Abstract

Mid-infrared resonant cavity-enhanced photodetectors (RCE PD) present a promising technology for targeted gas detection. We demonstrate an RCE PD incorporating an InAs/InAsSb superlattice as the detecting element, extending the resonant wavelength beyond 4 µm. AlAsSb/GaSb mirrors and a unipolar barrier active region paralleling an nBn structure are also used, and performance is compared to a conventional broadband nBn detector incorporating the same superlattice. The RCE PD exhibited a Q-factor of ∼90 and an extremely stable resonance wavelength. Peak responsivity was 3.0 A W−1 at 240 K, equalling 84% quantum efficiency, a 5.5 times increase over the reference nBn at the same wavelength. Dark current density was 3.3×10−2 A cm−2 at 240 K, falling to 2.7×10−4 A cm−2 at 180 K. The broadband BLIP limit is approached at 180 K with specific detectivity of 2.1×1011 cm Hz1/2 W−1, which presents the potential of achieving BLIP-limited operation in the thermoelectric cooling regime.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application

Guanxi Chen, Abbas Haddadi, Anh-Minh Hoang, Romain Chevallier, and Manijeh Razeghi
Opt. Lett. 40(1) 45-47 (2015)

Performance comparison between the InAs-based and GaSb-based type-II superlattice photodiodes for long wavelength infrared detection

Fangfang Wang, Jianxin Chen, Zhicheng Xu, Yi Zhou, and Li He
Opt. Express 25(3) 1629-1635 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Rogalski, M. Kopytko, and P. Martyniuk, Antimonide-based Infrared Detectors: A New Perspective (SPIE Press, 2018).
  2. Teledyne Judson Technologies, “Indium Antimonide Detectors,” http://www.teledynejudson.com/products/indium-antimonide-detectors . [Accessed 24 May 2019].
  3. Hamamatsu Photonics, “InAsSb photovoltaic detectors,” https://www.hamamatsu.com/eu/en/product/optical-sensors/uv_flame-sensor/inassb-photovoltaic-detector/index.html . [Accessed 24 May 2019].
  4. M. Unlu and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
    [Crossref]
  5. A. Chin and T. Chang, “Multilayer reflectors by molecular beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 8(2), 339–342 (1990).
    [Crossref]
  6. A. Dentai, R. Kuchibhotla, J. Campbell, C. Tsai, and C. Lei, “High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode,” Electron. Lett. 27(23), 2125–2127 (1991).
    [Crossref]
  7. A. Green, D. Gevaux, C. Roberts, P. Stavrinou, and C. Phillips, “λ∼3 µm InAs resonant-cavity-enhanced photodetector,” Semicond. Sci. Technol. 18(11), 964–967 (2003).
    [Crossref]
  8. A. Craig, F. Al-Saymari, M. Jain, A. Bainbridge, G. Savich, T. Golding, A. Krier, G. Wicks, and A. Marshall, “Resonant cavity enhanced photodiodes on GaSb for the mid-wave infrared,” Appl. Phys. Lett. 114(15), 151107 (2019).
    [Crossref]
  9. J. Wehner, C. Musca, R. Sewell, J. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
    [Crossref]
  10. H. Wu, Y. Xu, J. Li, Y. Jiang, L. Bai, H. Yu, D. Fu, H. Zhu, and G. Song, “High quantum efficiency N-structure type-II superlattice mid-wavelength infrared detector with resonant cavity enhanced design,” Superlattices Microstruct. 105, 28–33 (2017).
    [Crossref]
  11. L. Canedy, W. Bewley, C. Merritt, C. Kim, M. Kim, M. Warren, E. Jackson, J. Nolde, C. Affouda, E. Aifer, I. Vurgaftman, and J. Meyer, “Resonant-cavity infrared detector with five-quantum-well absorber and 34% external quantum efficiency at 4 µm,” Opt. Express 27(3), 3771–3781 (2019).
    [Crossref]
  12. United States Environmental Protection Agency, “Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2017” (2019).
  13. H. S. Kim, O. O. Cellek, Z.-Y. Lin, Z.-Y. He, X.-H. Zhao, S. Liu, H. Li, and Y.-H. Zhang, “Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices,” Appl. Phys. Lett. 101(16), 161114 (2012).
    [Crossref]
  14. A. M. Hoang, G. Chen, R. Chevallier, A. Haddadi, and M. Razeghi, “High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection,” Appl. Phys. Lett. 104(25), 251105 (2014).
    [Crossref]
  15. J. Mott and P. Rez, “Calculated infrared spectra of nerve agents and simulants,” Spectrochim. Acta, Part A 91, 256–260 (2012).
    [Crossref]
  16. R. Peale, A. Muravjov, C. Fredricksen, G. Boreman, H. Saxena, G. Braunstein, V. Vaks, A. Maslovsky, and S. Nikiforov, “Spectral signatures of acetone vapor from ultraviolet to millimeter wavelengths,” in Spectral Sensing Research for Surface and Air Monitoring in Chemical, Biological and Radiological Defense and Security Applications, J. M. Theriault, ed. (World Scientific, 2009).
  17. P. Klipstein, “XBn barrier photodetectors for high sensitivity and high operating temperature infrared sensors,” Proc. SPIE 6940, 69402U (2008).
    [Crossref]
  18. G. Bishop, E. Plis, J. Rodriguez, Y. Sharma, H. Kim, L. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 26(3), 1145 (2008).
    [Crossref]
  19. E. Plis, “InAs/GaSb Type-II Superlattice Detectors,” Adv. Electron. 2014, 1–12 (2014).
    [Crossref]
  20. M. Kinch, Fundamentals of Infrared Detector Materials (SPIE Press, 2007).
  21. C. Downs and T. Vandervelde, “Progress in Infrared Photodetectors since 2000,” Sensors 13(4), 5054–5098 (2013).
    [Crossref]
  22. J. Rodriguez, E. Plis, G. Bishop, Y. Sharma, and H. Kim, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
    [Crossref]
  23. J. Kim, H. Yuan, J. Kimchi, J. Lei, E. Rangel, P. Dreiske, and A. Ikhlassi, “HOT MWIR InAs/InAsSb T2SL discrete photodetector development,” Proc. SPIE 10624, 1062412 (2018).
    [Crossref]
  24. A. Soibel, D. Ting, B. Rafol, A. Fisher, S. Keo, A. Khoshakhlagh, and S. Gunapala, “Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAS with very low dark current density,” Appl. Phys. Lett. 114(16), 161103 (2019).
    [Crossref]
  25. S. Byrnes, “Multilayer optical calculations,” arXiv:1603.02720 [physics.comp-ph] (2016).
  26. L. Piskorski and R. P. Sarzala, “Material parameters of antimonides and amorphous materials for modelling the mid-infrared lasers,” Opt. Appl. 46(2), 227–240 (2016).
    [Crossref]
  27. I. Vurgaftman and J. Meyer, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
    [Crossref]
  28. J. Wang, J. Hu, P. Becla, A. Agarwal, and L. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18(12), 12890–12896 (2010).
    [Crossref]
  29. W. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe Technology: A very General Solution to IR Detection, Described by “Rule 07”, a Very Convenient Heuristic,” J. Electron. Mater. 37(9), 1406–1410 (2008).
    [Crossref]
  30. P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
    [Crossref]
  31. E. Steenbergen, B. Connelly, G. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. Fastenau, A. Liu, S. Elhamri, O. Cellek, and Y. Zhang, “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
    [Crossref]
  32. L. Hoglund, D. Ting, A. Khoshakhlagh, A. Soibel, C. Hill, A. Fisher, S. Keo, and S. Gunapala, “Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices,” Appl. Phys. Lett. 103(22), 221908 (2013).
    [Crossref]
  33. L. Hoglund, D. Ting, A. Soibel, A. Fisher, A. Khoshakhlagh, C. B. L. Hill, S. Keo, J. Mumolo, and S. Gunapala, “Influence of carrier concentration on the minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices,” Infrared Phys. Technol. 70, 62–65 (2015).
    [Crossref]

