Abstract

In this paper, we examine the light scattering by the flow of levitated flakes in a micro-channel to characterize the tunable functionality of the graphene oxide liquid crystal in the nematic phase. Light interaction with the mentioned material is decomposed to the scattered and transmitted parts and they can determine the orientation of the flakes. Our results demonstrate that, pumping the graphene oxide sample through the micro-channel leads to increase the amplitude of scattered light. The time averaged of scattered light intensity grows by increasing volume fraction. We also find that, the higher volume fraction, the sooner reaching to saturated normalized scattered intensity is. To get deep insight about our experimental results, we rely on the general theoretical properties of the light scattering cross-section incorporating the fluctuation of director vector and dielectric tensor. Our proposal is a promising approach to carry out the mechanical-hydrodynamical approach for controlling the orientation of a typical liquid crystal.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic electro-optic response of graphene/graphitic flakes in nematic liquid crystals

Weiwei Tie, Surjya Sarathi Bhattacharyya, Young Jin Lim, Sang Won Lee, Tae Hoon Lee, Young Hee Lee, and Seung Hee Lee
Opt. Express 21(17) 19867-19879 (2013)

Broadband optical switch based on liquid crystal dynamic scattering

M. W. Geis, P. J. Bos, V. Liberman, and M. Rothschild
Opt. Express 24(13) 13812-13823 (2016)

Light diffusion and diffusing-wave spectroscopy in nematic liquid crystals

H. Stark, M. H. Kao, K. A. Jester, T. C. Lubensky, A. G. Yodh, and P. J. Collings
J. Opt. Soc. Am. A 14(1) 156-178 (1997)

References

  • View by:
  • |
  • |
  • |

  1. I.-C. Khoo, Liquid crystals (John Wiley & Sons, 2007).
    [Crossref]
  2. L. M. Blinov, Structure and properties of liquid crystals (Springer Science & Business Media, 2010).
  3. S. Li, M. Fu, H. Sun, Y. Zhao, Y. Liu, D. He, and Y. Wang, “Enhanced photorefractive and third-order nonlinear optical properties of 5cb-based polymer-dispersed liquid crystals by graphene doping,” J. Phys. Chem. C 118,18015–18020 (2014).
    [Crossref]
  4. B. T. Hogan, S. A. Dyakov, L. J. Brennan, S. Younesy, T. S. Perova, Y. K. Gun’ko, M. F. Craciun, and A. Baldycheva, “Dynamic in-situ sensing of fluid-dispersed 2d materials integrated on microfluidic si chip,” Sci. Rep. 7, 42120 (2017).
    [Crossref] [PubMed]
  5. Z. Xu and C. Gao, “Graphene chiral liquid crystals and macroscopic assembled fibres,” Nat. Commun. 2, 571 (2011).
    [Crossref] [PubMed]
  6. C. Zakri, C. Blanc, E. Grelet, C. Zamora-Ledezma, N. Puech, E. Anglaret, and P. Poulin, “Liquid crystals of carbon nanotubes and graphene,” Philos. Trans. R. Soc. A 371, 20120499 (2013).
    [Crossref]
  7. B. T. Hogan, E. Kovalska, M. F. Craciun, and A. Baldycheva, “2d material liquid crystals for optoelectronics and photonics,” J. Mater. Chem. C 5, 11185–11195 (2017).
    [Crossref]
  8. E. P. Randviir, D. A. Brownson, and C. E. Banks, “A decade of graphene research: production, applications and outlook,” Mater. Today 17, 426–432 (2014).
    [Crossref]
  9. H. Pleiner and H. Brand, “Light scattering in nematic liquid crystals in a nonequilibrium steady state,” Phys. Rev. A 27, 1177–1183 (1983).
    [Crossref]
  10. T. Y. Marusii, Y. A. Reznikov, V. Y. Reshetnyak, M. Soskin, and A. Khizhnyak, “Scattering of light by nematic liquid crystals in cells with a finite energy of the anchoring of the director to the wails,” Zh. Eksp. Teor. Fiz. 91, 851–860 (1986).
  11. L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
    [Crossref]
  12. R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, A. R. Masud, and J.-K. Song, “Effect of solvents on the electro-optical switching of graphene oxide dispersions,” Appl. Phys. Lett. 108, 251903 (2016).
    [Crossref]
  13. R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, and J.-K. Song, “Optimization of particle size for high birefringence and fast switching time in electro-optical switching of graphene oxide dispersions,” Opt. Express 23, 4435–4440 (2015).
    [Crossref] [PubMed]
  14. R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, Y.-S. Kim, and J.-K. Song, “Electric field-induced ordering of reduced graphene oxide particles in colloid,” J. Nanosci. Nanotechnol. 16, 11364–11368 (2016).
    [Crossref]
  15. S.-H. Hong, T.-Z. Shen, and J.-K. Song, “Manipulation of structural color reflection in graphene oxide dispersions using electric fields,” Opt. Express 23, 18969–18974 (2015).
    [Crossref] [PubMed]
  16. J. Nehring, A. R. Kmetz, and T. J. Scheffer, “Analysis of weak-boundary-coupling effects in liquid-crystal displays,” J. Appl. Phys. 47, 850–857 (1976).
    [Crossref]
  17. H. L. Ong, R. B. Meyer, and A. J. Hurd, “Multistable orientation in a nematic liquid crystal cell induced by external field and interfacial interaction,” J. Appl. Phys. 55, 2809–2815 (1984).
    [Crossref]
  18. F. Brochard, P. Pieranski, and E. Guyon, “Dynamics of the orientation of a nematic-liquid-crystal film in a variable magnetic field,” Phys. Rev. Lett. 28, 1681–1683 (1972).
    [Crossref]
  19. C. Z. Van Doorn, “Transient behaviour of a twisted nematic liquid-crystal layer in an electric field,” J. Phys. (Paris) 36, C1–C261 (1975).
    [Crossref]
  20. J. Bao, F. Lin, and J. Hu, “Graphene alignment technique holds promise for nanophotonics,” Photonics Spectra 51, 38–40 (2017).
  21. J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and S. O. Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50, 3043–3047 (2011).
    [Crossref] [PubMed]
  22. Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, “Room-temperature ferromagnetism of graphene,” Nano Lett. 9, 220–224 (2008).
    [Crossref] [PubMed]
  23. F. Lin, X. Tong, Y. Wang, J. Bao, and Z. M. Wang, “Graphene oxide liquid crystals: synthesis, phase transition, rheological property, and applications in optoelectronics and display,” Nanoscale Res. Lett. 10, 435 (2015).
    [Crossref] [PubMed]
  24. F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
    [Crossref]
  25. A. Sengupta, Topological microfluidics: nematic liquid crystals and nematic colloids in microfluidic environment (Springer Science & Business Media, 2013).
    [Crossref]
  26. V. M. O. Batista, M. L. Blow, and M. M. T. da Gama, “The effect of anchoring on the nematic flow in channels,” Soft Matter 11, 4674–4685 (2015).
    [Crossref] [PubMed]
  27. F. M. Leslie and C. M. Waters, “Light scattering from a nematic liquid crystal in the presence of an electric field,” Mol. Cryst. Liq. Cryst. 123, 101–117 (1985).
    [Crossref]
  28. P.-G. de Gennes and J. Prost, The physics of liquid crystals (Oxford University Press, 1995).
  29. Y. Poggi and J. C. Filippini, “Magnetic-field dependence of the order parameter in a nematic single crystal,” Phys. Rev. Lett. 39, 150–152 (1977).
    [Crossref]
  30. J. L. Martinand and G. Durand, “Electric field quenching of thermal fluctuations of orientation in a nematic liquid crystal,” Solid State Commun. 10, 815–818 (1972).
    [Crossref]
  31. Y. A. Reznikov, V. Y. Reshetnyak, M. S. Soskin, and A. I. Khizhnyak, “A light-induced decrease of the light-scattering in nematic liquid-crystals,” Ukr. Fiz. Zh. 29, 1269–1272 (1984).
  32. S. Xu, L. Yong, and P. Wu, “One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts,” ACS Appl. Mater. Interfaces 5, 654–662 (2013).
    [Crossref] [PubMed]
  33. H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, and X.-H. Xia, “A green approach to the synthesis of graphene nanosheets,” ACS Nano 3, 2653–2659 (2009).
    [Crossref] [PubMed]
  34. Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, and J. Cao, “Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors,” Electrochim. Acta 55, 3897–3903 (2010).
    [Crossref]
  35. T.-Z. Shen, S.-H. Hong, and J.-K. Song, “Electro-optical switching of graphene oxide liquid crystals with an extremely large kerr coefficient,” Nat. Mater. 13, 394–399 (2014).
    [Crossref] [PubMed]
  36. Z. Xu and C. Gao, “Aqueous liquid crystals of graphene oxide,” ACS Nano 5, 2908–2915 (2011).
    [Crossref] [PubMed]
  37. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998).
    [Crossref] [PubMed]
  38. J. C. McDonald and G. M. Whitesides, “Poly (dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res. 35, 491–499 (2002).
    [Crossref] [PubMed]
  39. S. Yilmaz, “Determination of the structural properties of a columnar hexagonal liquid crystal by light scattering,” J. Mod. Opt. 59, 912–916 (2012).
    [Crossref]
  40. A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, “Functionalization of microfluidic devices for investigation of liquid crystal flows,” Microfluid. Nanofluid. 13, 941–955 (2012).
    [Crossref]
  41. A. Sengupta, S. Herminghaus, and C. Bahr, “Opto-fluidic velocimetry using liquid crystal microfluidics,” Appl. Phys. Lett. 101, 164101 (2012).
    [Crossref]
  42. F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch. Ration. Mech. Anal. 28, 265–283 (1968).
    [Crossref]

