Abstract

A novel dual beam Optical Coherence Tomography (OCT) instrument has been developed for high velocity flow measurement, principally in microfluidics applications. The scanned dual beam approach creates a pair of image-frames separated by a small spatiotemporal offset. Metre-per-second flow measurement is achieved by rapid re-imaging by the second beam allowing for particle tracking between each image-frame of the pair. Flow at 1.06 m/s using a single optical access port has been measured, more than two orders of magnitude larger than previously reported OCT systems, at centimetre depth and with millimetre scale depth of field within a microfluidic chip, whilst simultaneously imaging the microfluidic channel structure.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Microfluidic characterization of cilia-driven fluid flow using optical coherence tomography-based particle tracking velocimetry

Stephan Jonas, Dipankan Bhattacharya, Mustafa K. Khokha, and Michael A. Choma
Biomed. Opt. Express 2(7) 2022-2034 (2011)

Particle streak velocimetry-optical coherence tomography: a novel method for multidimensional imaging of microscale fluid flows

Kevin C. Zhou, Brendan K. Huang, Ute A. Gamm, Vineet Bhandari, Mustafa K. Khokha, and Michael A. Choma
Biomed. Opt. Express 7(4) 1590-1603 (2016)

Assessment of the flow velocity of blood cells in a microfluidic device using joint spectral and time domain optical coherence tomography

Danuta M. Bukowska, Ladislav Derzsi, Szymon Tamborski, Maciej Szkulmowski, Piotr Garstecki, and Maciej Wojtkowski
Opt. Express 21(20) 24025-24038 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [Crossref] [PubMed]
  2. R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, “Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines,” Lab Chip 9(17), 2551–2567 (2009).
    [Crossref] [PubMed]
  3. A. M. C. van Dinther, C. G. P. H. Schroën, F. J. Vergeldt, R. G. M. van der Sman, and R. M. Boom, “Suspension flow in microfluidic devices--a review of experimental techniques focussing on concentration and velocity gradients,” Adv. Colloid Interface Sci. 173, 23–34 (2012).
    [Crossref] [PubMed]
  4. M. Karle, S. K. Vashist, R. Zengerle, and F. von Stetten, “Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review,” Anal. Chim. Acta 929, 1–22 (2016).
    [Crossref] [PubMed]
  5. D. Bento, R. O. Rodrigues, V. Faustino, D. Pinho, C. S. Fernandes, A. I. Pereira, V. Garcia, J. M. Miranda, and R. Lima, “Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: Flow visualizations and measurements,” Micromachines (Basel) 9(4), 151 (2018).
    [Crossref] [PubMed]
  6. R. Amin, S. Knowlton, A. Hart, B. Yenilmez, F. Ghaderinezhad, S. Katebifar, M. Messina, A. Khademhosseini, and S. Tasoglu, “3D-printed microfluidic devices,” Biofabrication 8(2), 022001 (2016).
    [Crossref] [PubMed]
  7. M. H. Zarifi, H. Sadabadi, S. H. Hejazi, M. Daneshmand, and A. Sanati-Nezhad, “Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering,” Sci. Rep. 8(1), 139 (2018).
    [Crossref] [PubMed]
  8. S. M. Azmayesh-Fard and R. G. DeCorby, “Lab on a chip for measurement of particulate flow velocity using a single detector,” Meas. Sci. Technol. 29(9), 095013 (2018).
    [Crossref]
  9. M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry - A Practical Guide (Springer, 2007).
  10. A. Klein, J. L. Moran, D. H. Frakes, and J. D. Posner, “Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning,” Meas. Sci. Technol. 23(8), 085304 (2012).
    [Crossref]
  11. H. Kim, J. Westerweel, and G. E. Elsinga, “Comparison of tomo-PIV and 3D-PTV for microfluidic flows,” Meas. Sci. Technol. 24(2), 024007 (2013).
    [Crossref]
  12. C. Cierpka and C. J. Kähler, “Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics,” J. Vis. (Tokyo) 15(1), 1–31 (2012).
    [Crossref]
  13. J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip 12(19), 3566–3575 (2012).
    [Crossref] [PubMed]
  14. X.-B. Li, M. Oishi, T. Matsuo, M. Oshima, and F.-C. Li, “Measurement of viscoelastic fluid flow in the curved microchannel using digital holographic microscope and polarized camera,” J. Fluids Eng. 138(9), 091401 (2016).
    [Crossref]
  15. J. A. Izatt, M. A. Choma, and A.-H. Dalla, “Theory of optical coherence tomography,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), 2nd ed, vol. 1.
  16. H. D. Ford and R. P. Tatam, “Spatially-resolved volume monitoring of adhesive cure using correlated-image optical coherence tomography,” Int. J. Adhes. Adhes. 42, 21–29 (2013).
    [Crossref]
  17. B. Dong, S. Chen, F. Zhou, C. H. Y. Chan, J. Yi, H. F. Zhang, and C. Sun, “Real-time functional analysis of inertial microfluidic devices via spectral domain optical coherence tomography,” Sci. Rep. 6(1), 33250 (2016).
    [Crossref] [PubMed]
  18. R. K. Wang, Q. Zhang, Y. Li, and S. Song, “Optical coherence tomography angiography-based capillary velocimetry,” J. Biomed. Opt. 22(6), 66008 (2017).
    [Crossref] [PubMed]
  19. M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).
    [Crossref]
  20. J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, “Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1 µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015).
    [Crossref]
  21. T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: A review,” Meas. Sci. Technol. 23(3), 032001 (2012).
    [Crossref]
  22. C. Tropea, A. Yarin, and J. F. Foss, Springer Handbook of Experimental Fluid Mechanics (Springer, 2007).
  23. F. Zhang, Z. Geng, and W. Yuan, “The algorithm of interpolating windowed FFT for harmonic analysis of electric power system,” IEEE Trans. Power Deliv. 16(2), 160–164 (2001).
    [Crossref]
  24. D. Allan, T. Caswell, N. Keim, and C. van der Wel, trackpy: Trackpy v0.3.2 (2016). https://soft-matter.github.io/trackpy/v0.3.2/ .
  25. D. T. Larose, Discovering Knowledge in Data: An Introduction to Data Mining (Wiley-Interscience, 2005).
  26. Y. A. Cengel and J. M. Cimbala, Fluid Mechanics: Fundamentals and Applications (McGraw-Hill, 2006).

