).
[Crossref]

Ye, B. C.

W. Zhou, B. C. Yin, and B. C. Ye, “Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate,” Biosens. Bioelectron. 87(15), 187–194 (2017).
[Crossref]

Yin, B. C.

W. Zhou, B. C. Yin, and B. C. Ye, “Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate,” Biosens. Bioelectron. 87(15), 187–194 (2017).
[Crossref]

Yin, D.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref]

Yu, J. J.

J. J. Yu, M. Z. Shen, S. Y. Liu, F. Li, D. P. Sun, and T. H. Wang, “A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate,” Appl. Surf. Sci. 406, 285–293 (2017).
[Crossref]

Yu, Q. M.

F. Sun, P. Zhang, T. Bai, D. D. Galvan, H. C. Hung, N. Zhou, S. Y. Jiang, and Q. M. Yu, “Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS,” Biosens. Bioelectron. 73(15), 202–207 (2015).
[Crossref]

Yuan, H.

Y. Liu, H. Yuan, A. M. Fales, and T. Vo-Dinh, “pH-sensing nanostar probe using surface-enhanced Raman scattering (SERS): theoretical and experimental studies,” J. Raman Spectrosc. 44(7), 980–986 (2013).
[Crossref]

Zhang, C.

M. Meng, Z. C. Fang, C. Zhang, H. Y. Su, R. He, R. P. Zhang, H. L. Li, Z. Y. Li, X. J. Wu, and C. Ma, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref]

Zhang, H.

L. L. Xu, H. Zhang, Y. Tian, A. X. Jiao, F. Chen, and M. Chen, “Photochemical synthesis of ZnO@Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater,” Talanta 194(1), 680–688 (2019).
[Crossref]

H. Zhang, G. H. Li, S. Li, L. L. Xu, Y. Tian, A. X. Jiao, X. D. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457(1), 684–694 (2018).
[Crossref]

H. Zhang, L. L. Xu, Y. Tian, M. Chen, X. D. Liu, and F. Chen, “Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy,” Opt. Express 25(23), 29389–29400 (2017).
[Crossref]

Zhang, J.

Y. T. Shen, L. J. Liang, S. Q. Zhang, D. S. Huang, J. Zhang, S. P. Xu, C. Y. Liang, and W. Q. Xu, “Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing,” Nanoscale 10(4), 1622–1630 (2018).
[Crossref]

Zhang, J. Z.

A. M. Schwartzberg, T. Y. Oshiro, J. Z. Zhang, T. Huser, and C. E. Talley, “Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles,” Anal. Chem. 78(13), 4732–4736 (2006).
[Crossref]

Zhang, M.

L. Yang, W. H. Wang, H. Y. Jiang, Q. H. Zhang, H. H. Shan, M. Zhang, K. R. Zhu, J. G. Lv, G. He, and Z. Q. Sun, “Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles,” Sens. Actuators, B 242, 932–939 (2017).
[Crossref]

Zhang, P.

F. Sun, P. Zhang, T. Bai, D. D. Galvan, H. C. Hung, N. Zhou, S. Y. Jiang, and Q. M. Yu, “Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS,” Biosens. Bioelectron. 73(15), 202–207 (2015).
[Crossref]

Zhang, Q.

Q. Zhang, N. Large, P. Nordlander, and H. Wang, “Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS,” J. Phys. Chem. Lett. 5(2), 370–374 (2014).
[Crossref]

Zhang, Q. H.

L. Yang, W. H. Wang, H. Y. Jiang, Q. H. Zhang, H. H. Shan, M. Zhang, K. R. Zhu, J. G. Lv, G. He, and Z. Q. Sun, “Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles,” Sens. Actuators, B 242, 932–939 (2017).
[Crossref]

Zhang, R. P.

M. Meng, Z. C. Fang, C. Zhang, H. Y. Su, R. He, R. P. Zhang, H. L. Li, Z. Y. Li, X. J. Wu, and C. Ma, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref]

Zhang, S. Q.