2017 (4)

B. T. Hogan, S. A. Dyakov, L. J. Brennan, S. Younesy, T. S. Perova, Y. K. Gun’ko, M. F. Craciun, and A. Baldycheva, “Dynamic in-situ sensing of fluid-dispersed 2d materials integrated on microfluidic si chip,” Sci. Rep. 7, 42120 (2017).
[Crossref] [PubMed]

B. T. Hogan, E. Kovalska, M. F. Craciun, and A. Baldycheva, “2d material liquid crystals for optoelectronics and photonics,” J. Mater. Chem. C 5, 11185–11195 (2017).
[Crossref]

J. Bao, F. Lin, and J. Hu, “Graphene alignment technique holds promise for nanophotonics,” Photonics Spectra 51, 38–40 (2017).

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

2016 (2)

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, A. R. Masud, and J.-K. Song, “Effect of solvents on the electro-optical switching of graphene oxide dispersions,” Appl. Phys. Lett. 108, 251903 (2016).
[Crossref]

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, Y.-S. Kim, and J.-K. Song, “Electric field-induced ordering of reduced graphene oxide particles in colloid,” J. Nanosci. Nanotechnol. 16, 11364–11368 (2016).
[Crossref]

2015 (5)

S.-H. Hong, T.-Z. Shen, and J.-K. Song, “Manipulation of structural color reflection in graphene oxide dispersions using electric fields,” Opt. Express 23, 18969–18974 (2015).
[Crossref] [PubMed]

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, and J.-K. Song, “Optimization of particle size for high birefringence and fast switching time in electro-optical switching of graphene oxide dispersions,” Opt. Express 23, 4435–4440 (2015).
[Crossref] [PubMed]

L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
[Crossref]

V. M. O. Batista, M. L. Blow, and M. M. T. da Gama, “The effect of anchoring on the nematic flow in channels,” Soft Matter 11, 4674–4685 (2015).
[Crossref] [PubMed]

F. Lin, X. Tong, Y. Wang, J. Bao, and Z. M. Wang, “Graphene oxide liquid crystals: synthesis, phase transition, rheological property, and applications in optoelectronics and display,” Nanoscale Res. Lett. 10, 435 (2015).
[Crossref] [PubMed]

2014 (3)

T.-Z. Shen, S.-H. Hong, and J.-K. Song, “Electro-optical switching of graphene oxide liquid crystals with an extremely large kerr coefficient,” Nat. Mater. 13, 394–399 (2014).
[Crossref] [PubMed]

E. P. Randviir, D. A. Brownson, and C. E. Banks, “A decade of graphene research: production, applications and outlook,” Mater. Today 17, 426–432 (2014).
[Crossref]

S. Li, M. Fu, H. Sun, Y. Zhao, Y. Liu, D. He, and Y. Wang, “Enhanced photorefractive and third-order nonlinear optical properties of 5cb-based polymer-dispersed liquid crystals by graphene doping,” J. Phys. Chem. C 118,18015–18020 (2014).
[Crossref]

2013 (2)

C. Zakri, C. Blanc, E. Grelet, C. Zamora-Ledezma, N. Puech, E. Anglaret, and P. Poulin, “Liquid crystals of carbon nanotubes and graphene,” Philos. Trans. R. Soc. A 371, 20120499 (2013).
[Crossref]

S. Xu, L. Yong, and P. Wu, “One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts,” ACS Appl. Mater. Interfaces 5, 654–662 (2013).
[Crossref] [PubMed]

2012 (3)

S. Yilmaz, “Determination of the structural properties of a columnar hexagonal liquid crystal by light scattering,” J. Mod. Opt. 59, 912–916 (2012).
[Crossref]

A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, “Functionalization of microfluidic devices for investigation of liquid crystal flows,” Microfluid. Nanofluid. 13, 941–955 (2012).
[Crossref]

A. Sengupta, S. Herminghaus, and C. Bahr, “Opto-fluidic velocimetry using liquid crystal microfluidics,” Appl. Phys. Lett. 101, 164101 (2012).
[Crossref]

2011 (3)

Z. Xu and C. Gao, “Aqueous liquid crystals of graphene oxide,” ACS Nano 5, 2908–2915 (2011).
[Crossref] [PubMed]

Z. Xu and C. Gao, “Graphene chiral liquid crystals and macroscopic assembled fibres,” Nat. Commun. 2, 571 (2011).
[Crossref] [PubMed]

J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and S. O. Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50, 3043–3047 (2011).
[Crossref] [PubMed]

2010 (1)

Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, and J. Cao, “Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors,” Electrochim. Acta 55, 3897–3903 (2010).
[Crossref]

2009 (1)

H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, and X.-H. Xia, “A green approach to the synthesis of graphene nanosheets,” ACS Nano 3, 2653–2659 (2009).
[Crossref] [PubMed]

2008 (1)

Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, “Room-temperature ferromagnetism of graphene,” Nano Lett. 9, 220–224 (2008).
[Crossref] [PubMed]

2002 (1)

J. C. McDonald and G. M. Whitesides, “Poly (dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res. 35, 491–499 (2002).
[Crossref] [PubMed]

1998 (1)

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998).
[Crossref] [PubMed]

1986 (1)

T. Y. Marusii, Y. A. Reznikov, V. Y. Reshetnyak, M. Soskin, and A. Khizhnyak, “Scattering of light by nematic liquid crystals in cells with a finite energy of the anchoring of the director to the wails,” Zh. Eksp. Teor. Fiz. 91, 851–860 (1986).

