Abstract

Combined with non-adiabatic tapering and mode field mismatch between two different fibers, a splicing point tapered fiber Mach-Zehnder interferometer is proposed. Theoretically, two sensing units are carefully designed for dual-parameter sensing, and mode exciting and evolution in fibers are analyzed and shown dynamically. In experiment, transmission spectrum is obtained with two sets of clear interference as designed. After a simple capsulation, simultaneous measurement of seawater temperature and salinity are realized with sensitivities of −994.83pm/°C and 290.47pm/‰, respectively. Additionally, short response time of 33ms and good repeatability are also demonstrated. And effects of encapsulation on avoiding strain and press are verified experimentally. The MZI demonstrated here shows advantages of low cost, easy fabrication, simple construction, compact and robust structure, and dual-parameter sensing with high sensitivity and fast response.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber Mach–Zehnder interferometer for tunable two quasi-continuous points’ temperature sensing in seawater

Tianqi Liu, Jing Wang, Yipeng Liao, Xin Wang, and Shanshan Wang
Opt. Express 26(9) 12277-12290 (2018)

Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer

Jiangtao Zhou, Changrui Liao, Yiping Wang, Guolu Yin, Xiaoyong Zhong, Kaiming Yang, Bing Sun, Guanjun Wang, and Zhengyong Li
Opt. Express 22(2) 1680-1686 (2014)

Up-taper-based Mach–Zehnder interferometer for temperature and strain simultaneous measurement

Zexin Kang, Xiaodong Wen, Chao Li, Jiang Sun, Jing Wang, and Shuisheng Jian
Appl. Opt. 53(12) 2691-2695 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. L. Menn, P. A. G. Albo, S. Lago, R. Romeo, and F. Sparasci, “The absolute salinity of seawater and its measurands,” Metrologia 56(1), 015005 (2019).
    [Crossref]
  2. P. Grosso, M. L. Menn, J.-L. de Bougrenet de la Tocnaye, Z. Y. Wu, and D. Malardé, “Practical versus absolute salinity measurements: New advances in high performance seawater salinity sensors,” Deep Sea Res. Part I Oceanogr. Res. Pap. 57(1), 151–156 (2010).
    [Crossref]
  3. D. A. Pereira, O. Frazão, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
    [Crossref]
  4. L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103(5), 053107 (2008).
    [Crossref]
  5. X. P. Liu, T. T. Wang, Y. Wu, Y. Gong, and Y. J. Rao, “Dual-parameter sensor based on tapered FBG combined with microfiber cavity,” IEEE Photonics Technol. Lett. 26(8), 817–820 (2014).
    [Crossref]
  6. H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2015).
    [Crossref]
  7. X. Shu, B. A. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
    [Crossref] [PubMed]
  8. L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry-Pérot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
    [Crossref]
  9. S. S. Wang, H. J. Yang, Y. P. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature Sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 6804209 (2016).
    [Crossref]
  10. Y. P. Liao, J. Wang, S. S. Wang, H. J. Yang, and X. Wang, “Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Lightwave Technol. 34(23), 5378–5384 (2016).
    [Crossref]
  11. X. Wang, Y. Li, and X. Bao, “C- and L-band tunable fiber ring laser using a two-taper Mach-Zehnder interferometer filter,” Opt. Lett. 35(20), 3354–3356 (2010).
    [Crossref] [PubMed]
  12. G. S. Delgado, A. M. Rios, and D. M. Hernandez, “Tailoring Mach-Zender comb filters based on concatenated tapers,” J. Lightwave Technol. 31(5), 761–767 (2013).
    [Crossref]
  13. S. Dass and R. Jha, “Cascaded Taper Mach-Zehnder Interferometer Based Hydrophone,” in 13th International Conference on Fiber Optics and Photonics (Optical Society of America, 2016), paper W4G.4.
  14. S. Mas, J. Palací, P. P. Millán, S. Lechago, D. M. Hernández, and J. Martí, “All-fiber processing of terahertz-bandwidth signals based on cascaded tapered fiber,” Opt. Lett. 38(23), 4954–4957 (2013).
    [Crossref] [PubMed]
  15. Q. Rong, Y. Zhou, X. Yin, Z. Shao, and X. Qiao, “Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber,” Biomed. Opt. Express 8(9), 4096–4107 (2017).
    [Crossref] [PubMed]
  16. S. Dass and R. Jha, “Micrometer wire assisted inline Mach-Zehnder interferometric curvature sensor,” IEEE Photonics Technol. Lett. 28(1), 31–34 (2016).
    [Crossref]
  17. B. Sun, F. Fang, Z. Zhang, J. Xu, and L. Zhang, “High-sensitivity and low-temperature magnetic field sensor based on tapered two-mode fiber interference,” Opt. Lett. 43(6), 1311–1314 (2018).
    [Crossref] [PubMed]
  18. D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50(11), 1548–1553 (2011).
    [Crossref] [PubMed]
  19. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50(28), 5503–5507 (2011).
    [Crossref] [PubMed]
  20. D. Wu, Y. Zhao, and J. Li, “PCF taper-based Mach-Zehnder interferometer for refractive index sensing in a PDMS detection cell,” Sens. Actuators B Chem. 213, 1–4 (2015).
    [Crossref]
  21. Q. Wang, W. Q. Wei, M. J. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach-Zehnder interferometer and refractive index sensing technology,” Sens. Actuators B Chem. 222, 159–165 (2016).
    [Crossref]
  22. Y. Zhao, F. Xia, and J. Li, “Sensitivity-enhanced photonic crystal fiber refractive index sensor with two waist-broadened tapers,” J. Lightwave Technol. 34(4), 1373–1379 (2016).
    [Crossref]
  23. Q. Wang, L. X. Kong, Y.L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
    [Crossref]
  24. N. M. Y. Zhang, K. Li, N. Zhang, Y. Zheng, T. Zhang, M. Qi, P. Shum, and L. Wei, “Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point,” Opt. Express 26(22), 29148–29158 (2018).
    [Crossref] [PubMed]
  25. C. Tao, H. Wei, and W. Feng, “Photonic crystal fiber in-line Mach-Zehnder interferometer for explosive detection,” Opt. Express 24(3), 2806–2817 (2016).
    [Crossref] [PubMed]
  26. X. Feng, W. L. Feng, C. Y. Tao, D. S. Deng, X. Qin, and R. Chen, “Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer,” Sens. Actuators B Chem. 247, 540–545 (2017).
    [Crossref]
  27. J. Wang, Y. Liao, S. Wang, and X. Wang, “Ultrasensitive optical sensing in aqueous solution based on microfiber modal interferometer,” Opt. Express 26(19), 24843–24853 (2018).
    [Crossref] [PubMed]
  28. Z. B. Tian and S. S.-H. Yam, “In-line single-mode optical fiber interferometric refractive index sensors,” J. Lightwave Technol. 27(13), 2296–2306 (2009).
    [Crossref]
  29. “Optiwave,” Opti BPM [Online]. Available: http://optiwave.com .
  30. C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
    [Crossref]