2018 (3)

D. Bento, R. O. Rodrigues, V. Faustino, D. Pinho, C. S. Fernandes, A. I. Pereira, V. Garcia, J. M. Miranda, and R. Lima, “Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: Flow visualizations and measurements,” Micromachines (Basel) 9(4), 151 (2018).
[Crossref] [PubMed]

M. H. Zarifi, H. Sadabadi, S. H. Hejazi, M. Daneshmand, and A. Sanati-Nezhad, “Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering,” Sci. Rep. 8(1), 139 (2018).
[Crossref] [PubMed]

S. M. Azmayesh-Fard and R. G. DeCorby, “Lab on a chip for measurement of particulate flow velocity using a single detector,” Meas. Sci. Technol. 29(9), 095013 (2018).
[Crossref]

2017 (1)

R. K. Wang, Q. Zhang, Y. Li, and S. Song, “Optical coherence tomography angiography-based capillary velocimetry,” J. Biomed. Opt. 22(6), 66008 (2017).
[Crossref] [PubMed]

2016 (4)

X.-B. Li, M. Oishi, T. Matsuo, M. Oshima, and F.-C. Li, “Measurement of viscoelastic fluid flow in the curved microchannel using digital holographic microscope and polarized camera,” J. Fluids Eng. 138(9), 091401 (2016).
[Crossref]

R. Amin, S. Knowlton, A. Hart, B. Yenilmez, F. Ghaderinezhad, S. Katebifar, M. Messina, A. Khademhosseini, and S. Tasoglu, “3D-printed microfluidic devices,” Biofabrication 8(2), 022001 (2016).
[Crossref] [PubMed]

M. Karle, S. K. Vashist, R. Zengerle, and F. von Stetten, “Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review,” Anal. Chim. Acta 929, 1–22 (2016).
[Crossref] [PubMed]