1985 (1)

F. M. Leslie and C. M. Waters, “Light scattering from a nematic liquid crystal in the presence of an electric field,” Mol. Cryst. Liq. Cryst. 123, 101–117 (1985).
[Crossref]

1984 (2)

Y. A. Reznikov, V. Y. Reshetnyak, M. S. Soskin, and A. I. Khizhnyak, “A light-induced decrease of the light-scattering in nematic liquid-crystals,” Ukr. Fiz. Zh. 29, 1269–1272 (1984).

H. L. Ong, R. B. Meyer, and A. J. Hurd, “Multistable orientation in a nematic liquid crystal cell induced by external field and interfacial interaction,” J. Appl. Phys. 55, 2809–2815 (1984).
[Crossref]

1983 (1)

H. Pleiner and H. Brand, “Light scattering in nematic liquid crystals in a nonequilibrium steady state,” Phys. Rev. A 27, 1177–1183 (1983).
[Crossref]

1977 (1)

Y. Poggi and J. C. Filippini, “Magnetic-field dependence of the order parameter in a nematic single crystal,” Phys. Rev. Lett. 39, 150–152 (1977).
[Crossref]

1976 (1)

J. Nehring, A. R. Kmetz, and T. J. Scheffer, “Analysis of weak-boundary-coupling effects in liquid-crystal displays,” J. Appl. Phys. 47, 850–857 (1976).
[Crossref]

1975 (1)

C. Z. Van Doorn, “Transient behaviour of a twisted nematic liquid-crystal layer in an electric field,” J. Phys. (Paris) 36, C1–C261 (1975).
[Crossref]

1972 (2)

J. L. Martinand and G. Durand, “Electric field quenching of thermal fluctuations of orientation in a nematic liquid crystal,” Solid State Commun. 10, 815–818 (1972).
[Crossref]

F. Brochard, P. Pieranski, and E. Guyon, “Dynamics of the orientation of a nematic-liquid-crystal film in a variable magnetic field,” Phys. Rev. Lett. 28, 1681–1683 (1972).
[Crossref]

1968 (1)

F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch. Ration. Mech. Anal. 28, 265–283 (1968).
[Crossref]

Ahmad, R. T. M.

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, A. R. Masud, and J.-K. Song, “Effect of solvents on the electro-optical switching of graphene oxide dispersions,” Appl. Phys. Lett. 108, 251903 (2016).
[Crossref]

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, Y.-S. Kim, and J.-K. Song, “Electric field-induced ordering of reduced graphene oxide particles in colloid,” J. Nanosci. Nanotechnol. 16, 11364–11368 (2016).
[Crossref]

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, and J.-K. Song, “Optimization of particle size for high birefringence and fast switching time in electro-optical switching of graphene oxide dispersions,” Opt. Express 23, 4435–4440 (2015).
[Crossref] [PubMed]

Ahn, C. W.

J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and S. O. Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50, 3043–3047 (2011).
[Crossref] [PubMed]

Anglaret, E.

C. Zakri, C. Blanc, E. Grelet, C. Zamora-Ledezma, N. Puech, E. Anglaret, and P. Poulin, “Liquid crystals of carbon nanotubes and graphene,” Philos. Trans. R. Soc. A 371, 20120499 (2013).
[Crossref]

Bahr, C.

A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, “Functionalization of microfluidic devices for investigation of liquid crystal flows,” Microfluid. Nanofluid. 13, 941–955 (2012).
[Crossref]

A. Sengupta, S. Herminghaus, and C. Bahr, “Opto-fluidic velocimetry using liquid crystal microfluidics,” Appl. Phys. Lett. 101, 164101 (2012).
[Crossref]

Baldycheva, A.

B. T. Hogan, E. Kovalska, M. F. Craciun, and A. Baldycheva, “2d material liquid crystals for optoelectronics and photonics,” J. Mater. Chem. C 5, 11185–11195 (2017).
[Crossref]

B. T. Hogan, S. A. Dyakov, L. J. Brennan, S. Younesy, T. S. Perova, Y. K. Gun’ko, M. F. Craciun, and A. Baldycheva, “Dynamic in-situ sensing of fluid-dispersed 2d materials integrated on microfluidic si chip,” Sci. Rep. 7, 42120 (2017).
[Crossref] [PubMed]

Banks, C. E.

E. P. Randviir, D. A. Brownson, and C. E. Banks, “A decade of graphene research: production, applications and outlook,” Mater. Today 17, 426–432 (2014).
[Crossref]

Bao, J.

J. Bao, F. Lin, and J. Hu, “Graphene alignment technique holds promise for nanophotonics,” Photonics Spectra 51, 38–40 (2017).

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

F. Lin, X. Tong, Y. Wang, J. Bao, and Z. M. Wang, “Graphene oxide liquid crystals: synthesis, phase transition, rheological property, and applications in optoelectronics and display,” Nanoscale Res. Lett. 10, 435 (2015).
[Crossref] [PubMed]

L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
[Crossref]

Batista, V. M. O.

V. M. O. Batista, M. L. Blow, and M. M. T. da Gama, “The effect of anchoring on the nematic flow in channels,” Soft Matter 11, 4674–4685 (2015).
[Crossref] [PubMed]

Blanc, C.

C. Zakri, C. Blanc, E. Grelet, C. Zamora-Ledezma, N. Puech, E. Anglaret, and P. Poulin, “Liquid crystals of carbon nanotubes and graphene,” Philos. Trans. R. Soc. A 371, 20120499 (2013).
[Crossref]

Blinov, L. M.

L. M. Blinov, Structure and properties of liquid crystals (Springer Science & Business Media, 2010).

Blow, M. L.

V. M. O. Batista, M. L. Blow, and M. M. T. da Gama, “The effect of anchoring on the nematic flow in channels,” Soft Matter 11, 4674–4685 (2015).
[Crossref] [PubMed]

Brand, H.

H. Pleiner and H. Brand, “Light scattering in nematic liquid crystals in a nonequilibrium steady state,” Phys. Rev. A 27, 1177–1183 (1983).
[Crossref]

Brennan, L. J.

B. T. Hogan, S. A. Dyakov, L. J. Brennan, S. Younesy, T. S. Perova, Y. K. Gun’ko, M. F. Craciun, and A. Baldycheva, “Dynamic in-situ sensing of fluid-dispersed 2d materials integrated on microfluidic si chip,” Sci. Rep. 7, 42120 (2017).
[Crossref] [PubMed]

Brochard, F.

F. Brochard, P. Pieranski, and E. Guyon, “Dynamics of the orientation of a nematic-liquid-crystal film in a variable magnetic field,” Phys. Rev. Lett. 28, 1681–1683 (1972).
[Crossref]

Brownson, D. A.

E. P. Randviir, D. A. Brownson, and C. E. Banks, “A decade of graphene research: production, applications and outlook,” Mater. Today 17, 426–432 (2014).
[Crossref]

Cao, J.

Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, and J. Cao, “Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors,” Electrochim. Acta 55, 3897–3903 (2010).
[Crossref]

Chen, J.

Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, and J. Cao, “Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors,” Electrochim. Acta 55, 3897–3903 (2010).
[Crossref]

Chen, Y.

L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
[Crossref]

Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, “Room-temperature ferromagnetism of graphene,” Nano Lett. 9, 220–224 (2008).
[Crossref] [PubMed]

Cheng, Z.

L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
[Crossref]

Craciun, M. F.