2019 (1)

M. L. Menn, P. A. G. Albo, S. Lago, R. Romeo, and F. Sparasci, “The absolute salinity of seawater and its measurands,” Metrologia 56(1), 015005 (2019).
[Crossref]

2018 (3)

2017 (2)

X. Feng, W. L. Feng, C. Y. Tao, D. S. Deng, X. Qin, and R. Chen, “Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer,” Sens. Actuators B Chem. 247, 540–545 (2017).
[Crossref]

Q. Rong, Y. Zhou, X. Yin, Z. Shao, and X. Qiao, “Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber,” Biomed. Opt. Express 8(9), 4096–4107 (2017).
[Crossref] [PubMed]

2016 (8)

S. Dass and R. Jha, “Micrometer wire assisted inline Mach-Zehnder interferometric curvature sensor,” IEEE Photonics Technol. Lett. 28(1), 31–34 (2016).
[Crossref]

S. S. Wang, H. J. Yang, Y. P. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature Sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 6804209 (2016).
[Crossref]

Y. P. Liao, J. Wang, S. S. Wang, H. J. Yang, and X. Wang, “Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Lightwave Technol. 34(23), 5378–5384 (2016).
[Crossref]

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

C. Tao, H. Wei, and W. Feng, “Photonic crystal fiber in-line Mach-Zehnder interferometer for explosive detection,” Opt. Express 24(3), 2806–2817 (2016).
[Crossref] [PubMed]