Y. T. Shen, L. J. Liang, S. Q. Zhang, D. S. Huang, J. Zhang, S. P. Xu, C. Y. Liang, and W. Q. Xu, “Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing,” Nanoscale 10(4), 1622–1630 (2018).
[Crossref]

Zhang, Z. Q.

Z. Q. Zhang, K. Bando, K. Mochizuki, A. Taguchi, K. Fujita, and S. Kawata, “Quantitative evaluation of surface-enhanced Raman scattering nanoparticles for intracellular pH sensing at a single particle level,” Anal. Chem. 91(5), 3254–3262 (2019).
[Crossref]

Zhao, B.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref]

Zhao, Y. Y.

H. Hou, Y. Y. Zhao, C. P. Li, M. M. Wang, X. L. Xu, and Y. D. Jin, “Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells,” Sci. Rep. 7(1), 1759 (2017).
[Crossref]

Zhen, S. J.

T. Yang, J. Ma, S. J. Zhen, and C. Z. Huang, “Electrostatic assemblies of well-dispersed Ag NPs on the surface of electrospun nanofibers as highly active SERS substrates for wide-range pH sensing,” ACS Appl. Mater. Interfaces 8(23), 14802–14811 (2016).
[Crossref]

Zheng, Q. Y.

L. Y. Bi, Y. Q. Wang, Y. Yang, Y. L. Li, S. S. Mo, Q. Y. Zheng, and L. X. Chen, “Highly sensitive and reproducible SERS sensor for biological pH detection based on a uniform gold nanorod array platform,” ACS Appl. Mater. Interfaces 10(18), 15381–15387 (2018).
[Crossref]

Zheng, X. S.

X. S. Zheng, P. Hu, Y. Cui, C. Zong, J. M. Feng, X. Wang, and B. Ren, “BSA-coated nanoparticles for improved SERS-based intracellular pH sensing,” Anal. Chem. 86(24), 12250–12257 (2014).
[Crossref]

Zhong, Y.

P. Chen, Z. Y. Wang, S. F. Zong, H. Chen, D. Zhu, Y. Zhong, and Y. P. Cui, “A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals,” Anal. Bioanal. Chem. 406(25), 6337–6346 (2014).
[Crossref]

Zhou, N.

F. Sun, P. Zhang, T. Bai, D. D. Galvan, H. C. Hung, N. Zhou, S. Y. Jiang, and Q. M. Yu, “Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS,” Biosens. Bioelectron. 73(15), 202–207 (2015).
[Crossref]

Zhou, W.

W. Zhou, B. C. Yin, and B. C. Ye, “Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate,” Biosens. Bioelectron. 87(15), 187–194 (2017).
[Crossref]

Zhu, D.

P. Chen, Z. Y. Wang, S. F. Zong, H. Chen, D. Zhu, Y. Zhong, and Y. P. Cui, “A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals,” Anal. Bioanal. Chem. 406(25), 6337–6346 (2014).
[Crossref]

Zhu, K. R.

L. Yang, W. H. Wang, H. Y. Jiang, Q. H. Zhang, H. H. Shan, M. Zhang, K. R. Zhu, J. G. Lv, G. He, and Z. Q. Sun, “Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles,” Sens. Actuators, B 242, 932–939 (2017).
[Crossref]

Zong, C.

X. S. Zheng, P. Hu, Y. Cui, C. Zong, J. M. Feng, X. Wang, and B. Ren, “BSA-coated nanoparticles for improved SERS-based intracellular pH sensing,” Anal. Chem. 86(24), 12250–12257 (2014).
[Crossref]

Zong, S. F.