B. T. Hogan, E. Kovalska, M. F. Craciun, and A. Baldycheva, “2d material liquid crystals for optoelectronics and photonics,” J. Mater. Chem. C 5, 11185–11195 (2017).
[Crossref]

B. T. Hogan, S. A. Dyakov, L. J. Brennan, S. Younesy, T. S. Perova, Y. K. Gun’ko, M. F. Craciun, and A. Baldycheva, “Dynamic in-situ sensing of fluid-dispersed 2d materials integrated on microfluidic si chip,” Sci. Rep. 7, 42120 (2017).
[Crossref] [PubMed]

da Gama, M. M. T.

V. M. O. Batista, M. L. Blow, and M. M. T. da Gama, “The effect of anchoring on the nematic flow in channels,” Soft Matter 11, 4674–4685 (2015).
[Crossref] [PubMed]

Dahal, K.

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

Dai, W.

Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, and J. Cao, “Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors,” Electrochim. Acta 55, 3897–3903 (2010).
[Crossref]

de Gennes, P.-G.

P.-G. de Gennes and J. Prost, The physics of liquid crystals (Oxford University Press, 1995).

Du, Q.

Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, and J. Cao, “Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors,” Electrochim. Acta 55, 3897–3903 (2010).
[Crossref]

Duffy, D. C.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998).
[Crossref] [PubMed]

Durand, G.

J. L. Martinand and G. Durand, “Electric field quenching of thermal fluctuations of orientation in a nematic liquid crystal,” Solid State Commun. 10, 815–818 (1972).
[Crossref]

Dyakov, S. A.

B. T. Hogan, S. A. Dyakov, L. J. Brennan, S. Younesy, T. S. Perova, Y. K. Gun’ko, M. F. Craciun, and A. Baldycheva, “Dynamic in-situ sensing of fluid-dispersed 2d materials integrated on microfluidic si chip,” Sci. Rep. 7, 42120 (2017).
[Crossref] [PubMed]

Filippini, J. C.

Y. Poggi and J. C. Filippini, “Magnetic-field dependence of the order parameter in a nematic single crystal,” Phys. Rev. Lett. 39, 150–152 (1977).
[Crossref]

Fu, M.

S. Li, M. Fu, H. Sun, Y. Zhao, Y. Liu, D. He, and Y. Wang, “Enhanced photorefractive and third-order nonlinear optical properties of 5cb-based polymer-dispersed liquid crystals by graphene doping,” J. Phys. Chem. C 118,18015–18020 (2014).
[Crossref]

Gao, C.

Z. Xu and C. Gao, “Aqueous liquid crystals of graphene oxide,” ACS Nano 5, 2908–2915 (2011).
[Crossref] [PubMed]

Z. Xu and C. Gao, “Graphene chiral liquid crystals and macroscopic assembled fibres,” Nat. Commun. 2, 571 (2011).
[Crossref] [PubMed]

Grelet, E.

C. Zakri, C. Blanc, E. Grelet, C. Zamora-Ledezma, N. Puech, E. Anglaret, and P. Poulin, “Liquid crystals of carbon nanotubes and graphene,” Philos. Trans. R. Soc. A 371, 20120499 (2013).
[Crossref]

Gun’ko, Y. K.

B. T. Hogan, S. A. Dyakov, L. J. Brennan, S. Younesy, T. S. Perova, Y. K. Gun’ko, M. F. Craciun, and A. Baldycheva, “Dynamic in-situ sensing of fluid-dispersed 2d materials integrated on microfluidic si chip,” Sci. Rep. 7, 42120 (2017).
[Crossref] [PubMed]

Guo, H.-L.

H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, and X.-H. Xia, “A green approach to the synthesis of graphene nanosheets,” ACS Nano 3, 2653–2659 (2009).
[Crossref] [PubMed]

Guyon, E.

F. Brochard, P. Pieranski, and E. Guyon, “Dynamics of the orientation of a nematic-liquid-crystal film in a variable magnetic field,” Phys. Rev. Lett. 28, 1681–1683 (1972).
[Crossref]

Han, T. H.

J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and S. O. Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50, 3043–3047 (2011).
[Crossref] [PubMed]

He, D.

S. Li, M. Fu, H. Sun, Y. Zhao, Y. Liu, D. He, and Y. Wang, “Enhanced photorefractive and third-order nonlinear optical properties of 5cb-based polymer-dispersed liquid crystals by graphene doping,” J. Phys. Chem. C 118,18015–18020 (2014).
[Crossref]

He, L.

L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
[Crossref]

Herminghaus, S.

A. Sengupta, S. Herminghaus, and C. Bahr, “Opto-fluidic velocimetry using liquid crystal microfluidics,” Appl. Phys. Lett. 101, 164101 (2012).
[Crossref]

Hogan, B. T.

B. T. Hogan, S. A. Dyakov, L. J. Brennan, S. Younesy, T. S. Perova, Y. K. Gun’ko, M. F. Craciun, and A. Baldycheva, “Dynamic in-situ sensing of fluid-dispersed 2d materials integrated on microfluidic si chip,” Sci. Rep. 7, 42120 (2017).
[Crossref] [PubMed]

B. T. Hogan, E. Kovalska, M. F. Craciun, and A. Baldycheva, “2d material liquid crystals for optoelectronics and photonics,” J. Mater. Chem. C 5, 11185–11195 (2017).
[Crossref]

Hong, S.-H.

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, A. R. Masud, and J.-K. Song, “Effect of solvents on the electro-optical switching of graphene oxide dispersions,” Appl. Phys. Lett. 108, 251903 (2016).
[Crossref]

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, Y.-S. Kim, and J.-K. Song, “Electric field-induced ordering of reduced graphene oxide particles in colloid,” J. Nanosci. Nanotechnol. 16, 11364–11368 (2016).
[Crossref]

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, and J.-K. Song, “Optimization of particle size for high birefringence and fast switching time in electro-optical switching of graphene oxide dispersions,” Opt. Express 23, 4435–4440 (2015).
[Crossref] [PubMed]

S.-H. Hong, T.-Z. Shen, and J.-K. Song, “Manipulation of structural color reflection in graphene oxide dispersions using electric fields,” Opt. Express 23, 18969–18974 (2015).
[Crossref] [PubMed]

T.-Z. Shen, S.-H. Hong, and J.-K. Song, “Electro-optical switching of graphene oxide liquid crystals with an extremely large kerr coefficient,” Nat. Mater. 13, 394–399 (2014).
[Crossref] [PubMed]

Hu, J.

J. Bao, F. Lin, and J. Hu, “Graphene alignment technique holds promise for nanophotonics,” Photonics Spectra 51, 38–40 (2017).

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

Huang, Y.

Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, “Room-temperature ferromagnetism of graphene,” Nano Lett. 9, 220–224 (2008).
[Crossref] [PubMed]

Hurd, A. J.

H. L. Ong, R. B. Meyer, and A. J. Hurd, “Multistable orientation in a nematic liquid crystal cell induced by external field and interfacial interaction,” J. Appl. Phys. 55, 2809–2815 (1984).
[Crossref]

Ji, G.

Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, and J. Cao, “Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors,” Electrochim. Acta 55, 3897–3903 (2010).
[Crossref]

Khizhnyak, A.

T. Y. Marusii, Y. A. Reznikov, V. Y. Reshetnyak, M. Soskin, and A. Khizhnyak, “Scattering of light by nematic liquid crystals in cells with a finite energy of the anchoring of the director to the wails,” Zh. Eksp. Teor. Fiz. 91, 851–860 (1986).

Khizhnyak, A. I.

Y. A. Reznikov, V. Y. Reshetnyak, M. S. Soskin, and A. I. Khizhnyak, “A light-induced decrease of the light-scattering in nematic liquid-crystals,” Ukr. Fiz. Zh. 29, 1269–1272 (1984).

Khoo, I.-C.

I.-C. Khoo, Liquid crystals (John Wiley & Sons, 2007).
[Crossref]

Kim, J. E.