Q. Wang, W. Q. Wei, M. J. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach-Zehnder interferometer and refractive index sensing technology,” Sens. Actuators B Chem. 222, 159–165 (2016).
[Crossref]

Y. Zhao, F. Xia, and J. Li, “Sensitivity-enhanced photonic crystal fiber refractive index sensor with two waist-broadened tapers,” J. Lightwave Technol. 34(4), 1373–1379 (2016).
[Crossref]

Q. Wang, L. X. Kong, Y.L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

2015 (2)

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2015).
[Crossref]

D. Wu, Y. Zhao, and J. Li, “PCF taper-based Mach-Zehnder interferometer for refractive index sensing in a PDMS detection cell,” Sens. Actuators B Chem. 213, 1–4 (2015).
[Crossref]

2014 (1)

X. P. Liu, T. T. Wang, Y. Wu, Y. Gong, and Y. J. Rao, “Dual-parameter sensor based on tapered FBG combined with microfiber cavity,” IEEE Photonics Technol. Lett. 26(8), 817–820 (2014).
[Crossref]

2013 (2)

2011 (3)

2010 (2)

P. Grosso, M. L. Menn, J.-L. de Bougrenet de la Tocnaye, Z. Y. Wu, and D. Malardé, “Practical versus absolute salinity measurements: New advances in high performance seawater salinity sensors,” Deep Sea Res. Part I Oceanogr. Res. Pap. 57(1), 151–156 (2010).
[Crossref]

X. Wang, Y. Li, and X. Bao, “C- and L-band tunable fiber ring laser using a two-taper Mach-Zehnder interferometer filter,” Opt. Lett. 35(20), 3354–3356 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103(5), 053107 (2008).
[Crossref]

2004 (1)

D. A. Pereira, O. Frazão, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

2001 (1)

Alameh, K.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry-Pérot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
[Crossref]

Albo, P. A. G.

M. L. Menn, P. A. G. Albo, S. Lago, R. Romeo, and F. Sparasci, “The absolute salinity of seawater and its measurands,” Metrologia 56(1), 015005 (2019).
[Crossref]

Bao, X.

Bennion, I.

Chen, Q. Y.

L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103(5), 053107 (2008).
[Crossref]

Chen, R.

X. Feng, W. L. Feng, C. Y. Tao, D. S. Deng, X. Qin, and R. Chen, “Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer,” Sens. Actuators B Chem. 247, 540–545 (2017).
[Crossref]

Dang, Y.L.

Q. Wang, L. X. Kong, Y.L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Dass, S.

S. Dass and R. Jha, “Micrometer wire assisted inline Mach-Zehnder interferometric curvature sensor,” IEEE Photonics Technol. Lett. 28(1), 31–34 (2016).
[Crossref]

S. Dass and R. Jha, “Cascaded Taper Mach-Zehnder Interferometer Based Hydrophone,” in 13th International Conference on Fiber Optics and Photonics (Optical Society of America, 2016), paper W4G.4.

de Bougrenet de la Tocnaye, J.-L.

P. Grosso, M. L. Menn, J.-L. de Bougrenet de la Tocnaye, Z. Y. Wu, and D. Malardé, “Practical versus absolute salinity measurements: New advances in high performance seawater salinity sensors,” Deep Sea Res. Part I Oceanogr. Res. Pap. 57(1), 151–156 (2010).
[Crossref]

Delgado, G. S.

Deng, D. S.

X. Feng, W. L. Feng, C. Y. Tao, D. S. Deng, X. Qin, and R. Chen, “Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer,” Sens. Actuators B Chem. 247, 540–545 (2017).
[Crossref]

Deng, M.

Duan, D. W.

Fang, F.

Feng, W.

Feng, W. L.

X. Feng, W. L. Feng, C. Y. Tao, D. S. Deng, X. Qin, and R. Chen, “Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer,” Sens. Actuators B Chem. 247, 540–545 (2017).
[Crossref]

Feng, X.

X. Feng, W. L. Feng, C. Y. Tao, D. S. Deng, X. Qin, and R. Chen, “Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer,” Sens. Actuators B Chem. 247, 540–545 (2017).
[Crossref]

Frazão, O.

D. A. Pereira, O. Frazão, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

Gong, Y.