2019 (3)

A. Craig, F. Al-Saymari, M. Jain, A. Bainbridge, G. Savich, T. Golding, A. Krier, G. Wicks, and A. Marshall, “Resonant cavity enhanced photodiodes on GaSb for the mid-wave infrared,” Appl. Phys. Lett. 114(15), 151107 (2019).
[Crossref]

L. Canedy, W. Bewley, C. Merritt, C. Kim, M. Kim, M. Warren, E. Jackson, J. Nolde, C. Affouda, E. Aifer, I. Vurgaftman, and J. Meyer, “Resonant-cavity infrared detector with five-quantum-well absorber and 34% external quantum efficiency at 4 µm,” Opt. Express 27(3), 3771–3781 (2019).
[Crossref]

A. Soibel, D. Ting, B. Rafol, A. Fisher, S. Keo, A. Khoshakhlagh, and S. Gunapala, “Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAS with very low dark current density,” Appl. Phys. Lett. 114(16), 161103 (2019).
[Crossref]

2018 (1)

J. Kim, H. Yuan, J. Kimchi, J. Lei, E. Rangel, P. Dreiske, and A. Ikhlassi, “HOT MWIR InAs/InAsSb T2SL discrete photodetector development,” Proc. SPIE 10624, 1062412 (2018).
[Crossref]

2017 (1)

H. Wu, Y. Xu, J. Li, Y. Jiang, L. Bai, H. Yu, D. Fu, H. Zhu, and G. Song, “High quantum efficiency N-structure type-II superlattice mid-wavelength infrared detector with resonant cavity enhanced design,” Superlattices Microstruct. 105, 28–33 (2017).
[Crossref]

2016 (1)

L. Piskorski and R. P. Sarzala, “Material parameters of antimonides and amorphous materials for modelling the mid-infrared lasers,” Opt. Appl. 46(2), 227–240 (2016).
[Crossref]

2015 (1)

L. Hoglund, D. Ting, A. Soibel, A. Fisher, A. Khoshakhlagh, C. B. L. Hill, S. Keo, J. Mumolo, and S. Gunapala, “Influence of carrier concentration on the minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices,” Infrared Phys. Technol. 70, 62–65 (2015).
[Crossref]

2014 (2)

E. Plis, “InAs/GaSb Type-II Superlattice Detectors,” Adv. Electron. 2014, 1–12 (2014).
[Crossref]

A. M. Hoang, G. Chen, R. Chevallier, A. Haddadi, and M. Razeghi, “High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection,” Appl. Phys. Lett. 104(25), 251105 (2014).
[Crossref]

2013 (2)

C. Downs and T. Vandervelde, “Progress in Infrared Photodetectors since 2000,” Sensors 13(4), 5054–5098 (2013).
[Crossref]

L. Hoglund, D. Ting, A. Khoshakhlagh, A. Soibel, C. Hill, A. Fisher, S. Keo, and S. Gunapala, “Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices,” Appl. Phys. Lett. 103(22), 221908 (2013).
[Crossref]

2012 (2)

J. Mott and P. Rez, “Calculated infrared spectra of nerve agents and simulants,” Spectrochim. Acta, Part A 91, 256–260 (2012).
[Crossref]

H. S. Kim, O. O. Cellek, Z.-Y. Lin, Z.-Y. He, X.-H. Zhao, S. Liu, H. Li, and Y.-H. Zhang, “Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices,” Appl. Phys. Lett. 101(16), 161114 (2012).
[Crossref]

2011 (1)

E. Steenbergen, B. Connelly, G. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. Fastenau, A. Liu, S. Elhamri, O. Cellek, and Y. Zhang, “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

2010 (2)

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

J. Wang, J. Hu, P. Becla, A. Agarwal, and L. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18(12), 12890–12896 (2010).
[Crossref]

2008 (3)

W. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe Technology: A very General Solution to IR Detection, Described by “Rule 07”, a Very Convenient Heuristic,” J. Electron. Mater. 37(9), 1406–1410 (2008).
[Crossref]

P. Klipstein, “XBn barrier photodetectors for high sensitivity and high operating temperature infrared sensors,” Proc. SPIE 6940, 69402U (2008).
[Crossref]

G. Bishop, E. Plis, J. Rodriguez, Y. Sharma, H. Kim, L. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 26(3), 1145 (2008).
[Crossref]

2007 (1)

J. Rodriguez, E. Plis, G. Bishop, Y. Sharma, and H. Kim, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

2005 (1)

J. Wehner, C. Musca, R. Sewell, J. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
[Crossref]

2003 (1)

A. Green, D. Gevaux, C. Roberts, P. Stavrinou, and C. Phillips, “λ∼3 µm InAs resonant-cavity-enhanced photodetector,” Semicond. Sci. Technol. 18(11), 964–967 (2003).
[Crossref]

2001 (1)

I. Vurgaftman and J. Meyer, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

1995 (1)

M. Unlu and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[Crossref]

1991 (1)

A. Dentai, R. Kuchibhotla, J. Campbell, C. Tsai, and C. Lei, “High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode,” Electron. Lett. 27(23), 2125–2127 (1991).
[Crossref]

1990 (1)

A. Chin and T. Chang, “Multilayer reflectors by molecular beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 8(2), 339–342 (1990).
[Crossref]

Affouda, C.

Agarwal, A.

Aifer, E.

Al-Saymari, F.

A. Craig, F. Al-Saymari, M. Jain, A. Bainbridge, G. Savich, T. Golding, A. Krier, G. Wicks, and A. Marshall, “Resonant cavity enhanced photodiodes on GaSb for the mid-wave infrared,” Appl. Phys. Lett. 114(15), 151107 (2019).
[Crossref]

Aronov, D.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

Bai, L.

H. Wu, Y. Xu, J. Li, Y. Jiang, L. Bai, H. Yu, D. Fu, H. Zhu, and G. Song, “High quantum efficiency N-structure type-II superlattice mid-wavelength infrared detector with resonant cavity enhanced design,” Superlattices Microstruct. 105, 28–33 (2017).
[Crossref]

Bainbridge, A.