P. Chen, Z. Y. Wang, S. F. Zong, H. Chen, D. Zhu, Y. Zhong, and Y. P. Cui, “A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals,” Anal. Bioanal. Chem. 406(25), 6337–6346 (2014).
[Crossref]

S. F. Zong, Z. Y. Wang, J. Yang, and Y. P. Cui, “Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity,” Anal. Chem. 83(11), 4178–4183 (2011).
[Crossref]

ACS Appl. Mater. Interfaces (2)

L. Y. Bi, Y. Q. Wang, Y. Yang, Y. L. Li, S. S. Mo, Q. Y. Zheng, and L. X. Chen, “Highly sensitive and reproducible SERS sensor for biological pH detection based on a uniform gold nanorod array platform,” ACS Appl. Mater. Interfaces 10(18), 15381–15387 (2018).
[Crossref]

T. Yang, J. Ma, S. J. Zhen, and C. Z. Huang, “Electrostatic assemblies of well-dispersed Ag NPs on the surface of electrospun nanofibers as highly active SERS substrates for wide-range pH sensing,” ACS Appl. Mater. Interfaces 8(23), 14802–14811 (2016).
[Crossref]

Adv. Mater. (1)

H. B. Wu, H. H. Hng, and X. W. D. Lou, “Direct synthesis of anatase TiO2 nanowires with enhanced photocatalytic activity,” Adv. Mater. 24(19), 2567–2571 (2012).
[Crossref]

Anal. Bioanal. Chem. (1)

P. Chen, Z. Y. Wang, S. F. Zong, H. Chen, D. Zhu, Y. Zhong, and Y. P. Cui, “A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals,” Anal. Bioanal. Chem. 406(25), 6337–6346 (2014).
[Crossref]

Anal. Chem. (6)

A. M. Schwartzberg, T. Y. Oshiro, J. Z. Zhang, T. Huser, and C. E. Talley, “Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles,” Anal. Chem. 78(13), 4732–4736 (2006).
[Crossref]

S. F. Zong, Z. Y. Wang, J. Yang, and Y. P. Cui, “Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity,” Anal. Chem. 83(11), 4178–4183 (2011).
[Crossref]

Z. Q. Zhang, K. Bando, K. Mochizuki, A. Taguchi, K. Fujita, and S. Kawata, “Quantitative evaluation of surface-enhanced Raman scattering nanoparticles for intracellular pH sensing at a single particle level,” Anal. Chem. 91(5), 3254–3262 (2019).
[Crossref]

X. S. Zheng, P. Hu, Y. Cui, C. Zong, J. M. Feng, X. Wang, and B. Ren, “BSA-coated nanoparticles for improved SERS-based intracellular pH sensing,” Anal. Chem. 86(24), 12250–12257 (2014).
[Crossref]

F. L. Wang, R. G. Widejko, Z. Q. Yang, K. T. Nguyen, H. Y. Chen, L. P. Fernando, K. A. Christensen, and J. N. Anker, “Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles,” Anal. Chem. 84(18), 8013–8019 (2012).
[Crossref]

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH sensors based on surface-enhanced Raman scattering,” Anal. Chem. 76(23), 7064–7068 (2004).
[Crossref]

Appl. Surf. Sci. (2)

H. Zhang, G. H. Li, S. Li, L. L. Xu, Y. Tian, A. X. Jiao, X. D. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457(1), 684–694 (2018).
[Crossref]

J. J. Yu, M. Z. Shen, S. Y. Liu, F. Li, D. P. Sun, and T. H. Wang, “A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate,” Appl. Surf. Sci. 406, 285–293 (2017).
[Crossref]

Biosens. Bioelectron. (2)

W. Zhou, B. C. Yin, and B. C. Ye, “Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate,” Biosens. Bioelectron. 87(15), 187–194 (2017).
[Crossref]

F. Sun, P. Zhang, T. Bai, D. D. Galvan, H. C. Hung, N. Zhou, S. Y. Jiang, and Q. M. Yu, “Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS,” Biosens. Bioelectron. 73(15), 202–207 (2015).
[Crossref]

Chem. Commun. (1)