B. Dong, S. Chen, F. Zhou, C. H. Y. Chan, J. Yi, H. F. Zhang, and C. Sun, “Real-time functional analysis of inertial microfluidic devices via spectral domain optical coherence tomography,” Sci. Rep. 6(1), 33250 (2016).
[Crossref] [PubMed]

2015 (1)

J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, “Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1 µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015).
[Crossref]

2013 (2)

H. D. Ford and R. P. Tatam, “Spatially-resolved volume monitoring of adhesive cure using correlated-image optical coherence tomography,” Int. J. Adhes. Adhes. 42, 21–29 (2013).
[Crossref]

H. Kim, J. Westerweel, and G. E. Elsinga, “Comparison of tomo-PIV and 3D-PTV for microfluidic flows,” Meas. Sci. Technol. 24(2), 024007 (2013).
[Crossref]

2012 (5)

C. Cierpka and C. J. Kähler, “Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics,” J. Vis. (Tokyo) 15(1), 1–31 (2012).
[Crossref]

J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip 12(19), 3566–3575 (2012).
[Crossref] [PubMed]

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: A review,” Meas. Sci. Technol. 23(3), 032001 (2012).
[Crossref]

A. M. C. van Dinther, C. G. P. H. Schroën, F. J. Vergeldt, R. G. M. van der Sman, and R. M. Boom, “Suspension flow in microfluidic devices--a review of experimental techniques focussing on concentration and velocity gradients,” Adv. Colloid Interface Sci. 173, 23–34 (2012).
[Crossref] [PubMed]

A. Klein, J. L. Moran, D. H. Frakes, and J. D. Posner, “Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning,” Meas. Sci. Technol. 23(8), 085304 (2012).
[Crossref]

2011 (1)

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).
[Crossref]

2009 (1)

R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, “Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines,” Lab Chip 9(17), 2551–2567 (2009).
[Crossref] [PubMed]

2006 (1)

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

2001 (1)

F. Zhang, Z. Geng, and W. Yuan, “The algorithm of interpolating windowed FFT for harmonic analysis of electric power system,” IEEE Trans. Power Deliv. 16(2), 160–164 (2001).
[Crossref]

Amin, R.

R. Amin, S. Knowlton, A. Hart, B. Yenilmez, F. Ghaderinezhad, S. Katebifar, M. Messina, A. Khademhosseini, and S. Tasoglu, “3D-printed microfluidic devices,” Biofabrication 8(2), 022001 (2016).
[Crossref] [PubMed]

Azmayesh-Fard, S. M.

S. M. Azmayesh-Fard and R. G. DeCorby, “Lab on a chip for measurement of particulate flow velocity using a single detector,” Meas. Sci. Technol. 29(9), 095013 (2018).
[Crossref]

Bento, D.

D. Bento, R. O. Rodrigues, V. Faustino, D. Pinho, C. S. Fernandes, A. I. Pereira, V. Garcia, J. M. Miranda, and R. Lima, “Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: Flow visualizations and measurements,” Micromachines (Basel) 9(4), 151 (2018).
[Crossref] [PubMed]

Boom, R. M.

A. M. C. van Dinther, C. G. P. H. Schroën, F. J. Vergeldt, R. G. M. van der Sman, and R. M. Boom, “Suspension flow in microfluidic devices--a review of experimental techniques focussing on concentration and velocity gradients,” Adv. Colloid Interface Sci. 173, 23–34 (2012).
[Crossref] [PubMed]

Cengel, Y. A.

Y. A. Cengel and J. M. Cimbala, Fluid Mechanics: Fundamentals and Applications (McGraw-Hill, 2006).

Chan, C. H. Y.

B. Dong, S. Chen, F. Zhou, C. H. Y. Chan, J. Yi, H. F. Zhang, and C. Sun, “Real-time functional analysis of inertial microfluidic devices via spectral domain optical coherence tomography,” Sci. Rep. 6(1), 33250 (2016).
[Crossref] [PubMed]

Charrett, T. O. H.

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: A review,” Meas. Sci. Technol. 23(3), 032001 (2012).
[Crossref]

Chen, S.