X. P. Liu, T. T. Wang, Y. Wu, Y. Gong, and Y. J. Rao, “Dual-parameter sensor based on tapered FBG combined with microfiber cavity,” IEEE Photonics Technol. Lett. 26(8), 817–820 (2014).
[Crossref]

Grosso, P.

P. Grosso, M. L. Menn, J.-L. de Bougrenet de la Tocnaye, Z. Y. Wu, and D. Malardé, “Practical versus absolute salinity measurements: New advances in high performance seawater salinity sensors,” Deep Sea Res. Part I Oceanogr. Res. Pap. 57(1), 151–156 (2010).
[Crossref]

Guo, M. J.

Q. Wang, W. Q. Wei, M. J. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach-Zehnder interferometer and refractive index sensing technology,” Sens. Actuators B Chem. 222, 159–165 (2016).
[Crossref]

Gwandu, B. A.

Hernandez, D. M.

Hernández, D. M.

Hu, H. F.

Q. Wang, L. X. Kong, Y.L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Huang, X. G.

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2015).
[Crossref]

Jha, R.

S. Dass and R. Jha, “Micrometer wire assisted inline Mach-Zehnder interferometric curvature sensor,” IEEE Photonics Technol. Lett. 28(1), 31–34 (2016).
[Crossref]

S. Dass and R. Jha, “Cascaded Taper Mach-Zehnder Interferometer Based Hydrophone,” in 13th International Conference on Fiber Optics and Photonics (Optical Society of America, 2016), paper W4G.4.

Jiang, L.

Kong, L. X.

Q. Wang, L. X. Kong, Y.L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Lago, S.

M. L. Menn, P. A. G. Albo, S. Lago, R. Romeo, and F. Sparasci, “The absolute salinity of seawater and its measurands,” Metrologia 56(1), 015005 (2019).
[Crossref]

Lechago, S.

Li, B.

Li, C.

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

Li, J.

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

Y. Zhao, F. Xia, and J. Li, “Sensitivity-enhanced photonic crystal fiber refractive index sensor with two waist-broadened tapers,” J. Lightwave Technol. 34(4), 1373–1379 (2016).
[Crossref]

Q. Wang, L. X. Kong, Y.L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

D. Wu, Y. Zhao, and J. Li, “PCF taper-based Mach-Zehnder interferometer for refractive index sensing in a PDMS detection cell,” Sens. Actuators B Chem. 213, 1–4 (2015).
[Crossref]

Li, K.

Li, Y.

Liao, Y.

Liao, Y. P.

Y. P. Liao, J. Wang, S. S. Wang, H. J. Yang, and X. Wang, “Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Lightwave Technol. 34(23), 5378–5384 (2016).
[Crossref]

S. S. Wang, H. J. Yang, Y. P. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature Sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 6804209 (2016).
[Crossref]

Lin, H.

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

Liu, X. P.

X. P. Liu, T. T. Wang, Y. Wu, Y. Gong, and Y. J. Rao, “Dual-parameter sensor based on tapered FBG combined with microfiber cavity,” IEEE Photonics Technol. Lett. 26(8), 817–820 (2014).
[Crossref]

Liu, Y.

Lu, P.

L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103(5), 053107 (2008).
[Crossref]

Lu, Y.

Malardé, D.

P. Grosso, M. L. Menn, J.-L. de Bougrenet de la Tocnaye, Z. Y. Wu, and D. Malardé, “Practical versus absolute salinity measurements: New advances in high performance seawater salinity sensors,” Deep Sea Res. Part I Oceanogr. Res. Pap. 57(1), 151–156 (2010).
[Crossref]

Martí, J.

Mas, S.

Men, L. Q.

L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103(5), 053107 (2008).
[Crossref]

Meng, H. Y.

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2015).
[Crossref]

Menn, M. L.

M. L. Menn, P. A. G. Albo, S. Lago, R. Romeo, and F. Sparasci, “The absolute salinity of seawater and its measurands,” Metrologia 56(1), 015005 (2019).
[Crossref]

P. Grosso, M. L. Menn, J.-L. de Bougrenet de la Tocnaye, Z. Y. Wu, and D. Malardé, “Practical versus absolute salinity measurements: New advances in high performance seawater salinity sensors,” Deep Sea Res. Part I Oceanogr. Res. Pap. 57(1), 151–156 (2010).
[Crossref]

Millán, P. P.