J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and S. O. Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50, 3043–3047 (2011).
[Crossref] [PubMed]

Kim, J. Y.

J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and S. O. Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50, 3043–3047 (2011).
[Crossref] [PubMed]

Kim, S. O.

J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and S. O. Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50, 3043–3047 (2011).
[Crossref] [PubMed]

Kim, Y.-S.

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, Y.-S. Kim, and J.-K. Song, “Electric field-induced ordering of reduced graphene oxide particles in colloid,” J. Nanosci. Nanotechnol. 16, 11364–11368 (2016).
[Crossref]

Kmetz, A. R.

J. Nehring, A. R. Kmetz, and T. J. Scheffer, “Analysis of weak-boundary-coupling effects in liquid-crystal displays,” J. Appl. Phys. 47, 850–857 (1976).
[Crossref]

Kovalska, E.

B. T. Hogan, E. Kovalska, M. F. Craciun, and A. Baldycheva, “2d material liquid crystals for optoelectronics and photonics,” J. Mater. Chem. C 5, 11185–11195 (2017).
[Crossref]

Lee, S. H.

J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and S. O. Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50, 3043–3047 (2011).
[Crossref] [PubMed]

Leslie, F. M.

F. M. Leslie and C. M. Waters, “Light scattering from a nematic liquid crystal in the presence of an electric field,” Mol. Cryst. Liq. Cryst. 123, 101–117 (1985).
[Crossref]

F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch. Ration. Mech. Anal. 28, 265–283 (1968).
[Crossref]

Li, S.

S. Li, M. Fu, H. Sun, Y. Zhao, Y. Liu, D. He, and Y. Wang, “Enhanced photorefractive and third-order nonlinear optical properties of 5cb-based polymer-dispersed liquid crystals by graphene doping,” J. Phys. Chem. C 118,18015–18020 (2014).
[Crossref]

Li, Y.

L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
[Crossref]

Liang, J.

Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, “Room-temperature ferromagnetism of graphene,” Nano Lett. 9, 220–224 (2008).
[Crossref] [PubMed]

Lin, F.

J. Bao, F. Lin, and J. Hu, “Graphene alignment technique holds promise for nanophotonics,” Photonics Spectra 51, 38–40 (2017).

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

F. Lin, X. Tong, Y. Wang, J. Bao, and Z. M. Wang, “Graphene oxide liquid crystals: synthesis, phase transition, rheological property, and applications in optoelectronics and display,” Nanoscale Res. Lett. 10, 435 (2015).
[Crossref] [PubMed]

Litvinov, D.

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

Liu, Y.

S. Li, M. Fu, H. Sun, Y. Zhao, Y. Liu, D. He, and Y. Wang, “Enhanced photorefractive and third-order nonlinear optical properties of 5cb-based polymer-dispersed liquid crystals by graphene doping,” J. Phys. Chem. C 118,18015–18020 (2014).
[Crossref]

Liu, Z.

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
[Crossref]

Ma, Y.

Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, “Room-temperature ferromagnetism of graphene,” Nano Lett. 9, 220–224 (2008).
[Crossref] [PubMed]

Martinand, J. L.

J. L. Martinand and G. Durand, “Electric field quenching of thermal fluctuations of orientation in a nematic liquid crystal,” Solid State Commun. 10, 815–818 (1972).
[Crossref]

Marusii, T. Y.

T. Y. Marusii, Y. A. Reznikov, V. Y. Reshetnyak, M. Soskin, and A. Khizhnyak, “Scattering of light by nematic liquid crystals in cells with a finite energy of the anchoring of the director to the wails,” Zh. Eksp. Teor. Fiz. 91, 851–860 (1986).

Masud, A. R.

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, A. R. Masud, and J.-K. Song, “Effect of solvents on the electro-optical switching of graphene oxide dispersions,” Appl. Phys. Lett. 108, 251903 (2016).
[Crossref]

McDonald, J. C.

J. C. McDonald and G. M. Whitesides, “Poly (dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res. 35, 491–499 (2002).
[Crossref] [PubMed]

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998).
[Crossref] [PubMed]

Meyer, R. B.

H. L. Ong, R. B. Meyer, and A. J. Hurd, “Multistable orientation in a nematic liquid crystal cell induced by external field and interfacial interaction,” J. Appl. Phys. 55, 2809–2815 (1984).
[Crossref]

Nehring, J.

J. Nehring, A. R. Kmetz, and T. J. Scheffer, “Analysis of weak-boundary-coupling effects in liquid-crystal displays,” J. Appl. Phys. 47, 850–857 (1976).
[Crossref]

Niu, C.

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

Ong, H. L.

H. L. Ong, R. B. Meyer, and A. J. Hurd, “Multistable orientation in a nematic liquid crystal cell induced by external field and interfacial interaction,” J. Appl. Phys. 55, 2809–2815 (1984).
[Crossref]

Ouskova, E.

A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, “Functionalization of microfluidic devices for investigation of liquid crystal flows,” Microfluid. Nanofluid. 13, 941–955 (2012).
[Crossref]

Perova, T. S.

B. T. Hogan, S. A. Dyakov, L. J. Brennan, S. Younesy, T. S. Perova, Y. K. Gun’ko, M. F. Craciun, and A. Baldycheva, “Dynamic in-situ sensing of fluid-dispersed 2d materials integrated on microfluidic si chip,” Sci. Rep. 7, 42120 (2017).
[Crossref] [PubMed]

Pieranski, P.

F. Brochard, P. Pieranski, and E. Guyon, “Dynamics of the orientation of a nematic-liquid-crystal film in a variable magnetic field,” Phys. Rev. Lett. 28, 1681–1683 (1972).
[Crossref]

Pleiner, H.

H. Pleiner and H. Brand, “Light scattering in nematic liquid crystals in a nonequilibrium steady state,” Phys. Rev. A 27, 1177–1183 (1983).
[Crossref]

Poggi, Y.

Y. Poggi and J. C. Filippini, “Magnetic-field dependence of the order parameter in a nematic single crystal,” Phys. Rev. Lett. 39, 150–152 (1977).
[Crossref]

Poulin, P.

C. Zakri, C. Blanc, E. Grelet, C. Zamora-Ledezma, N. Puech, E. Anglaret, and P. Poulin, “Liquid crystals of carbon nanotubes and graphene,” Philos. Trans. R. Soc. A 371, 20120499 (2013).
[Crossref]

Prost, J.

P.-G. de Gennes and J. Prost, The physics of liquid crystals (Oxford University Press, 1995).

Puech, N.

C. Zakri, C. Blanc, E. Grelet, C. Zamora-Ledezma, N. Puech, E. Anglaret, and P. Poulin, “Liquid crystals of carbon nanotubes and graphene,” Philos. Trans. R. Soc. A 371, 20120499 (2013).
[Crossref]

Qian, Q.-Y.

H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, and X.-H. Xia, “A green approach to the synthesis of graphene nanosheets,” ACS Nano 3, 2653–2659 (2009).
[Crossref] [PubMed]

Qiu, W.

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

Randviir, E. P.

E. P. Randviir, D. A. Brownson, and C. E. Banks, “A decade of graphene research: production, applications and outlook,” Mater. Today 17, 426–432 (2014).
[Crossref]

Ren, Z.

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

Reshetnyak, V. Y.

T. Y. Marusii, Y. A. Reznikov, V. Y. Reshetnyak, M. Soskin, and A. Khizhnyak, “Scattering of light by nematic liquid crystals in cells with a finite energy of the anchoring of the director to the wails,” Zh. Eksp. Teor. Fiz. 91, 851–860 (1986).