B. Dong, S. Chen, F. Zhou, C. H. Y. Chan, J. Yi, H. F. Zhang, and C. Sun, “Real-time functional analysis of inertial microfluidic devices via spectral domain optical coherence tomography,” Sci. Rep. 6(1), 33250 (2016).
[Crossref] [PubMed]

Cierpka, C.

C. Cierpka and C. J. Kähler, “Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics,” J. Vis. (Tokyo) 15(1), 1–31 (2012).
[Crossref]

Cimbala, J. M.

Y. A. Cengel and J. M. Cimbala, Fluid Mechanics: Fundamentals and Applications (McGraw-Hill, 2006).

Crawford, M.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).
[Crossref]

Czajkowski, J.

J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, “Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1 µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015).
[Crossref]

Daneshmand, M.

M. H. Zarifi, H. Sadabadi, S. H. Hejazi, M. Daneshmand, and A. Sanati-Nezhad, “Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering,” Sci. Rep. 8(1), 139 (2018).
[Crossref] [PubMed]

DeCorby, R. G.

S. M. Azmayesh-Fard and R. G. DeCorby, “Lab on a chip for measurement of particulate flow velocity using a single detector,” Meas. Sci. Technol. 29(9), 095013 (2018).
[Crossref]

Derickson, D.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).
[Crossref]

Dong, B.

B. Dong, S. Chen, F. Zhou, C. H. Y. Chan, J. Yi, H. F. Zhang, and C. Sun, “Real-time functional analysis of inertial microfluidic devices via spectral domain optical coherence tomography,” Sci. Rep. 6(1), 33250 (2016).
[Crossref] [PubMed]

Elsinga, G. E.

H. Kim, J. Westerweel, and G. E. Elsinga, “Comparison of tomo-PIV and 3D-PTV for microfluidic flows,” Meas. Sci. Technol. 24(2), 024007 (2013).
[Crossref]

Ensher, J.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).
[Crossref]

Fabritius, T.

J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, “Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1 µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015).
[Crossref]

Faustino, V.

D. Bento, R. O. Rodrigues, V. Faustino, D. Pinho, C. S. Fernandes, A. I. Pereira, V. Garcia, J. M. Miranda, and R. Lima, “Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: Flow visualizations and measurements,” Micromachines (Basel) 9(4), 151 (2018).
[Crossref] [PubMed]

Fernandes, C. S.

D. Bento, R. O. Rodrigues, V. Faustino, D. Pinho, C. S. Fernandes, A. I. Pereira, V. Garcia, J. M. Miranda, and R. Lima, “Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: Flow visualizations and measurements,” Micromachines (Basel) 9(4), 151 (2018).
[Crossref] [PubMed]

Ford, H. D.

H. D. Ford and R. P. Tatam, “Spatially-resolved volume monitoring of adhesive cure using correlated-image optical coherence tomography,” Int. J. Adhes. Adhes. 42, 21–29 (2013).
[Crossref]

Foss, J. F.

C. Tropea, A. Yarin, and J. F. Foss, Springer Handbook of Experimental Fluid Mechanics (Springer, 2007).

Frakes, D. H.

A. Klein, J. L. Moran, D. H. Frakes, and J. D. Posner, “Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning,” Meas. Sci. Technol. 23(8), 085304 (2012).
[Crossref]

Garcia, V.

D. Bento, R. O. Rodrigues, V. Faustino, D. Pinho, C. S. Fernandes, A. I. Pereira, V. Garcia, J. M. Miranda, and R. Lima, “Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: Flow visualizations and measurements,” Micromachines (Basel) 9(4), 151 (2018).
[Crossref] [PubMed]

Geng, Z.

F. Zhang, Z. Geng, and W. Yuan, “The algorithm of interpolating windowed FFT for harmonic analysis of electric power system,” IEEE Trans. Power Deliv. 16(2), 160–164 (2001).
[Crossref]

Ghaderinezhad, F.

R. Amin, S. Knowlton, A. Hart, B. Yenilmez, F. Ghaderinezhad, S. Katebifar, M. Messina, A. Khademhosseini, and S. Tasoglu, “3D-printed microfluidic devices,” Biofabrication 8(2), 022001 (2016).
[Crossref] [PubMed]

Grosse, S.