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. 53(82), 11298–11301 (2017).
[Crossref]

J. Electron Spectrosc. Relat. Phenom. (1)

S. Kaciulis, G. Mattogno, A. Napoli, E. Bemporad, F. Ferrari, A. Montenero, and G. Gnappi, “Surface analysis of biocompatible coatings on titanium,” J. Electron Spectrosc. Relat. Phenom. 95(1), 61–69 (1998).
[Crossref]

J. Mater. Chem. (1)

P. Ramasamy, D. M. Seo, S. H. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver nanowires,” J. Mater. Chem. 22(23), 11651–11657 (2012).
[Crossref]

J. Phys. Chem. B (2)

Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B 108(2), 673–678 (2004).
[Crossref]

C. Viets and W. Hill, “Laser power effects in SERS spectroscopy at thin metal films,” J. Phys. Chem. B 105(27), 6330–6336 (2001).
[Crossref]

J. Phys. Chem. Lett. (2)

R. A. Alvarez-Puebla, “Effect of the excitation wavelength on the SERS spectrum,” J. Phys. Chem. Lett. 3(7), 857–866 (2012).
[Crossref]

Q. Zhang, N. Large, P. Nordlander, and H. Wang, “Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS,” J. Phys. Chem. Lett. 5(2), 370–374 (2014).
[Crossref]

J. Raman Spectrosc. (2)

A. Michota and J. Bukowska, “Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates,” J. Raman Spectrosc. 34(1), 21–25 (2003).
[Crossref]

Y. Liu, H. Yuan, A. M. Fales, and T. Vo-Dinh, “pH-sensing nanostar probe using surface-enhanced Raman scattering (SERS): theoretical and experimental studies,” J. Raman Spectrosc. 44(7), 980–986 (2013).
[Crossref]

J. Solid State Electrochem. (1)

F. Scholz, “From the Leiden jar to the discovery of the glass electrode by Max Cremer,” J. Solid State Electrochem. 15(1), 5–14 (2011).
[Crossref]

J. Struct. Biol. (1)

J. Moradian-Oldak, W. Leung, and A. G. Fincham, “Temperature and pH-dependent supramolecular self-assembly of amelogenin molecules: a dynamic light scattering analysis,” J. Struct. Biol. 122(3), 320–327 (1998).
[Crossref]

Nano Lett. (2)

M. Meng, Z. C. Fang, C. Zhang, H. Y. Su, R. He, R. P. Zhang, H. L. Li, Z. Y. Li, X. J. Wu, and C. Ma, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref]

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[Crossref]

Nano Res. (1)

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).
[Crossref]

Nanoscale (1)

Y. T. Shen, L. J. Liang, S. Q. Zhang, D. S. Huang, J. Zhang, S. P. Xu, C. Y. Liang, and W. Q. Xu, “Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing,” Nanoscale 10(4), 1622–1630 (2018).
[Crossref]

Nature (1)

G. M. Denning, M. P. Anderson, J. F. Amara, J. Marshall, A. E. Smith, and M. J. Welsh, “Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive,” Nature 358(6389), 761–764 (1992).
[Crossref]

Opt. Express (2)

Phys. Chem. Chem. Phys. (3)

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref]

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref]

M. Guhlke, Z. Heiner, and J. Kneipp, “Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures,” Phys. Chem. Chem. Phys. 17(39), 26093–26100 (2015).
[Crossref]

Sci. Rep. (1)

H. Hou, Y. Y. Zhao, C. P. Li, M. M. Wang, X. L. Xu, and Y. D. Jin, “Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells,” Sci. Rep. 7(1), 1759 (2017).
[Crossref]

Sens. Actuators, B (1)

L. Yang, W. H. Wang, H. Y. Jiang, Q. H. Zhang, H. H. Shan, M. Zhang, K. R. Zhu, J. G. Lv, G. He, and Z. Q. Sun, “Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles,” Sens. Actuators, B 242, 932–939 (2017).
[Crossref]

