Abstract

In this contribution, we investigate the impact of lateral leakage for linear and nonlinear optical waveguides in lithium niobate on an insulator (LNOI). Silicon nitride (SiN) loaded and direct patterned lithium niobate cross-sections are investigated. We show that lateral leakage can take place for the TE mode in LNOI ridge waveguides (X-cut lithium niobate), due to the birefringence of the material. This work gives guidelines for designing waveguides in LNOI that do not suffer from the lateral leakage effect. By applying these design considerations, we avoided the lateral leakage effect at the second harmonic wavelength of a nonlinear optical waveguide in LNOI and demonstrate a peak second harmonic generation conversion efficiency of ~1160% W−1cm−2.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reducing leakage current during periodic poling of ion-sliced x-cut MgO doped lithium niobate thin films

Jonathan Tyler Nagy and Ronald M. Reano
Opt. Mater. Express 9(7) 3146-3155 (2019)

A design method of lithium niobate on insulator ridge waveguides without leakage loss

Emi Saitoh, Yuki Kawaguchi, Kunimasa Saitoh, and Masanori Koshiba
Opt. Express 19(17) 15833-15842 (2011)

Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation

L. Gui, H. Hu, M. Garcia-Granda, and W. Sohler
Opt. Express 17(5) 3923-3928 (2009)

References

  • View by:
  • |
  • |
  • |

  1. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
    [Crossref]
  2. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
    [Crossref]
  3. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
    [Crossref] [PubMed]
  4. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
    [Crossref]
  5. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
    [Crossref]
  6. S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23(19), 24212–24219 (2015).
    [Crossref] [PubMed]
  7. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  8. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
    [Crossref] [PubMed]
  9. A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26(11), 14810–14816 (2018).
    [Crossref] [PubMed]
  10. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
    [Crossref]
  11. L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42(4), 803–806 (2017).
    [Crossref] [PubMed]
  12. M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width Dependence of Inherent TM-Mode Lateral Leakage Loss in Silicon-On-Insulator Ridge Waveguides,” IEEE Photonics Technol. Lett. 19(6), 429–431 (2007).
    [Crossref]
  13. T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Rigorous Modeling of Lateral Leakage Loss in SOI Thin-Ridge Waveguides and Couplers,” IEEE Photonics Technol. Lett. 21(7), 486–488 (2009).
    [Crossref]
  14. T. Ako, A. Hope, T. Nguyen, A. Mitchell, W. Bogaerts, K. Neyts, and J. Beeckman, “Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides,” Opt. Express 23(3), 2846–2856 (2015).
    [Crossref] [PubMed]
  15. A. P. Hope, T. G. Nguyen, A. Mitchell, and W. Bogaerts, “Quantitative Analysis of TM Lateral Leakage in Foundry Fabricated Silicon Rib Waveguides,” IEEE Photonics Technol. Lett. 28(4), 493–496 (2016).
    [Crossref]
  16. T. G. Nguyen, G. Ren, S. Schoenhardt, M. Knoerzer, A. Boes, and A. Mitchell, are preparing a manuscript to be called “Ridge resonance: a new resonance phenomenon for silicon photonics harnessing bound states in the continuum.”
  17. R. S. Tummidi, T. G. Nguyen, and A. Mitchel, “An ultra-compact waveguide polarizer based on ‘anti-magic widths,’” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 104–106.
  18. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si(3)N(4) microresonator,” Opt. Lett. 40(21), 4823–4826 (2015).
    [Crossref] [PubMed]
  19. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
    [Crossref]
  20. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [Crossref]
  21. N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express 24(15), 16366–16389 (2016).
    [Crossref] [PubMed]

2018 (4)

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26(11), 14810–14816 (2018).
[Crossref] [PubMed]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
[Crossref]

2017 (3)

2016 (3)

2015 (3)

2013 (1)

2012 (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

2009 (1)

T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Rigorous Modeling of Lateral Leakage Loss in SOI Thin-Ridge Waveguides and Couplers,” IEEE Photonics Technol. Lett. 21(7), 486–488 (2009).
[Crossref]

2007 (1)

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width Dependence of Inherent TM-Mode Lateral Leakage Loss in Silicon-On-Insulator Ridge Waveguides,” IEEE Photonics Technol. Lett. 19(6), 429–431 (2007).
[Crossref]

1997 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Ako, T.