Y. A. Reznikov, V. Y. Reshetnyak, M. S. Soskin, and A. I. Khizhnyak, “A light-induced decrease of the light-scattering in nematic liquid-crystals,” Ukr. Fiz. Zh. 29, 1269–1272 (1984).

Reznikov, Y. A.

T. Y. Marusii, Y. A. Reznikov, V. Y. Reshetnyak, M. Soskin, and A. Khizhnyak, “Scattering of light by nematic liquid crystals in cells with a finite energy of the anchoring of the director to the wails,” Zh. Eksp. Teor. Fiz. 91, 851–860 (1986).

Y. A. Reznikov, V. Y. Reshetnyak, M. S. Soskin, and A. I. Khizhnyak, “A light-induced decrease of the light-scattering in nematic liquid-crystals,” Ukr. Fiz. Zh. 29, 1269–1272 (1984).

Scheffer, T. J.

J. Nehring, A. R. Kmetz, and T. J. Scheffer, “Analysis of weak-boundary-coupling effects in liquid-crystal displays,” J. Appl. Phys. 47, 850–857 (1976).
[Crossref]

Schueller, O. J. A.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998).
[Crossref] [PubMed]

Schulz, B.

A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, “Functionalization of microfluidic devices for investigation of liquid crystal flows,” Microfluid. Nanofluid. 13, 941–955 (2012).
[Crossref]

Sengupta, A.

A. Sengupta, S. Herminghaus, and C. Bahr, “Opto-fluidic velocimetry using liquid crystal microfluidics,” Appl. Phys. Lett. 101, 164101 (2012).
[Crossref]

A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, “Functionalization of microfluidic devices for investigation of liquid crystal flows,” Microfluid. Nanofluid. 13, 941–955 (2012).
[Crossref]

A. Sengupta, Topological microfluidics: nematic liquid crystals and nematic colloids in microfluidic environment (Springer Science & Business Media, 2013).
[Crossref]

Shen, T.-Z.

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, A. R. Masud, and J.-K. Song, “Effect of solvents on the electro-optical switching of graphene oxide dispersions,” Appl. Phys. Lett. 108, 251903 (2016).
[Crossref]

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, Y.-S. Kim, and J.-K. Song, “Electric field-induced ordering of reduced graphene oxide particles in colloid,” J. Nanosci. Nanotechnol. 16, 11364–11368 (2016).
[Crossref]

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, and J.-K. Song, “Optimization of particle size for high birefringence and fast switching time in electro-optical switching of graphene oxide dispersions,” Opt. Express 23, 4435–4440 (2015).
[Crossref] [PubMed]

S.-H. Hong, T.-Z. Shen, and J.-K. Song, “Manipulation of structural color reflection in graphene oxide dispersions using electric fields,” Opt. Express 23, 18969–18974 (2015).
[Crossref] [PubMed]

T.-Z. Shen, S.-H. Hong, and J.-K. Song, “Electro-optical switching of graphene oxide liquid crystals with an extremely large kerr coefficient,” Nat. Mater. 13, 394–399 (2014).
[Crossref] [PubMed]

Shuai, M.

L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
[Crossref]

Song, J.-K.

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, A. R. Masud, and J.-K. Song, “Effect of solvents on the electro-optical switching of graphene oxide dispersions,” Appl. Phys. Lett. 108, 251903 (2016).
[Crossref]

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, Y.-S. Kim, and J.-K. Song, “Electric field-induced ordering of reduced graphene oxide particles in colloid,” J. Nanosci. Nanotechnol. 16, 11364–11368 (2016).
[Crossref]

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, and J.-K. Song, “Optimization of particle size for high birefringence and fast switching time in electro-optical switching of graphene oxide dispersions,” Opt. Express 23, 4435–4440 (2015).
[Crossref] [PubMed]

S.-H. Hong, T.-Z. Shen, and J.-K. Song, “Manipulation of structural color reflection in graphene oxide dispersions using electric fields,” Opt. Express 23, 18969–18974 (2015).
[Crossref] [PubMed]

T.-Z. Shen, S.-H. Hong, and J.-K. Song, “Electro-optical switching of graphene oxide liquid crystals with an extremely large kerr coefficient,” Nat. Mater. 13, 394–399 (2014).
[Crossref] [PubMed]

Song, Y.

Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, “Room-temperature ferromagnetism of graphene,” Nano Lett. 9, 220–224 (2008).
[Crossref] [PubMed]

Soskin, M.

T. Y. Marusii, Y. A. Reznikov, V. Y. Reshetnyak, M. Soskin, and A. Khizhnyak, “Scattering of light by nematic liquid crystals in cells with a finite energy of the anchoring of the director to the wails,” Zh. Eksp. Teor. Fiz. 91, 851–860 (1986).

Soskin, M. S.

Y. A. Reznikov, V. Y. Reshetnyak, M. S. Soskin, and A. I. Khizhnyak, “A light-induced decrease of the light-scattering in nematic liquid-crystals,” Ukr. Fiz. Zh. 29, 1269–1272 (1984).

Su, Z.

L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
[Crossref]

Sun, H.

S. Li, M. Fu, H. Sun, Y. Zhao, Y. Liu, D. He, and Y. Wang, “Enhanced photorefractive and third-order nonlinear optical properties of 5cb-based polymer-dispersed liquid crystals by graphene doping,” J. Phys. Chem. C 118,18015–18020 (2014).
[Crossref]

Tong, X.

F. Lin, X. Tong, Y. Wang, J. Bao, and Z. M. Wang, “Graphene oxide liquid crystals: synthesis, phase transition, rheological property, and applications in optoelectronics and display,” Nanoscale Res. Lett. 10, 435 (2015).
[Crossref] [PubMed]

Van Doorn, C. Z.

C. Z. Van Doorn, “Transient behaviour of a twisted nematic liquid-crystal layer in an electric field,” J. Phys. (Paris) 36, C1–C261 (1975).
[Crossref]

Wang, F.-B.

H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, and X.-H. Xia, “A green approach to the synthesis of graphene nanosheets,” ACS Nano 3, 2653–2659 (2009).
[Crossref] [PubMed]

Wang, X.-F.

H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, and X.-H. Xia, “A green approach to the synthesis of graphene nanosheets,” ACS Nano 3, 2653–2659 (2009).
[Crossref] [PubMed]

Wang, Y.

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

F. Lin, X. Tong, Y. Wang, J. Bao, and Z. M. Wang, “Graphene oxide liquid crystals: synthesis, phase transition, rheological property, and applications in optoelectronics and display,” Nanoscale Res. Lett. 10, 435 (2015).
[Crossref] [PubMed]

L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
[Crossref]

S. Li, M. Fu, H. Sun, Y. Zhao, Y. Liu, D. He, and Y. Wang, “Enhanced photorefractive and third-order nonlinear optical properties of 5cb-based polymer-dispersed liquid crystals by graphene doping,” J. Phys. Chem. C 118,18015–18020 (2014).
[Crossref]

Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, and J. Cao, “Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors,” Electrochim. Acta 55, 3897–3903 (2010).
[Crossref]

Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, “Room-temperature ferromagnetism of graphene,” Nano Lett. 9, 220–224 (2008).
[Crossref] [PubMed]

Wang, Z. M.

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

F. Lin, X. Tong, Y. Wang, J. Bao, and Z. M. Wang, “Graphene oxide liquid crystals: synthesis, phase transition, rheological property, and applications in optoelectronics and display,” Nanoscale Res. Lett. 10, 435 (2015).
[Crossref] [PubMed]

Waters, C. M.