Small (1)

T. Kang, S. Hong, Y. Choi, and L. P. Lee, “The effect of thermal gradients in SERS spectroscopy,” Small 6(23), 2649–2652 (2010).
[Crossref]

Talanta (1)

L. L. Xu, H. Zhang, Y. Tian, A. X. Jiao, F. Chen, and M. Chen, “Photochemical synthesis of ZnO@Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater,” Talanta 194(1), 680–688 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The direct photograph and schematic description of blue laser (473 nm) beam excited SERS analysis by using Au@Ag/TiO2 as efficient substrate.
Fig. 2.
Fig. 2. (a) TEM image of original TiO2 nanowires. (b-d) Different magnified TEM images of as-prepared Ag/TiO2 NCs fabricated by 375 nm laser irradiation of TiO2 supports in AgNO3 solution. The irradiation time is 60 min.
Fig. 3.
Fig. 3. (a-b) The typical low and enlarged SEM images of as-prepared Ag/TiO2 NCs. The inset is the corresponding EDS pattern. (c) The absorption spectra of Ag/TiO2 solution generated by 375 nm laser irradiation with different times. The inset shows the color change of original TiO2 and Ag/TiO2 NCs fabricated by 60 min laser irradiation. (d) The curve of Ag content in nanocomposites versus laser irradiation time.
Fig. 4.
Fig. 4. (a-c) The low and enlarged TEM images of obtained Au@Ag/TiO2 by adding 0.05 M, 200 µL HAuCl4 into as-prepared Ag/TiO2 precursors. The inset is the corresponding EDS pattern. (d) The absorption spectra of as-prepared Ag/TiO2 and Au@Ag/TiO2. The inset shows the direct photograph images of two different solutions. (e) the HAADF-STEM image of a typical Au@Ag/TiO2 nanostructures and the corresponding elemental mapping images.
Fig. 5.
Fig. 5. XPS spectra of obtained Au@Ag/TiO2, as-prepared Ag/TiO2, and original TiO2 nanowires, respectively. (a) survey spectra. (b-d) Ti2p and metallic Ag3d as well as O1s spectra, respectively.
Fig. 6.
Fig. 6. (a) SERS spectra of 10−8 M CV molecules adsorbed on obtained Au@Ag/TiO2 NCs and core-shell Au@Ag NDs and 0.1 M CV without any nanosubstrate. (b-c) SERS spectra of CV molecules with different concentrations adsorbed on TiO2 nanowires and Au@Ag/TiO2 NCs, respectively. (d) Based on Au@Ag/TiO2 NCs substrate, SERS spectra of 10−6 M CV molecules before and after storage for 10 days at room temperature.
Fig. 7.
Fig. 7. (a) Blue laser (473 nm) excited the SERS spectra of 4-MBA molecules (10−3 M) adsorbed on Au@Ag/TiO2 NCs at pH = 7.0 condition. (b) The corresponding SERS spectra of Au@Ag/TiO2 SERS-based pH sensor in 4-MBA (10−3 M) of various pH values ranging from pH 4.0 to pH 9.0 in steps of 1.0 pH unit, respectively. (c-d) the variation of I(vCOO-)/I(v8a) versus different pH values. (e) pH calibration curves of SERS-based pH sensor at temperatures of 4°C, 25°C and 37°C. (f) the Raman peak of the 1406 cm−1 versus different cations in DI water at pH 7.0. (g) the pH curves for different SERS detection solutions. (h) SERS-based pH sensor before and after storage for several days (3, 7 and 10 days).
Fig. 8.
Fig. 8. The SERS spectra of 4-MBA (10−3 M, pH = 7.0) adsorbed on Au@Ag/TiO2 before and after storage for several days (3, 7 and 10 days)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E F = ( I S E R S / N S E R S ) / ( I N O R / N N O R )

Metrics