Andrade, N.

Beeckman, J.

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

Boes, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Bogaerts, W.

A. P. Hope, T. G. Nguyen, A. Mitchell, and W. Bogaerts, “Quantitative Analysis of TM Lateral Leakage in Foundry Fabricated Silicon Rib Waveguides,” IEEE Photonics Technol. Lett. 28(4), 493–496 (2016).
[Crossref]

T. Ako, A. Hope, T. Nguyen, A. Mitchell, W. Bogaerts, K. Neyts, and J. Beeckman, “Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides,” Opt. Express 23(3), 2846–2856 (2015).
[Crossref] [PubMed]

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Bowers, J. E.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Cai, L.

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

Chang, L.

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

Cheng, R.

Chiles, J.

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Desiatov, B.

Fathpour, S.

Fejer, M. M.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
[Crossref]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Gaeta, A. L.

Geskus, D.

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Guo, G.-C.

Hope, A.

Hope, A. P.

A. P. Hope, T. G. Nguyen, A. Mitchell, and W. Bogaerts, “Quantitative Analysis of TM Lateral Leakage in Foundry Fabricated Silicon Rib Waveguides,” IEEE Photonics Technol. Lett. 28(4), 493–496 (2016).
[Crossref]

Hu, H.

S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23(19), 24212–24219 (2015).
[Crossref] [PubMed]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Ismail, N.

Jankowski, M.

Jiang, Y.

Jundt, D.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Khan, S.

Kippenberg, T. J.

Koch, T. L.

T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Rigorous Modeling of Lateral Leakage Loss in SOI Thin-Ridge Waveguides and Couplers,” IEEE Photonics Technol. Lett. 21(7), 486–488 (2009).
[Crossref]

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width Dependence of Inherent TM-Mode Lateral Leakage Loss in Silicon-On-Insulator Ridge Waveguides,” IEEE Photonics Technol. Lett. 19(6), 429–431 (2007).
[Crossref]

Kores, C. C.

Lamont, M. R. E.

Langrock, C.

Li, S.

Li, Y.

Lipson, M.

Loncar, M.

Luke, K.

Ma, J.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Manganelli, C. L.

Marandi, A.

Mercante, A. J.

Mitchel, A.

R. S. Tummidi, T. G. Nguyen, and A. Mitchel, “An ultra-compact waveguide polarizer based on ‘anti-magic widths,’” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 104–106.

Mitchell, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

A. P. Hope, T. G. Nguyen, A. Mitchell, and W. Bogaerts, “Quantitative Analysis of TM Lateral Leakage in Foundry Fabricated Silicon Rib Waveguides,” IEEE Photonics Technol. Lett. 28(4), 493–496 (2016).
[Crossref]

T. Ako, A. Hope, T. Nguyen, A. Mitchell, W. Bogaerts, K. Neyts, and J. Beeckman, “Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides,” Opt. Express 23(3), 2846–2856 (2015).
[Crossref] [PubMed]

T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Rigorous Modeling of Lateral Leakage Loss in SOI Thin-Ridge Waveguides and Couplers,” IEEE Photonics Technol. Lett. 21(7), 486–488 (2009).
[Crossref]

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width Dependence of Inherent TM-Mode Lateral Leakage Loss in Silicon-On-Insulator Ridge Waveguides,” IEEE Photonics Technol. Lett. 19(6), 429–431 (2007).
[Crossref]

Neyts, K.

Nguyen, T.

Nguyen, T. G.

A. P. Hope, T. G. Nguyen, A. Mitchell, and W. Bogaerts, “Quantitative Analysis of TM Lateral Leakage in Foundry Fabricated Silicon Rib Waveguides,” IEEE Photonics Technol. Lett. 28(4), 493–496 (2016).
[Crossref]

T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Rigorous Modeling of Lateral Leakage Loss in SOI Thin-Ridge Waveguides and Couplers,” IEEE Photonics Technol. Lett. 21(7), 486–488 (2009).
[Crossref]

R. S. Tummidi, T. G. Nguyen, and A. Mitchel, “An ultra-compact waveguide polarizer based on ‘anti-magic widths,’” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 104–106.

Okawachi, Y.

Pafchek, R. M.