Nguyen, L. V.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry-Pérot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
[Crossref]

Ning, T. G.

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

Palací, J.

Pei, L.

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

Pereira, D. A.

D. A. Pereira, O. Frazão, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

Qi, M.

Qiao, X.

Qin, X.

X. Feng, W. L. Feng, C. Y. Tao, D. S. Deng, X. Qin, and R. Chen, “Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer,” Sens. Actuators B Chem. 247, 540–545 (2017).
[Crossref]

Rao, Y. J.

X. P. Liu, T. T. Wang, Y. Wu, Y. Gong, and Y. J. Rao, “Dual-parameter sensor based on tapered FBG combined with microfiber cavity,” IEEE Photonics Technol. Lett. 26(8), 817–820 (2014).
[Crossref]

D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50(11), 1548–1553 (2011).
[Crossref] [PubMed]

Rios, A. M.

Romeo, R.

M. L. Menn, P. A. G. Albo, S. Lago, R. Romeo, and F. Sparasci, “The absolute salinity of seawater and its measurands,” Metrologia 56(1), 015005 (2019).
[Crossref]

Rong, Q.

Santos, J. L.

D. A. Pereira, O. Frazão, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

Shao, Z.

Shen, W.

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2015).
[Crossref]

Shi, L. L.

Shu, X.

Shum, P.

Sparasci, F.

M. L. Menn, P. A. G. Albo, S. Lago, R. Romeo, and F. Sparasci, “The absolute salinity of seawater and its measurands,” Metrologia 56(1), 015005 (2019).
[Crossref]

Sun, B.

Tan, C. H.

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2015).
[Crossref]

Tao, C.

Tao, C. Y.

X. Feng, W. L. Feng, C. Y. Tao, D. S. Deng, X. Qin, and R. Chen, “Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer,” Sens. Actuators B Chem. 247, 540–545 (2017).
[Crossref]

Tian, Z. B.

Tsai, H.

Vasiliev, M.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry-Pérot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
[Crossref]

Wang, J.

Wang, M.

Wang, Q.

Q. Wang, W. Q. Wei, M. J. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach-Zehnder interferometer and refractive index sensing technology,” Sens. Actuators B Chem. 222, 159–165 (2016).
[Crossref]

Q. Wang, L. X. Kong, Y.L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Wang, S.

Wang, S. S.

Y. P. Liao, J. Wang, S. S. Wang, H. J. Yang, and X. Wang, “Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Lightwave Technol. 34(23), 5378–5384 (2016).
[Crossref]

S. S. Wang, H. J. Yang, Y. P. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature Sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 6804209 (2016).
[Crossref]

Wang, T. T.

X. P. Liu, T. T. Wang, Y. Wu, Y. Gong, and Y. J. Rao, “Dual-parameter sensor based on tapered FBG combined with microfiber cavity,” IEEE Photonics Technol. Lett. 26(8), 817–820 (2014).
[Crossref]

Wang, X.

Wei, H.

Wei, L.

Wei, W. Q.

Q. Wang, W. Q. Wei, M. J. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach-Zehnder interferometer and refractive index sensing technology,” Sens. Actuators B Chem. 222, 159–165 (2016).
[Crossref]

Wen, X. D.

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

Wu, D.

D. Wu, Y. Zhao, and J. Li, “PCF taper-based Mach-Zehnder interferometer for refractive index sensing in a PDMS detection cell,” Sens. Actuators B Chem. 213, 1–4 (2015).
[Crossref]

D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50(11), 1548–1553 (2011).
[Crossref] [PubMed]

Wu, Y.

X. P. Liu, T. T. Wang, Y. Wu, Y. Gong, and Y. J. Rao, “Dual-parameter sensor based on tapered FBG combined with microfiber cavity,” IEEE Photonics Technol. Lett. 26(8), 817–820 (2014).
[Crossref]

Wu, Z. Y.

P. Grosso, M. L. Menn, J.-L. de Bougrenet de la Tocnaye, Z. Y. Wu, and D. Malardé, “Practical versus absolute salinity measurements: New advances in high performance seawater salinity sensors,” Deep Sea Res. Part I Oceanogr. Res. Pap. 57(1), 151–156 (2010).
[Crossref]

Xia, F.