F. M. Leslie and C. M. Waters, “Light scattering from a nematic liquid crystal in the presence of an electric field,” Mol. Cryst. Liq. Cryst. 123, 101–117 (1985).
[Crossref]

Whitesides, G. M.

J. C. McDonald and G. M. Whitesides, “Poly (dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res. 35, 491–499 (2002).
[Crossref] [PubMed]

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998).
[Crossref] [PubMed]

Wu, P.

S. Xu, L. Yong, and P. Wu, “One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts,” ACS Appl. Mater. Interfaces 5, 654–662 (2013).
[Crossref] [PubMed]

Xia, X.-H.

H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, and X.-H. Xia, “A green approach to the synthesis of graphene nanosheets,” ACS Nano 3, 2653–2659 (2009).
[Crossref] [PubMed]

Xu, S.

S. Xu, L. Yong, and P. Wu, “One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts,” ACS Appl. Mater. Interfaces 5, 654–662 (2013).
[Crossref] [PubMed]

Xu, Z.

Z. Xu and C. Gao, “Aqueous liquid crystals of graphene oxide,” ACS Nano 5, 2908–2915 (2011).
[Crossref] [PubMed]

Z. Xu and C. Gao, “Graphene chiral liquid crystals and macroscopic assembled fibres,” Nat. Commun. 2, 571 (2011).
[Crossref] [PubMed]

Xue, L.

Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, and J. Cao, “Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors,” Electrochim. Acta 55, 3897–3903 (2010).
[Crossref]

Ye, J.

L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
[Crossref]

Yilmaz, S.

S. Yilmaz, “Determination of the structural properties of a columnar hexagonal liquid crystal by light scattering,” J. Mod. Opt. 59, 912–916 (2012).
[Crossref]

Yong, L.

S. Xu, L. Yong, and P. Wu, “One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts,” ACS Appl. Mater. Interfaces 5, 654–662 (2013).
[Crossref] [PubMed]

Younesy, S.

B. T. Hogan, S. A. Dyakov, L. J. Brennan, S. Younesy, T. S. Perova, Y. K. Gun’ko, M. F. Craciun, and A. Baldycheva, “Dynamic in-situ sensing of fluid-dispersed 2d materials integrated on microfluidic si chip,” Sci. Rep. 7, 42120 (2017).
[Crossref] [PubMed]

Yun, J. M.

J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and S. O. Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50, 3043–3047 (2011).
[Crossref] [PubMed]

Zakri, C.

C. Zakri, C. Blanc, E. Grelet, C. Zamora-Ledezma, N. Puech, E. Anglaret, and P. Poulin, “Liquid crystals of carbon nanotubes and graphene,” Philos. Trans. R. Soc. A 371, 20120499 (2013).
[Crossref]

Zamora-Ledezma, C.

C. Zakri, C. Blanc, E. Grelet, C. Zamora-Ledezma, N. Puech, E. Anglaret, and P. Poulin, “Liquid crystals of carbon nanotubes and graphene,” Philos. Trans. R. Soc. A 371, 20120499 (2013).
[Crossref]

Zhang, H.

L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
[Crossref]

Zhang, L.

Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, and J. Cao, “Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors,” Electrochim. Acta 55, 3897–3903 (2010).
[Crossref]

Zhang, X.

Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, “Room-temperature ferromagnetism of graphene,” Nano Lett. 9, 220–224 (2008).
[Crossref] [PubMed]

Zhao, Y.

S. Li, M. Fu, H. Sun, Y. Zhao, Y. Liu, D. He, and Y. Wang, “Enhanced photorefractive and third-order nonlinear optical properties of 5cb-based polymer-dispersed liquid crystals by graphene doping,” J. Phys. Chem. C 118,18015–18020 (2014).
[Crossref]

Zhao, Z.

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

Zheng, M.

Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, and J. Cao, “Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors,” Electrochim. Acta 55, 3897–3903 (2010).
[Crossref]

Zhou, X.

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
[Crossref]

Zhu, Z.

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
[Crossref]

Acc. Chem. Res. (1)

J. C. McDonald and G. M. Whitesides, “Poly (dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res. 35, 491–499 (2002).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

S. Xu, L. Yong, and P. Wu, “One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts,” ACS Appl. Mater. Interfaces 5, 654–662 (2013).
[Crossref] [PubMed]

ACS Nano (2)

H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, and X.-H. Xia, “A green approach to the synthesis of graphene nanosheets,” ACS Nano 3, 2653–2659 (2009).
[Crossref] [PubMed]

Z. Xu and C. Gao, “Aqueous liquid crystals of graphene oxide,” ACS Nano 5, 2908–2915 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu, J. Hu, K. Dahal, Y. Wang, Z. Zhao, Z. Ren, D. Litvinov, Z. Liu, Z. M. Wang, and J. Bao, “Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene,” Adv. Mater. 29, 1604453 (2017).
[Crossref]

Anal. Chem. (1)

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and S. O. Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50, 3043–3047 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, A. R. Masud, and J.-K. Song, “Effect of solvents on the electro-optical switching of graphene oxide dispersions,” Appl. Phys. Lett. 108, 251903 (2016).
[Crossref]

A. Sengupta, S. Herminghaus, and C. Bahr, “Opto-fluidic velocimetry using liquid crystal microfluidics,” Appl. Phys. Lett. 101, 164101 (2012).
[Crossref]

Arch. Ration. Mech. Anal. (1)

F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch. Ration. Mech. Anal. 28, 265–283 (1968).
[Crossref]

Electrochim. Acta (1)

Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, and J. Cao, “Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors,” Electrochim. Acta 55, 3897–3903 (2010).
[Crossref]

J. Appl. Phys. (2)

J. Nehring, A. R. Kmetz, and T. J. Scheffer, “Analysis of weak-boundary-coupling effects in liquid-crystal displays,” J. Appl. Phys. 47, 850–857 (1976).
[Crossref]

H. L. Ong, R. B. Meyer, and A. J. Hurd, “Multistable orientation in a nematic liquid crystal cell induced by external field and interfacial interaction,” J. Appl. Phys. 55, 2809–2815 (1984).
[Crossref]

J. Mater. Chem. C (1)

B. T. Hogan, E. Kovalska, M. F. Craciun, and A. Baldycheva, “2d material liquid crystals for optoelectronics and photonics,” J. Mater. Chem. C 5, 11185–11195 (2017).
[Crossref]

J. Mod. Opt. (1)

S. Yilmaz, “Determination of the structural properties of a columnar hexagonal liquid crystal by light scattering,” J. Mod. Opt. 59, 912–916 (2012).
[Crossref]

J. Nanosci. Nanotechnol. (1)

R. T. M. Ahmad, S.-H. Hong, T.-Z. Shen, Y.-S. Kim, and J.-K. Song, “Electric field-induced ordering of reduced graphene oxide particles in colloid,” J. Nanosci. Nanotechnol. 16, 11364–11368 (2016).
[Crossref]

J. Phys. (Paris) (1)

C. Z. Van Doorn, “Transient behaviour of a twisted nematic liquid-crystal layer in an electric field,” J. Phys. (Paris) 36, C1–C261 (1975).
[Crossref]

J. Phys. Chem. C (1)

S. Li, M. Fu, H. Sun, Y. Zhao, Y. Liu, D. He, and Y. Wang, “Enhanced photorefractive and third-order nonlinear optical properties of 5cb-based polymer-dispersed liquid crystals by graphene doping,” J. Phys. Chem. C 118,18015–18020 (2014).
[Crossref]

Mater. Today (1)

E. P. Randviir, D. A. Brownson, and C. E. Banks, “A decade of graphene research: production, applications and outlook,” Mater. Today 17, 426–432 (2014).
[Crossref]

Microfluid. Nanofluid. (1)