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width Dependence of Inherent TM-Mode Lateral Leakage Loss in Silicon-On-Insulator Ridge Waveguides,” IEEE Photonics Technol. Lett. 19(6), 429–431 (2007).
[Crossref]

Peters, J.

Peters, J. D.

Pfeiffer, M. H. P.

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Pollnau, M.

Prather, D. W.

Rabiei, P.

Ren, X.-F.

Shams-Ansari, A.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]

Shi, S.

Small, D. L.

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Stanton, E. J.

Tummidi, R. S.

T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Rigorous Modeling of Lateral Leakage Loss in SOI Thin-Ridge Waveguides and Couplers,” IEEE Photonics Technol. Lett. 21(7), 486–488 (2009).
[Crossref]

R. S. Tummidi, T. G. Nguyen, and A. Mitchel, “An ultra-compact waveguide polarizer based on ‘anti-magic widths,’” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 104–106.

Venkataraman, V.

Volet, N.

Wang, C.

Wang, L.

Wang, Y.

Webster, M. A.

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width Dependence of Inherent TM-Mode Lateral Leakage Loss in Silicon-On-Insulator Ridge Waveguides,” IEEE Photonics Technol. Lett. 19(6), 429–431 (2007).
[Crossref]

Weikle, R. M.

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

Xie, L.

Xiong, X.

Yao, P.

Zelmon, D. E.

Zervas, M.

Zhang, M.

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width Dependence of Inherent TM-Mode Lateral Leakage Loss in Silicon-On-Insulator Ridge Waveguides,” IEEE Photonics Technol. Lett. 19(6), 429–431 (2007).
[Crossref]

T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Rigorous Modeling of Lateral Leakage Loss in SOI Thin-Ridge Waveguides and Couplers,” IEEE Photonics Technol. Lett. 21(7), 486–488 (2009).
[Crossref]

A. P. Hope, T. G. Nguyen, A. Mitchell, and W. Bogaerts, “Quantitative Analysis of TM Lateral Leakage in Foundry Fabricated Silicon Rib Waveguides,” IEEE Photonics Technol. Lett. 28(4), 493–496 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (2)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Nature (1)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Optica (3)

Other (2)

T. G. Nguyen, G. Ren, S. Schoenhardt, M. Knoerzer, A. Boes, and A. Mitchell, are preparing a manuscript to be called “Ridge resonance: a new resonance phenomenon for silicon photonics harnessing bound states in the continuum.”

R. S. Tummidi, T. G. Nguyen, and A. Mitchel, “An ultra-compact waveguide polarizer based on ‘anti-magic widths,’” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 104–106.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) In SOI lateral leakage of TE slab modes can occur when a ridge waveguides is excited with a TM mode. (b) Can lateral leakage to TM slab modes occur when a LNOI ridge waveguide is excited with a TE mode?
Fig. 2
Fig. 2 Effective refractive index difference between the TE waveguide mode and the TM slab mode as a 2D function of the wavelength and LN thickness h2, for an etch depth h1 of 300 nm (a) and 150 nm (b).
Fig. 3
Fig. 3 Effective refractive index difference between the TE waveguide mode and the TM slab mode as a 2D function of the LN etch depth h1 and the LN thickness h2, for a wavelength of 1.55 µm (a) and 0.775 µm (b).
Fig. 4
Fig. 4 Effective refractive index difference between the TE waveguide mode and the TM slab mode as a 2D function of the wavelength and the LN thickness. (a) shows the results for an h3 of 400 nm and an h1 of 380 nm and (b) shows the results an h3 of 600 nm and an h1 of 580 nm.
Fig. 5
Fig. 5 Effective refractive index difference between the TE waveguide mode and the TM slab mode as a 2D function of the SiN thickness an h3 and the LN thickness an h2. (a) shows the results for a wavelength of 1.55 µm and (b) for a wavelength of 0.775 µm.
Fig. 6
Fig. 6 (a) Transmission of the TE and TM mode as a function of wavelength, for the waveguide cross-section from [5]. (b) Magnified view of the transmission spectrum of the green highlighted area in (a).
Fig. 7
Fig. 7 SHG efficiency of the periodically poled LNOI waveguide with a LN thickness of 300 nm and a SiN thickness of 400 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P 2ω (L) P ω (0) = η o P ω (0) L eff
L eff = exp( α ω L)exp( α 2ω L/2) α ω + α 2ω /2

Metrics