A. Craig, F. Al-Saymari, M. Jain, A. Bainbridge, G. Savich, T. Golding, A. Krier, G. Wicks, and A. Marshall, “Resonant cavity enhanced photodiodes on GaSb for the mid-wave infrared,” Appl. Phys. Lett. 114(15), 151107 (2019).
[Crossref]

Becla, P.

Berkowitz, E.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

Bewley, W.

Bishop, G.

G. Bishop, E. Plis, J. Rodriguez, Y. Sharma, H. Kim, L. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 26(3), 1145 (2008).
[Crossref]

J. Rodriguez, E. Plis, G. Bishop, Y. Sharma, and H. Kim, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

Boreman, G.

R. Peale, A. Muravjov, C. Fredricksen, G. Boreman, H. Saxena, G. Braunstein, V. Vaks, A. Maslovsky, and S. Nikiforov, “Spectral signatures of acetone vapor from ultraviolet to millimeter wavelengths,” in Spectral Sensing Research for Surface and Air Monitoring in Chemical, Biological and Radiological Defense and Security Applications, J. M. Theriault, ed. (World Scientific, 2009).

Braunstein, G.

R. Peale, A. Muravjov, C. Fredricksen, G. Boreman, H. Saxena, G. Braunstein, V. Vaks, A. Maslovsky, and S. Nikiforov, “Spectral signatures of acetone vapor from ultraviolet to millimeter wavelengths,” in Spectral Sensing Research for Surface and Air Monitoring in Chemical, Biological and Radiological Defense and Security Applications, J. M. Theriault, ed. (World Scientific, 2009).

Brumer, M.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

Byrnes, S.

S. Byrnes, “Multilayer optical calculations,” arXiv:1603.02720 [physics.comp-ph] (2016).

Campbell, J.

A. Dentai, R. Kuchibhotla, J. Campbell, C. Tsai, and C. Lei, “High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode,” Electron. Lett. 27(23), 2125–2127 (1991).
[Crossref]

Canedy, L.

Carmody, M.

W. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe Technology: A very General Solution to IR Detection, Described by “Rule 07”, a Very Convenient Heuristic,” J. Electron. Mater. 37(9), 1406–1410 (2008).
[Crossref]

Cellek, O.

E. Steenbergen, B. Connelly, G. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. Fastenau, A. Liu, S. Elhamri, O. Cellek, and Y. Zhang, “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Cellek, O. O.

H. S. Kim, O. O. Cellek, Z.-Y. Lin, Z.-Y. He, X.-H. Zhao, S. Liu, H. Li, and Y.-H. Zhang, “Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices,” Appl. Phys. Lett. 101(16), 161114 (2012).
[Crossref]

Chang, T.

A. Chin and T. Chang, “Multilayer reflectors by molecular beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 8(2), 339–342 (1990).
[Crossref]

Chen, G.

A. M. Hoang, G. Chen, R. Chevallier, A. Haddadi, and M. Razeghi, “High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection,” Appl. Phys. Lett. 104(25), 251105 (2014).
[Crossref]

Chevallier, R.

A. M. Hoang, G. Chen, R. Chevallier, A. Haddadi, and M. Razeghi, “High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection,” Appl. Phys. Lett. 104(25), 251105 (2014).
[Crossref]

Chin, A.

A. Chin and T. Chang, “Multilayer reflectors by molecular beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 8(2), 339–342 (1990).
[Crossref]

Connelly, B.

E. Steenbergen, B. Connelly, G. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. Fastenau, A. Liu, S. Elhamri, O. Cellek, and Y. Zhang, “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Craig, A.

A. Craig, F. Al-Saymari, M. Jain, A. Bainbridge, G. Savich, T. Golding, A. Krier, G. Wicks, and A. Marshall, “Resonant cavity enhanced photodiodes on GaSb for the mid-wave infrared,” Appl. Phys. Lett. 114(15), 151107 (2019).
[Crossref]

Dawson, L.

G. Bishop, E. Plis, J. Rodriguez, Y. Sharma, H. Kim, L. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 26(3), 1145 (2008).
[Crossref]

Dell, J.

J. Wehner, C. Musca, R. Sewell, J. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
[Crossref]

Dentai, A.

A. Dentai, R. Kuchibhotla, J. Campbell, C. Tsai, and C. Lei, “High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode,” Electron. Lett. 27(23), 2125–2127 (1991).
[Crossref]

Downs, C.

C. Downs and T. Vandervelde, “Progress in Infrared Photodetectors since 2000,” Sensors 13(4), 5054–5098 (2013).
[Crossref]

Dreiske, P.

J. Kim, H. Yuan, J. Kimchi, J. Lei, E. Rangel, P. Dreiske, and A. Ikhlassi, “HOT MWIR InAs/InAsSb T2SL discrete photodetector development,” Proc. SPIE 10624, 1062412 (2018).
[Crossref]

Elhamri, S.

E. Steenbergen, B. Connelly, G. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. Fastenau, A. Liu, S. Elhamri, O. Cellek, and Y. Zhang, “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Faraone, L.

J. Wehner, C. Musca, R. Sewell, J. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
[Crossref]

Fastenau, J.

E. Steenbergen, B. Connelly, G. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. Fastenau, A. Liu, S. Elhamri, O. Cellek, and Y. Zhang, “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Fisher, A.

A. Soibel, D. Ting, B. Rafol, A. Fisher, S. Keo, A. Khoshakhlagh, and S. Gunapala, “Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAS with very low dark current density,” Appl. Phys. Lett. 114(16), 161103 (2019).
[Crossref]

L. Hoglund, D. Ting, A. Soibel, A. Fisher, A. Khoshakhlagh, C. B. L. Hill, S. Keo, J. Mumolo, and S. Gunapala, “Influence of carrier concentration on the minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices,” Infrared Phys. Technol. 70, 62–65 (2015).
[Crossref]

L. Hoglund, D. Ting, A. Khoshakhlagh, A. Soibel, C. Hill, A. Fisher, S. Keo, and S. Gunapala, “Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices,” Appl. Phys. Lett. 103(22), 221908 (2013).
[Crossref]

Fishman, T.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

Fredricksen, C.

R. Peale, A. Muravjov, C. Fredricksen, G. Boreman, H. Saxena, G. Braunstein, V. Vaks, A. Maslovsky, and S. Nikiforov, “Spectral signatures of acetone vapor from ultraviolet to millimeter wavelengths,” in Spectral Sensing Research for Surface and Air Monitoring in Chemical, Biological and Radiological Defense and Security Applications, J. M. Theriault, ed. (World Scientific, 2009).

Fu, D.

H. Wu, Y. Xu, J. Li, Y. Jiang, L. Bai, H. Yu, D. Fu, H. Zhu, and G. Song, “High quantum efficiency N-structure type-II superlattice mid-wavelength infrared detector with resonant cavity enhanced design,” Superlattices Microstruct. 105, 28–33 (2017).
[Crossref]

Gevaux, D.