A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, “Functionalization of microfluidic devices for investigation of liquid crystal flows,” Microfluid. Nanofluid. 13, 941–955 (2012).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

F. M. Leslie and C. M. Waters, “Light scattering from a nematic liquid crystal in the presence of an electric field,” Mol. Cryst. Liq. Cryst. 123, 101–117 (1985).
[Crossref]

Nano Lett. (1)

Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, “Room-temperature ferromagnetism of graphene,” Nano Lett. 9, 220–224 (2008).
[Crossref] [PubMed]

Nanoscale (1)

L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, “Graphene oxide liquid crystals for reflective displays without polarizing optics,” Nanoscale 7, 1616–1622 (2015).
[Crossref]

Nanoscale Res. Lett. (1)

F. Lin, X. Tong, Y. Wang, J. Bao, and Z. M. Wang, “Graphene oxide liquid crystals: synthesis, phase transition, rheological property, and applications in optoelectronics and display,” Nanoscale Res. Lett. 10, 435 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Xu and C. Gao, “Graphene chiral liquid crystals and macroscopic assembled fibres,” Nat. Commun. 2, 571 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

T.-Z. Shen, S.-H. Hong, and J.-K. Song, “Electro-optical switching of graphene oxide liquid crystals with an extremely large kerr coefficient,” Nat. Mater. 13, 394–399 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Philos. Trans. R. Soc. A (1)

C. Zakri, C. Blanc, E. Grelet, C. Zamora-Ledezma, N. Puech, E. Anglaret, and P. Poulin, “Liquid crystals of carbon nanotubes and graphene,” Philos. Trans. R. Soc. A 371, 20120499 (2013).
[Crossref]

Photonics Spectra (1)

J. Bao, F. Lin, and J. Hu, “Graphene alignment technique holds promise for nanophotonics,” Photonics Spectra 51, 38–40 (2017).

Phys. Rev. A (1)

H. Pleiner and H. Brand, “Light scattering in nematic liquid crystals in a nonequilibrium steady state,” Phys. Rev. A 27, 1177–1183 (1983).
[Crossref]

Phys. Rev. Lett. (2)

F. Brochard, P. Pieranski, and E. Guyon, “Dynamics of the orientation of a nematic-liquid-crystal film in a variable magnetic field,” Phys. Rev. Lett. 28, 1681–1683 (1972).
[Crossref]

Y. Poggi and J. C. Filippini, “Magnetic-field dependence of the order parameter in a nematic single crystal,” Phys. Rev. Lett. 39, 150–152 (1977).
[Crossref]

Sci. Rep. (1)

B. T. Hogan, S. A. Dyakov, L. J. Brennan, S. Younesy, T. S. Perova, Y. K. Gun’ko, M. F. Craciun, and A. Baldycheva, “Dynamic in-situ sensing of fluid-dispersed 2d materials integrated on microfluidic si chip,” Sci. Rep. 7, 42120 (2017).
[Crossref] [PubMed]

Soft Matter (1)

V. M. O. Batista, M. L. Blow, and M. M. T. da Gama, “The effect of anchoring on the nematic flow in channels,” Soft Matter 11, 4674–4685 (2015).
[Crossref] [PubMed]

Solid State Commun. (1)

J. L. Martinand and G. Durand, “Electric field quenching of thermal fluctuations of orientation in a nematic liquid crystal,” Solid State Commun. 10, 815–818 (1972).
[Crossref]

Ukr. Fiz. Zh. (1)

Y. A. Reznikov, V. Y. Reshetnyak, M. S. Soskin, and A. I. Khizhnyak, “A light-induced decrease of the light-scattering in nematic liquid-crystals,” Ukr. Fiz. Zh. 29, 1269–1272 (1984).

Zh. Eksp. Teor. Fiz. (1)

T. Y. Marusii, Y. A. Reznikov, V. Y. Reshetnyak, M. Soskin, and A. Khizhnyak, “Scattering of light by nematic liquid crystals in cells with a finite energy of the anchoring of the director to the wails,” Zh. Eksp. Teor. Fiz. 91, 851–860 (1986).

Other (4)

I.-C. Khoo, Liquid crystals (John Wiley & Sons, 2007).
[Crossref]

L. M. Blinov, Structure and properties of liquid crystals (Springer Science & Business Media, 2010).

P.-G. de Gennes and J. Prost, The physics of liquid crystals (Oxford University Press, 1995).

A. Sengupta, Topological microfluidics: nematic liquid crystals and nematic colloids in microfluidic environment (Springer Science & Business Media, 2013).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       liquid crystality is created in graphene oxide liquid crystals by inducing a perturbation ina sample by an external factors, In thisexperiment, a tension is created in the GO-NLC dispersion by adding a drop of GO-NLC to the cell containing the sampl

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The characteristic spectra of the graphene oxide. a) uv-visible spectrum, b) the FTIR spectrum, c) the XRD pattern and d) the size distribution graph using the DLS method
Fig. 2
Fig. 2 The passing light through the GO, which is under the influence of external force and placed between the crossed polaroid. The thickness of the GO sample is (a) 1 cm and (b) 0.1 cm. (c) GO within a micro-channel with a rectangular cross section of 300×100 μm.
Fig. 3
Fig. 3 Schematic of the experimental setup. Left setup corresponds to the arrangement of single-mode laser light without Polaroid. The right part indicates arrangement of white light with a crossed polarizer. The inner figure is the micro-channel that used to experiment. The abbreviations used in this plot are: White Light (WL), Polarizer (P), Objective Lens (OL), micro-channel (MC), Analyzer (A), Spectrometer (S), Power meter (PM), Syringe pump (SP).
Fig. 4
Fig. 4 The real time measurements of the intensity of scattered light at angles of (a) ϕ = 45° and (b) ϕ = 90° for GO-NLC volume fractions of C = 0.17Vol%. The real time measurement of the transmittance intensity for GO-NLC volume fractions of (c) C = 0.17Vol% and (d) C = 0.53Vol%.
Fig. 5
Fig. 5 The intensity of scattering light for different GO-NLC injection rate into the channel for two volume fractions of C = 0.17Vol% and C = 0.53Vol%.
Fig. 6
Fig. 6 Experimental results for laser light scattering from GO-NLC inside a micro-channel for different injection rates at two different volume fractions of GO.
Fig. 7
Fig. 7 (a) A schematic illustration of channel characteristics and the orientations of GO-NLCs through the channel (n is the director of GO’s plates). (b) Poiseuille flow inside the micro-channel. (c) Coordinate system for analyzing light scattering in NLC in terms of two normal modes [1].
Fig. 8
Fig. 8 The output intensity of the transmitted light from a micro-channel containing GO-NLC for injection rates of 1ml/h, 5ml/h and 10ml/h, where the channel is placed between crossed polarizer.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I s , T I R I 0 I 0 × 100
ε i j = ε δ i j + ε a n i n j
δ α s = ω 2 c 2 Vol [ s ^ δ ε ( r ) i ^ ] e i q r d V
d σ d Ω | δ α s | 2 = ( ε a ω 2 c 2 ) 2 V α = 1 , 2 | δ n α ( q ) | 2 [ ( n ^ 0 i ^ ) ( e ^ α s ^ ) + ( n ^ 0 s ^ ) ( e ^ α i ^ ) ] 2
| δ n α ( q ) | 2 = 1 V k B T K α q 1 2 + K 3 q 3 2
I λ I R , λ I 0 , λ I 0 , λ × 100
n o = n   and   n e = n n n 2 cos 2 ( θ ) + n 2 sin 2 ( θ )
cos  ( 2 θ s ) = γ 2 γ 3 γ 5 γ 6

Metrics