Y. Zhao, F. Xia, and J. Li, “Sensitivity-enhanced photonic crystal fiber refractive index sensor with two waist-broadened tapers,” J. Lightwave Technol. 34(4), 1373–1379 (2016).
[Crossref]

Q. Wang, L. X. Kong, Y.L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Xiao, H.

Xu, J.

Yam, S. S.-H.

Yang, H. J.

Y. P. Liao, J. Wang, S. S. Wang, H. J. Yang, and X. Wang, “Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Lightwave Technol. 34(23), 5378–5384 (2016).
[Crossref]

S. S. Wang, H. J. Yang, Y. P. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature Sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 6804209 (2016).
[Crossref]

Yang, J.

Yao, J.

Yin, X.

Zhang, C.

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

Zhang, C. B.

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

Zhang, G. B.

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2015).
[Crossref]

Zhang, L.

Zhang, N.

Zhang, N. M. Y.

Zhang, T.

Zhang, Y. W.

Q. Wang, L. X. Kong, Y.L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Zhang, Z.

Zhao, Y.

Q. Wang, L. X. Kong, Y.L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Q. Wang, W. Q. Wei, M. J. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach-Zehnder interferometer and refractive index sensing technology,” Sens. Actuators B Chem. 222, 159–165 (2016).
[Crossref]

Y. Zhao, F. Xia, and J. Li, “Sensitivity-enhanced photonic crystal fiber refractive index sensor with two waist-broadened tapers,” J. Lightwave Technol. 34(4), 1373–1379 (2016).
[Crossref]

D. Wu, Y. Zhao, and J. Li, “PCF taper-based Mach-Zehnder interferometer for refractive index sensing in a PDMS detection cell,” Sens. Actuators B Chem. 213, 1–4 (2015).
[Crossref]

Zheng, Y.

Zhou, Y.

Zhu, T.

Appl. Opt. (2)

Biomed. Opt. Express (1)

Deep Sea Res. Part I Oceanogr. Res. Pap. (1)

P. Grosso, M. L. Menn, J.-L. de Bougrenet de la Tocnaye, Z. Y. Wu, and D. Malardé, “Practical versus absolute salinity measurements: New advances in high performance seawater salinity sensors,” Deep Sea Res. Part I Oceanogr. Res. Pap. 57(1), 151–156 (2010).
[Crossref]

IEEE Photonics J. (1)

S. S. Wang, H. J. Yang, Y. P. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature Sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 6804209 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

X. P. Liu, T. T. Wang, Y. Wu, Y. Gong, and Y. J. Rao, “Dual-parameter sensor based on tapered FBG combined with microfiber cavity,” IEEE Photonics Technol. Lett. 26(8), 817–820 (2014).
[Crossref]

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry-Pérot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
[Crossref]

S. Dass and R. Jha, “Micrometer wire assisted inline Mach-Zehnder interferometric curvature sensor,” IEEE Photonics Technol. Lett. 28(1), 31–34 (2016).
[Crossref]

J. Appl. Phys. (1)

L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103(5), 053107 (2008).
[Crossref]

J. Lightwave Technol. (4)

Metrologia (1)

M. L. Menn, P. A. G. Albo, S. Lago, R. Romeo, and F. Sparasci, “The absolute salinity of seawater and its measurands,” Metrologia 56(1), 015005 (2019).
[Crossref]

Opt. Eng. (1)

D. A. Pereira, O. Frazão, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Sens. Actuators A Phys. (1)

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

Sens. Actuators B Chem. (5)

Q. Wang, L. X. Kong, Y.L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

X. Feng, W. L. Feng, C. Y. Tao, D. S. Deng, X. Qin, and R. Chen, “Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer,” Sens. Actuators B Chem. 247, 540–545 (2017).
[Crossref]

D. Wu, Y. Zhao, and J. Li, “PCF taper-based Mach-Zehnder interferometer for refractive index sensing in a PDMS detection cell,” Sens. Actuators B Chem. 213, 1–4 (2015).
[Crossref]

Q. Wang, W. Q. Wei, M. J. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach-Zehnder interferometer and refractive index sensing technology,” Sens. Actuators B Chem. 222, 159–165 (2016).
[Crossref]

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2015).
[Crossref]

Other (2)

S. Dass and R. Jha, “Cascaded Taper Mach-Zehnder Interferometer Based Hydrophone,” in 13th International Conference on Fiber Optics and Photonics (Optical Society of America, 2016), paper W4G.4.