A. Green, D. Gevaux, C. Roberts, P. Stavrinou, and C. Phillips, “λ∼3 µm InAs resonant-cavity-enhanced photodetector,” Semicond. Sci. Technol. 18(11), 964–967 (2003).
[Crossref]

Glozman, A.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

Golding, T.

A. Craig, F. Al-Saymari, M. Jain, A. Bainbridge, G. Savich, T. Golding, A. Krier, G. Wicks, and A. Marshall, “Resonant cavity enhanced photodiodes on GaSb for the mid-wave infrared,” Appl. Phys. Lett. 114(15), 151107 (2019).
[Crossref]

Green, A.

A. Green, D. Gevaux, C. Roberts, P. Stavrinou, and C. Phillips, “λ∼3 µm InAs resonant-cavity-enhanced photodetector,” Semicond. Sci. Technol. 18(11), 964–967 (2003).
[Crossref]

Grossman, S.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

Gunapala, S.

A. Soibel, D. Ting, B. Rafol, A. Fisher, S. Keo, A. Khoshakhlagh, and S. Gunapala, “Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAS with very low dark current density,” Appl. Phys. Lett. 114(16), 161103 (2019).
[Crossref]

L. Hoglund, D. Ting, A. Soibel, A. Fisher, A. Khoshakhlagh, C. B. L. Hill, S. Keo, J. Mumolo, and S. Gunapala, “Influence of carrier concentration on the minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices,” Infrared Phys. Technol. 70, 62–65 (2015).
[Crossref]

L. Hoglund, D. Ting, A. Khoshakhlagh, A. Soibel, C. Hill, A. Fisher, S. Keo, and S. Gunapala, “Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices,” Appl. Phys. Lett. 103(22), 221908 (2013).
[Crossref]

Haddadi, A.

A. M. Hoang, G. Chen, R. Chevallier, A. Haddadi, and M. Razeghi, “High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection,” Appl. Phys. Lett. 104(25), 251105 (2014).
[Crossref]

He, Z.-Y.

H. S. Kim, O. O. Cellek, Z.-Y. Lin, Z.-Y. He, X.-H. Zhao, S. Liu, H. Li, and Y.-H. Zhang, “Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices,” Appl. Phys. Lett. 101(16), 161114 (2012).
[Crossref]

Hill, C.

L. Hoglund, D. Ting, A. Khoshakhlagh, A. Soibel, C. Hill, A. Fisher, S. Keo, and S. Gunapala, “Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices,” Appl. Phys. Lett. 103(22), 221908 (2013).
[Crossref]

Hill, C. B. L.

L. Hoglund, D. Ting, A. Soibel, A. Fisher, A. Khoshakhlagh, C. B. L. Hill, S. Keo, J. Mumolo, and S. Gunapala, “Influence of carrier concentration on the minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices,” Infrared Phys. Technol. 70, 62–65 (2015).
[Crossref]

Hoang, A. M.

A. M. Hoang, G. Chen, R. Chevallier, A. Haddadi, and M. Razeghi, “High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection,” Appl. Phys. Lett. 104(25), 251105 (2014).
[Crossref]

Hoglund, L.

L. Hoglund, D. Ting, A. Soibel, A. Fisher, A. Khoshakhlagh, C. B. L. Hill, S. Keo, J. Mumolo, and S. Gunapala, “Influence of carrier concentration on the minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices,” Infrared Phys. Technol. 70, 62–65 (2015).
[Crossref]

L. Hoglund, D. Ting, A. Khoshakhlagh, A. Soibel, C. Hill, A. Fisher, S. Keo, and S. Gunapala, “Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices,” Appl. Phys. Lett. 103(22), 221908 (2013).
[Crossref]

Hu, J.

Ikhlassi, A.

J. Kim, H. Yuan, J. Kimchi, J. Lei, E. Rangel, P. Dreiske, and A. Ikhlassi, “HOT MWIR InAs/InAsSb T2SL discrete photodetector development,” Proc. SPIE 10624, 1062412 (2018).
[Crossref]

Jackson, E.

Jain, M.

A. Craig, F. Al-Saymari, M. Jain, A. Bainbridge, G. Savich, T. Golding, A. Krier, G. Wicks, and A. Marshall, “Resonant cavity enhanced photodiodes on GaSb for the mid-wave infrared,” Appl. Phys. Lett. 114(15), 151107 (2019).
[Crossref]

Jiang, Y.

H. Wu, Y. Xu, J. Li, Y. Jiang, L. Bai, H. Yu, D. Fu, H. Zhu, and G. Song, “High quantum efficiency N-structure type-II superlattice mid-wavelength infrared detector with resonant cavity enhanced design,” Superlattices Microstruct. 105, 28–33 (2017).
[Crossref]

Keo, S.

A. Soibel, D. Ting, B. Rafol, A. Fisher, S. Keo, A. Khoshakhlagh, and S. Gunapala, “Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAS with very low dark current density,” Appl. Phys. Lett. 114(16), 161103 (2019).
[Crossref]

L. Hoglund, D. Ting, A. Soibel, A. Fisher, A. Khoshakhlagh, C. B. L. Hill, S. Keo, J. Mumolo, and S. Gunapala, “Influence of carrier concentration on the minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices,” Infrared Phys. Technol. 70, 62–65 (2015).
[Crossref]

L. Hoglund, D. Ting, A. Khoshakhlagh, A. Soibel, C. Hill, A. Fisher, S. Keo, and S. Gunapala, “Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices,” Appl. Phys. Lett. 103(22), 221908 (2013).
[Crossref]

Khoshakhlagh, A.

A. Soibel, D. Ting, B. Rafol, A. Fisher, S. Keo, A. Khoshakhlagh, and S. Gunapala, “Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAS with very low dark current density,” Appl. Phys. Lett. 114(16), 161103 (2019).
[Crossref]

L. Hoglund, D. Ting, A. Soibel, A. Fisher, A. Khoshakhlagh, C. B. L. Hill, S. Keo, J. Mumolo, and S. Gunapala, “Influence of carrier concentration on the minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices,” Infrared Phys. Technol. 70, 62–65 (2015).
[Crossref]

L. Hoglund, D. Ting, A. Khoshakhlagh, A. Soibel, C. Hill, A. Fisher, S. Keo, and S. Gunapala, “Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices,” Appl. Phys. Lett. 103(22), 221908 (2013).
[Crossref]

Kim, C.

Kim, H.

G. Bishop, E. Plis, J. Rodriguez, Y. Sharma, H. Kim, L. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 26(3), 1145 (2008).
[Crossref]

J. Rodriguez, E. Plis, G. Bishop, Y. Sharma, and H. Kim, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

Kim, H. S.

H. S. Kim, O. O. Cellek, Z.-Y. Lin, Z.-Y. He, X.-H. Zhao, S. Liu, H. Li, and Y.-H. Zhang, “Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices,” Appl. Phys. Lett. 101(16), 161114 (2012).
[Crossref]

Kim, J.

J. Kim, H. Yuan, J. Kimchi, J. Lei, E. Rangel, P. Dreiske, and A. Ikhlassi, “HOT MWIR InAs/InAsSb T2SL discrete photodetector development,” Proc. SPIE 10624, 1062412 (2018).
[Crossref]

Kim, M.

Kimchi, J.

J. Kim, H. Yuan, J. Kimchi, J. Lei, E. Rangel, P. Dreiske, and A. Ikhlassi, “HOT MWIR InAs/InAsSb T2SL discrete photodetector development,” Proc. SPIE 10624, 1062412 (2018).
[Crossref]

Kimerling, L.

Kinch, M.

M. Kinch, Fundamentals of Infrared Detector Materials (SPIE Press, 2007).

Klin, O.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

Klipstein, P.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

P. Klipstein, “XBn barrier photodetectors for high sensitivity and high operating temperature infrared sensors,” Proc. SPIE 6940, 69402U (2008).
[Crossref]

Kopytko, M.

A. Rogalski, M. Kopytko, and P. Martyniuk, Antimonide-based Infrared Detectors: A New Perspective (SPIE Press, 2018).

Krier, A.

A. Craig, F. Al-Saymari, M. Jain, A. Bainbridge, G. Savich, T. Golding, A. Krier, G. Wicks, and A. Marshall, “Resonant cavity enhanced photodiodes on GaSb for the mid-wave infrared,” Appl. Phys. Lett. 114(15), 151107 (2019).
[Crossref]

Krishna, S.

G. Bishop, E. Plis, J. Rodriguez, Y. Sharma, H. Kim, L. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 26(3), 1145 (2008).
[Crossref]

Kuchibhotla, R.

A. Dentai, R. Kuchibhotla, J. Campbell, C. Tsai, and C. Lei, “High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode,” Electron. Lett. 27(23), 2125–2127 (1991).
[Crossref]

Lee, D.

W. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe Technology: A very General Solution to IR Detection, Described by “Rule 07”, a Very Convenient Heuristic,” J. Electron. Mater. 37(9), 1406–1410 (2008).
[Crossref]

Lei, C.

A. Dentai, R. Kuchibhotla, J. Campbell, C. Tsai, and C. Lei, “High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode,” Electron. Lett. 27(23), 2125–2127 (1991).
[Crossref]

Lei, J.

J. Kim, H. Yuan, J. Kimchi, J. Lei, E. Rangel, P. Dreiske, and A. Ikhlassi, “HOT MWIR InAs/InAsSb T2SL discrete photodetector development,” Proc. SPIE 10624, 1062412 (2018).
[Crossref]

Li, H.

H. S. Kim, O. O. Cellek, Z.-Y. Lin, Z.-Y. He, X.-H. Zhao, S. Liu, H. Li, and Y.-H. Zhang, “Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices,” Appl. Phys. Lett. 101(16), 161114 (2012).
[Crossref]

Li, J.

H. Wu, Y. Xu, J. Li, Y. Jiang, L. Bai, H. Yu, D. Fu, H. Zhu, and G. Song, “High quantum efficiency N-structure type-II superlattice mid-wavelength infrared detector with resonant cavity enhanced design,” Superlattices Microstruct. 105, 28–33 (2017).
[Crossref]

Lin, Z.-Y.

H. S. Kim, O. O. Cellek, Z.-Y. Lin, Z.-Y. He, X.-H. Zhao, S. Liu, H. Li, and Y.-H. Zhang, “Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices,” Appl. Phys. Lett. 101(16), 161114 (2012).
[Crossref]

Liu, A.

E. Steenbergen, B. Connelly, G. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. Fastenau, A. Liu, S. Elhamri, O. Cellek, and Y. Zhang, “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Liu, S.

H. S. Kim, O. O. Cellek, Z.-Y. Lin, Z.-Y. He, X.-H. Zhao, S. Liu, H. Li, and Y.-H. Zhang, “Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices,” Appl. Phys. Lett. 101(16), 161114 (2012).
[Crossref]

Lubyshev, D.

E. Steenbergen, B. Connelly, G. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. Fastenau, A. Liu, S. Elhamri, O. Cellek, and Y. Zhang, “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Lukomsky, I.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

Magen, O.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

Marshall, A.

A. Craig, F. Al-Saymari, M. Jain, A. Bainbridge, G. Savich, T. Golding, A. Krier, G. Wicks, and A. Marshall, “Resonant cavity enhanced photodiodes on GaSb for the mid-wave infrared,” Appl. Phys. Lett. 114(15), 151107 (2019).
[Crossref]

Martyniuk, P.

A. Rogalski, M. Kopytko, and P. Martyniuk, Antimonide-based Infrared Detectors: A New Perspective (SPIE Press, 2018).

Maslovsky, A.

R. Peale, A. Muravjov, C. Fredricksen, G. Boreman, H. Saxena, G. Braunstein, V. Vaks, A. Maslovsky, and S. Nikiforov, “Spectral signatures of acetone vapor from ultraviolet to millimeter wavelengths,” in Spectral Sensing Research for Surface and Air Monitoring in Chemical, Biological and Radiological Defense and Security Applications, J. M. Theriault, ed. (World Scientific, 2009).

Merritt, C.

Metcalfe, G.

E. Steenbergen, B. Connelly, G. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. Fastenau, A. Liu, S. Elhamri, O. Cellek, and Y. Zhang, “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Meyer, J.

Mott, J.

J. Mott and P. Rez, “Calculated infrared spectra of nerve agents and simulants,” Spectrochim. Acta, Part A 91, 256–260 (2012).
[Crossref]

Mumolo, J.

L. Hoglund, D. Ting, A. Soibel, A. Fisher, A. Khoshakhlagh, C. B. L. Hill, S. Keo, J. Mumolo, and S. Gunapala, “Influence of carrier concentration on the minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices,” Infrared Phys. Technol. 70, 62–65 (2015).
[Crossref]

Muravjov, A.

R. Peale, A. Muravjov, C. Fredricksen, G. Boreman, H. Saxena, G. Braunstein, V. Vaks, A. Maslovsky, and S. Nikiforov, “Spectral signatures of acetone vapor from ultraviolet to millimeter wavelengths,” in Spectral Sensing Research for Surface and Air Monitoring in Chemical, Biological and Radiological Defense and Security Applications, J. M. Theriault, ed. (World Scientific, 2009).

Musca, C.

J. Wehner, C. Musca, R. Sewell, J. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
[Crossref]

Nikiforov, S.

R. Peale, A. Muravjov, C. Fredricksen, G. Boreman, H. Saxena, G. Braunstein, V. Vaks, A. Maslovsky, and S. Nikiforov, “Spectral signatures of acetone vapor from ultraviolet to millimeter wavelengths,” in Spectral Sensing Research for Surface and Air Monitoring in Chemical, Biological and Radiological Defense and Security Applications, J. M. Theriault, ed. (World Scientific, 2009).