“Optiwave,” Opti BPM [Online]. Available: http://optiwave.com .

Supplementary Material (2)

NameDescription
» Visualization 1       Movie of the mode exciting process in MZI with typical wavelength of 1550 nm when section of TCF is changed into SMF with the same length.
» Visualization 2       Movie of the mode exciting process in MZI with typical wavelength of 1550 nm.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Schematic of the proposed MZI structure. (b) Different structures during the manufacturing process. (c) Contrasting our result with other result. Calculated relative power of LP0n mode, LP1n mode and LP2n mode for (d) structure A, (e) B, and (f) C, respectively.
Figures 2
Figures 2 (a) - 2(c) Fabrication steps of taper A or B. (d) Further tapering on taper B by alcohol lamp heating. Optical micrographs of the completed (e) taper A and (f) taper B.
Fig. 3
Fig. 3 (a) Transmission spectra of structures during the fabrications. (b) The Fourier transform of the spectra of the structure C, and D before and after FFT smooth.
Fig. 4
Fig. 4 (a) Movie of the mode exciting process in MZI with typical wavelength of 1550 nm (see Visualization 1). Enlarged details of (b) taper A and (c) taper B in Fig. 4(a). (d) Movie of the mode exciting process in MZI with typical wavelength of 1550 nm when section of TCF is changed into SMF with the same length (see Visualization 2). Enlarged details of (e) taper A and (f) taper B in Fig. 4(d).
Fig. 5
Fig. 5 (a) Transmission spectra of the structures during fabrications when the section of 1060-XP is replaced by the 780-HP fiber or 980-HP fiber. Calculated relative power of LP0n mode, LP1n mode and LP2n mode for structure B when (b) 780-HP fiber used or (c) 980-HP fiber used.
Fig. 6
Fig. 6 (a) Schematic of the capsulation method and the photo of MZI after sealing. Transmission spectra of MZI (b) before and after sealing and (c) before and after immersing into water. Inset: the Fourier transform of the spectra of the fabricated structure D in water before and after FFT smooth.
Fig. 7
Fig. 7 (a) Schematic of sensing system. Transmission spectra during salinity sensing experiment (b) without and (c) with FFT smoothed. (d) Peak B shifts with the increasing salinity; Insets in Figs. 7(c) and 7(d): linear fittings of the wavelength of sensing peak A and B at different salinities.
Fig. 8
Fig. 8 (a) FFT smoothed transmission spectra during temperature sensing experiment. (b) Peak B shifts with the increasing temperature; Insets in Figs. 8(a) and 8(b): Linear fittings of the wavelength of the sensing peak A and B at different temperatures.
Fig. 9
Fig. 9 (a) Transmission spectra of standard sample, test 1, and test 2 sample. Tracking the (b) peak A and (c) peak B.
Fig. 10
Fig. 10 Dependences of (a) salinity and (b) temperature sensing sensitivities on dip wavelength in FFT smoothed spectra. (c) Dependence of temperature sensing sensitivity on dip wavelength in unsmoothed spectra.
Fig. 11
Fig. 11 (a) Temporal response of the output under 1485nm-wavelength. Inset: the enlarged detail of the response. (b) Repeatability test of the sensor. Inset: the original transmission spectrum under 13.2°C and peak A tracked.
Fig. 12
Fig. 12 (a) Schematic of strain test system. (b) Transmission spectra of sensor without encapsulation under different strains. (c) FFT smoothed spectra of sensor without encapsulation under different strains. (d) Transmission spectra of sensor with encapsulated taper B under different strains. (e) FFT smoothed spectra of sensor with encapsulated taper B under different strains. (f) Transmission spectra of sensor with encapsulated taper B under different pressures.

Tables (1)

Tables Icon

Table 1 Comparisons of two tests on temperatures and salinities with commercial devices

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( Δ λ A Δ λ B )=( 223.07pm/ 777.90pm/°C 5.7pm/ 89.91pm/°C )×( ΔS ΔT ).
( S30 T22.3°C )= ( 223.07pm/ 777.90pm/°C 5.7pm/ 89.91pm/°C ) 1 ×( λ A 1405.36nm λ B 1445.56nm ).

Metrics