Nolde, J.

Peale, R.

R. Peale, A. Muravjov, C. Fredricksen, G. Boreman, H. Saxena, G. Braunstein, V. Vaks, A. Maslovsky, and S. Nikiforov, “Spectral signatures of acetone vapor from ultraviolet to millimeter wavelengths,” in Spectral Sensing Research for Surface and Air Monitoring in Chemical, Biological and Radiological Defense and Security Applications, J. M. Theriault, ed. (World Scientific, 2009).

Phillips, C.

A. Green, D. Gevaux, C. Roberts, P. Stavrinou, and C. Phillips, “λ∼3 µm InAs resonant-cavity-enhanced photodetector,” Semicond. Sci. Technol. 18(11), 964–967 (2003).
[Crossref]

Piquette, E.

W. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe Technology: A very General Solution to IR Detection, Described by “Rule 07”, a Very Convenient Heuristic,” J. Electron. Mater. 37(9), 1406–1410 (2008).
[Crossref]

Piskorski, L.

L. Piskorski and R. P. Sarzala, “Material parameters of antimonides and amorphous materials for modelling the mid-infrared lasers,” Opt. Appl. 46(2), 227–240 (2016).
[Crossref]

Plis, E.

E. Plis, “InAs/GaSb Type-II Superlattice Detectors,” Adv. Electron. 2014, 1–12 (2014).
[Crossref]

G. Bishop, E. Plis, J. Rodriguez, Y. Sharma, H. Kim, L. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 26(3), 1145 (2008).
[Crossref]

J. Rodriguez, E. Plis, G. Bishop, Y. Sharma, and H. Kim, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

Qiu, Y.

E. Steenbergen, B. Connelly, G. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. Fastenau, A. Liu, S. Elhamri, O. Cellek, and Y. Zhang, “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Rafol, B.

A. Soibel, D. Ting, B. Rafol, A. Fisher, S. Keo, A. Khoshakhlagh, and S. Gunapala, “Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAS with very low dark current density,” Appl. Phys. Lett. 114(16), 161103 (2019).
[Crossref]

Rangel, E.

J. Kim, H. Yuan, J. Kimchi, J. Lei, E. Rangel, P. Dreiske, and A. Ikhlassi, “HOT MWIR InAs/InAsSb T2SL discrete photodetector development,” Proc. SPIE 10624, 1062412 (2018).
[Crossref]

Razeghi, M.

A. M. Hoang, G. Chen, R. Chevallier, A. Haddadi, and M. Razeghi, “High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection,” Appl. Phys. Lett. 104(25), 251105 (2014).
[Crossref]

Rez, P.

J. Mott and P. Rez, “Calculated infrared spectra of nerve agents and simulants,” Spectrochim. Acta, Part A 91, 256–260 (2012).
[Crossref]

Roberts, C.

A. Green, D. Gevaux, C. Roberts, P. Stavrinou, and C. Phillips, “λ∼3 µm InAs resonant-cavity-enhanced photodetector,” Semicond. Sci. Technol. 18(11), 964–967 (2003).
[Crossref]

Rodriguez, J.

G. Bishop, E. Plis, J. Rodriguez, Y. Sharma, H. Kim, L. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 26(3), 1145 (2008).
[Crossref]

J. Rodriguez, E. Plis, G. Bishop, Y. Sharma, and H. Kim, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

Rogalski, A.

A. Rogalski, M. Kopytko, and P. Martyniuk, Antimonide-based Infrared Detectors: A New Perspective (SPIE Press, 2018).

Sarzala, R. P.

L. Piskorski and R. P. Sarzala, “Material parameters of antimonides and amorphous materials for modelling the mid-infrared lasers,” Opt. Appl. 46(2), 227–240 (2016).
[Crossref]

Savich, G.

A. Craig, F. Al-Saymari, M. Jain, A. Bainbridge, G. Savich, T. Golding, A. Krier, G. Wicks, and A. Marshall, “Resonant cavity enhanced photodiodes on GaSb for the mid-wave infrared,” Appl. Phys. Lett. 114(15), 151107 (2019).
[Crossref]

Saxena, H.

R. Peale, A. Muravjov, C. Fredricksen, G. Boreman, H. Saxena, G. Braunstein, V. Vaks, A. Maslovsky, and S. Nikiforov, “Spectral signatures of acetone vapor from ultraviolet to millimeter wavelengths,” in Spectral Sensing Research for Surface and Air Monitoring in Chemical, Biological and Radiological Defense and Security Applications, J. M. Theriault, ed. (World Scientific, 2009).

Sewell, R.

J. Wehner, C. Musca, R. Sewell, J. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
[Crossref]

Sharma, Y.

G. Bishop, E. Plis, J. Rodriguez, Y. Sharma, H. Kim, L. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 26(3), 1145 (2008).
[Crossref]

J. Rodriguez, E. Plis, G. Bishop, Y. Sharma, and H. Kim, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

Shen, H.

E. Steenbergen, B. Connelly, G. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. Fastenau, A. Liu, S. Elhamri, O. Cellek, and Y. Zhang, “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Shtrichman, I.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

Snapi, N.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

Soibel, A.

A. Soibel, D. Ting, B. Rafol, A. Fisher, S. Keo, A. Khoshakhlagh, and S. Gunapala, “Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAS with very low dark current density,” Appl. Phys. Lett. 114(16), 161103 (2019).
[Crossref]

L. Hoglund, D. Ting, A. Soibel, A. Fisher, A. Khoshakhlagh, C. B. L. Hill, S. Keo, J. Mumolo, and S. Gunapala, “Influence of carrier concentration on the minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices,” Infrared Phys. Technol. 70, 62–65 (2015).
[Crossref]

L. Hoglund, D. Ting, A. Khoshakhlagh, A. Soibel, C. Hill, A. Fisher, S. Keo, and S. Gunapala, “Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices,” Appl. Phys. Lett. 103(22), 221908 (2013).
[Crossref]

Song, G.

H. Wu, Y. Xu, J. Li, Y. Jiang, L. Bai, H. Yu, D. Fu, H. Zhu, and G. Song, “High quantum efficiency N-structure type-II superlattice mid-wavelength infrared detector with resonant cavity enhanced design,” Superlattices Microstruct. 105, 28–33 (2017).
[Crossref]

Stavrinou, P.

A. Green, D. Gevaux, C. Roberts, P. Stavrinou, and C. Phillips, “λ∼3 µm InAs resonant-cavity-enhanced photodetector,” Semicond. Sci. Technol. 18(11), 964–967 (2003).
[Crossref]

Steenbergen, E.

E. Steenbergen, B. Connelly, G. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. Fastenau, A. Liu, S. Elhamri, O. Cellek, and Y. Zhang, “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Strite, S.

M. Unlu and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[Crossref]

Tennant, W.

W. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe Technology: A very General Solution to IR Detection, Described by “Rule 07”, a Very Convenient Heuristic,” J. Electron. Mater. 37(9), 1406–1410 (2008).
[Crossref]

Ting, D.

A. Soibel, D. Ting, B. Rafol, A. Fisher, S. Keo, A. Khoshakhlagh, and S. Gunapala, “Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAS with very low dark current density,” Appl. Phys. Lett. 114(16), 161103 (2019).
[Crossref]

L. Hoglund, D. Ting, A. Soibel, A. Fisher, A. Khoshakhlagh, C. B. L. Hill, S. Keo, J. Mumolo, and S. Gunapala, “Influence of carrier concentration on the minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices,” Infrared Phys. Technol. 70, 62–65 (2015).
[Crossref]

L. Hoglund, D. Ting, A. Khoshakhlagh, A. Soibel, C. Hill, A. Fisher, S. Keo, and S. Gunapala, “Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices,” Appl. Phys. Lett. 103(22), 221908 (2013).
[Crossref]

Tsai, C.

A. Dentai, R. Kuchibhotla, J. Campbell, C. Tsai, and C. Lei, “High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode,” Electron. Lett. 27(23), 2125–2127 (1991).
[Crossref]

Unlu, M.

M. Unlu and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[Crossref]

Vaks, V.

R. Peale, A. Muravjov, C. Fredricksen, G. Boreman, H. Saxena, G. Braunstein, V. Vaks, A. Maslovsky, and S. Nikiforov, “Spectral signatures of acetone vapor from ultraviolet to millimeter wavelengths,” in Spectral Sensing Research for Surface and Air Monitoring in Chemical, Biological and Radiological Defense and Security Applications, J. M. Theriault, ed. (World Scientific, 2009).

Vandervelde, T.

C. Downs and T. Vandervelde, “Progress in Infrared Photodetectors since 2000,” Sensors 13(4), 5054–5098 (2013).
[Crossref]

Vurgaftman, I.

Wang, J.

Warren, M.

Wehner, J.

J. Wehner, C. Musca, R. Sewell, J. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
[Crossref]

Weiss, E.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

Wicks, G.

A. Craig, F. Al-Saymari, M. Jain, A. Bainbridge, G. Savich, T. Golding, A. Krier, G. Wicks, and A. Marshall, “Resonant cavity enhanced photodiodes on GaSb for the mid-wave infrared,” Appl. Phys. Lett. 114(15), 151107 (2019).
[Crossref]

Wraback, M.

E. Steenbergen, B. Connelly, G. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. Fastenau, A. Liu, S. Elhamri, O. Cellek, and Y. Zhang, “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Wu, H.

H. Wu, Y. Xu, J. Li, Y. Jiang, L. Bai, H. Yu, D. Fu, H. Zhu, and G. Song, “High quantum efficiency N-structure type-II superlattice mid-wavelength infrared detector with resonant cavity enhanced design,” Superlattices Microstruct. 105, 28–33 (2017).
[Crossref]

Xu, Y.

H. Wu, Y. Xu, J. Li, Y. Jiang, L. Bai, H. Yu, D. Fu, H. Zhu, and G. Song, “High quantum efficiency N-structure type-II superlattice mid-wavelength infrared detector with resonant cavity enhanced design,” Superlattices Microstruct. 105, 28–33 (2017).
[Crossref]

Yaakobovitz, B.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

Yassen, M.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

Yofis, B.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

Yu, H.

H. Wu, Y. Xu, J. Li, Y. Jiang, L. Bai, H. Yu, D. Fu, H. Zhu, and G. Song, “High quantum efficiency N-structure type-II superlattice mid-wavelength infrared detector with resonant cavity enhanced design,” Superlattices Microstruct. 105, 28–33 (2017).
[Crossref]

Yuan, H.

J. Kim, H. Yuan, J. Kimchi, J. Lei, E. Rangel, P. Dreiske, and A. Ikhlassi, “HOT MWIR InAs/InAsSb T2SL discrete photodetector development,” Proc. SPIE 10624, 1062412 (2018).
[Crossref]

Zandian, M.

W. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe Technology: A very General Solution to IR Detection, Described by “Rule 07”, a Very Convenient Heuristic,” J. Electron. Mater. 37(9), 1406–1410 (2008).
[Crossref]

Zhang, Y.

E. Steenbergen, B. Connelly, G. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. Fastenau, A. Liu, S. Elhamri, O. Cellek, and Y. Zhang, “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Zhang, Y.-H.

H. S. Kim, O. O. Cellek, Z.-Y. Lin, Z.-Y. He, X.-H. Zhao, S. Liu, H. Li, and Y.-H. Zhang, “Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices,” Appl. Phys. Lett. 101(16), 161114 (2012).
[Crossref]

Zhao, X.-H.

H. S. Kim, O. O. Cellek, Z.-Y. Lin, Z.-Y. He, X.-H. Zhao, S. Liu, H. Li, and Y.-H. Zhang, “Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices,” Appl. Phys. Lett. 101(16), 161114 (2012).
[Crossref]

Zhu, H.

H. Wu, Y. Xu, J. Li, Y. Jiang, L. Bai, H. Yu, D. Fu, H. Zhu, and G. Song, “High quantum efficiency N-structure type-II superlattice mid-wavelength infrared detector with resonant cavity enhanced design,” Superlattices Microstruct. 105, 28–33 (2017).
[Crossref]

Adv. Electron. (1)

E. Plis, “InAs/GaSb Type-II Superlattice Detectors,” Adv. Electron. 2014, 1–12 (2014).
[Crossref]

Appl. Phys. Lett. (8)

J. Rodriguez, E. Plis, G. Bishop, Y. Sharma, and H. Kim, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

A. Soibel, D. Ting, B. Rafol, A. Fisher, S. Keo, A. Khoshakhlagh, and S. Gunapala, “Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAS with very low dark current density,” Appl. Phys. Lett. 114(16), 161103 (2019).
[Crossref]

E. Steenbergen, B. Connelly, G. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. Fastenau, A. Liu, S. Elhamri, O. Cellek, and Y. Zhang, “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

L. Hoglund, D. Ting, A. Khoshakhlagh, A. Soibel, C. Hill, A. Fisher, S. Keo, and S. Gunapala, “Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices,” Appl. Phys. Lett. 103(22), 221908 (2013).
[Crossref]

A. Craig, F. Al-Saymari, M. Jain, A. Bainbridge, G. Savich, T. Golding, A. Krier, G. Wicks, and A. Marshall, “Resonant cavity enhanced photodiodes on GaSb for the mid-wave infrared,” Appl. Phys. Lett. 114(15), 151107 (2019).
[Crossref]

J. Wehner, C. Musca, R. Sewell, J. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
[Crossref]

H. S. Kim, O. O. Cellek, Z.-Y. Lin, Z.-Y. He, X.-H. Zhao, S. Liu, H. Li, and Y.-H. Zhang, “Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices,” Appl. Phys. Lett. 101(16), 161114 (2012).
[Crossref]

A. M. Hoang, G. Chen, R. Chevallier, A. Haddadi, and M. Razeghi, “High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection,” Appl. Phys. Lett. 104(25), 251105 (2014).
[Crossref]

Electron. Lett. (1)

A. Dentai, R. Kuchibhotla, J. Campbell, C. Tsai, and C. Lei, “High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode,” Electron. Lett. 27(23), 2125–2127 (1991).
[Crossref]

Infrared Phys. Technol. (1)

L. Hoglund, D. Ting, A. Soibel, A. Fisher, A. Khoshakhlagh, C. B. L. Hill, S. Keo, J. Mumolo, and S. Gunapala, “Influence of carrier concentration on the minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices,” Infrared Phys. Technol. 70, 62–65 (2015).
[Crossref]

J. Appl. Phys. (2)

I. Vurgaftman and J. Meyer, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

M. Unlu and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[Crossref]

J. Electron. Mater. (1)

W. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe Technology: A very General Solution to IR Detection, Described by “Rule 07”, a Very Convenient Heuristic,” J. Electron. Mater. 37(9), 1406–1410 (2008).
[Crossref]

J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. (2)

A. Chin and T. Chang, “Multilayer reflectors by molecular beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 8(2), 339–342 (1990).
[Crossref]

G. Bishop, E. Plis, J. Rodriguez, Y. Sharma, H. Kim, L. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 26(3), 1145 (2008).
[Crossref]

Opt. Appl. (1)

L. Piskorski and R. P. Sarzala, “Material parameters of antimonides and amorphous materials for modelling the mid-infrared lasers,” Opt. Appl. 46(2), 227–240 (2016).
[Crossref]

Opt. Express (2)

Proc. SPIE (3)

P. Klipstein, “XBn barrier photodetectors for high sensitivity and high operating temperature infrared sensors,” Proc. SPIE 6940, 69402U (2008).
[Crossref]

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 7660, 76602Y (2010).
[Crossref]

J. Kim, H. Yuan, J. Kimchi, J. Lei, E. Rangel, P. Dreiske, and A. Ikhlassi, “HOT MWIR InAs/InAsSb T2SL discrete photodetector development,” Proc. SPIE 10624, 1062412 (2018).
[Crossref]

Semicond. Sci. Technol. (1)

A. Green, D. Gevaux, C. Roberts, P. Stavrinou, and C. Phillips, “λ∼3 µm InAs resonant-cavity-enhanced photodetector,” Semicond. Sci. Technol. 18(11), 964–967 (2003).
[Crossref]

Sensors (1)

C. Downs and T. Vandervelde, “Progress in Infrared Photodetectors since 2000,” Sensors 13(4), 5054–5098 (2013).
[Crossref]

Spectrochim. Acta, Part A (1)

J. Mott and P. Rez, “Calculated infrared spectra of nerve agents and simulants,” Spectrochim. Acta, Part A 91, 256–260 (2012).
[Crossref]

Superlattices Microstruct. (1)

H. Wu, Y. Xu, J. Li, Y. Jiang, L. Bai, H. Yu, D. Fu, H. Zhu, and G. Song, “High quantum efficiency N-structure type-II superlattice mid-wavelength infrared detector with resonant cavity enhanced design,” Superlattices Microstruct. 105, 28–33 (2017).
[Crossref]

Other (7)

A. Rogalski, M. Kopytko, and P. Martyniuk, Antimonide-based Infrared Detectors: A New Perspective (SPIE Press, 2018).

Teledyne Judson Technologies, “Indium Antimonide Detectors,” http://www.teledynejudson.com/products/indium-antimonide-detectors . [Accessed 24 May 2019].

Hamamatsu Photonics, “InAsSb photovoltaic detectors,” https://www.hamamatsu.com/eu/en/product/optical-sensors/uv_flame-sensor/inassb-photovoltaic-detector/index.html . [Accessed 24 May 2019].

R. Peale, A. Muravjov, C. Fredricksen, G. Boreman, H. Saxena, G. Braunstein, V. Vaks, A. Maslovsky, and S. Nikiforov, “Spectral signatures of acetone vapor from ultraviolet to millimeter wavelengths,” in Spectral Sensing Research for Surface and Air Monitoring in Chemical, Biological and Radiological Defense and Security Applications, J. M. Theriault, ed. (World Scientific, 2009).

United States Environmental Protection Agency, “Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2017” (2019).

S. Byrnes, “Multilayer optical calculations,” arXiv:1603.02720 [physics.comp-ph] (2016).

M. Kinch, Fundamentals of Infrared Detector Materials (SPIE Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Cross-sectional diagrams of both devices, with layer thicknesses presented to scale (note the reduction in thickness of the InAs/InAsSb T2SL active layer between the reference nBn and the nBn RCE PD). (b) SEM images of the entire nBn RCE PD cross-section taken at x6000 magnification (right) and a false colour x20000 magnification of the cavity (left).
Fig. 2.
Fig. 2. Coupled X-ray diffraction scans of the two detectors, with data shown in grey and the modelled spectra in colour. The model spectra are offset with respect to the data for clarity.
Fig. 3.
Fig. 3. Normalised spectral response curves of the two detectors obtained in the 100–280 K temperature range.
Fig. 4.
Fig. 4. (a) Room-temperature transmission spectrum of the RCE PD (grey) showing the characteristic resonant peak centred in the cavity, and the modelled curve (red). (b) Temperature shift of the spectral response resonant peaks in the 100–280 K range. (c) Left y-axis: Spectral response peak wavelengths (solid circles) and their modelled values (hollow circles). Right y-axis: full-width-at-half-maximum of the spectral response peaks as a function of temperature.
Fig. 5.
Fig. 5. (a) Cold-shielded dark current densities of both detectors as functions of temperature and bias. (b) The corresponding Arrhenius plots derived at −0.5 V for the nBn RCE PD and at −0.1 V for the reference nBn. Rule 07 is presented as a solid line and the activation energies Ea as dashed/dotted lines.
Fig. 6.
Fig. 6. (a) A comparison of maximum responsivities of the two devices (red and blue), and the atmospheric fingerprints of three gasses in the vicinity of the nBn RCE PD’s resonant peak wavelength: carbon dioxide, nitrous oxide and carbon monoxide. (b) Responsivities of the nBn RCE PD’s resonant response as functions of temperature at −0.5 V bias.
Fig. 7.
Fig. 7. (a) Temperature dependence of specific detectivities of both devices, calculated for the peak responsivity values of the nBn RCE PD (blue dots) and for the responsivity values of the reference nBn at wavelengths corresponding to peak values of the RCE PD (red triangles). Broadband photovoltaic BLIP limits (colour-correlated dashed lines) are calculated for the nBn RCE PD resonant peak wavelengths (blue) and for the λ50% values of the reference nBn (red). (b) Bias dependence of specific detectivities of the nBn RCE PD as functions of temperature (solid dots), and the specific detectivity of the reference nBn at 160 K (crosses). The lines are a guide to the eye.

Metrics