R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, “Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines,” Lab Chip 9(17), 2551–2567 (2009).
[Crossref] [PubMed]

Hart, A.

R. Amin, S. Knowlton, A. Hart, B. Yenilmez, F. Ghaderinezhad, S. Katebifar, M. Messina, A. Khademhosseini, and S. Tasoglu, “3D-printed microfluidic devices,” Biofabrication 8(2), 022001 (2016).
[Crossref] [PubMed]

Hejazi, S. H.

M. H. Zarifi, H. Sadabadi, S. H. Hejazi, M. Daneshmand, and A. Sanati-Nezhad, “Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering,” Sci. Rep. 8(1), 139 (2018).
[Crossref] [PubMed]

James, S. W.

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: A review,” Meas. Sci. Technol. 23(3), 032001 (2012).
[Crossref]

Kähler, C. J.

C. Cierpka and C. J. Kähler, “Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics,” J. Vis. (Tokyo) 15(1), 1–31 (2012).
[Crossref]

Karle, M.

M. Karle, S. K. Vashist, R. Zengerle, and F. von Stetten, “Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review,” Anal. Chim. Acta 929, 1–22 (2016).
[Crossref] [PubMed]

Katebifar, S.

R. Amin, S. Knowlton, A. Hart, B. Yenilmez, F. Ghaderinezhad, S. Katebifar, M. Messina, A. Khademhosseini, and S. Tasoglu, “3D-printed microfluidic devices,” Biofabrication 8(2), 022001 (2016).
[Crossref] [PubMed]

Khademhosseini, A.

R. Amin, S. Knowlton, A. Hart, B. Yenilmez, F. Ghaderinezhad, S. Katebifar, M. Messina, A. Khademhosseini, and S. Tasoglu, “3D-printed microfluidic devices,” Biofabrication 8(2), 022001 (2016).
[Crossref] [PubMed]

Kim, H.

H. Kim, J. Westerweel, and G. E. Elsinga, “Comparison of tomo-PIV and 3D-PTV for microfluidic flows,” Meas. Sci. Technol. 24(2), 024007 (2013).
[Crossref]

Klein, A.

A. Klein, J. L. Moran, D. H. Frakes, and J. D. Posner, “Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning,” Meas. Sci. Technol. 23(8), 085304 (2012).
[Crossref]

Knowlton, S.

R. Amin, S. Knowlton, A. Hart, B. Yenilmez, F. Ghaderinezhad, S. Katebifar, M. Messina, A. Khademhosseini, and S. Tasoglu, “3D-printed microfluidic devices,” Biofabrication 8(2), 022001 (2016).
[Crossref] [PubMed]

Kompenhans, J.

M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry - A Practical Guide (Springer, 2007).

Larose, D. T.

D. T. Larose, Discovering Knowledge in Data: An Introduction to Data Mining (Wiley-Interscience, 2005).

Lauri, J.

J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, “Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1 µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015).
[Crossref]

Lee, L. M.

J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip 12(19), 3566–3575 (2012).
[Crossref] [PubMed]

Li, F.-C.

X.-B. Li, M. Oishi, T. Matsuo, M. Oshima, and F.-C. Li, “Measurement of viscoelastic fluid flow in the curved microchannel using digital holographic microscope and polarized camera,” J. Fluids Eng. 138(9), 091401 (2016).
[Crossref]

Li, X.-B.

X.-B. Li, M. Oishi, T. Matsuo, M. Oshima, and F.-C. Li, “Measurement of viscoelastic fluid flow in the curved microchannel using digital holographic microscope and polarized camera,” J. Fluids Eng. 138(9), 091401 (2016).
[Crossref]

Li, Y.

R. K. Wang, Q. Zhang, Y. Li, and S. Song, “Optical coherence tomography angiography-based capillary velocimetry,” J. Biomed. Opt. 22(6), 66008 (2017).
[Crossref] [PubMed]

Lima, R.

D. Bento, R. O. Rodrigues, V. Faustino, D. Pinho, C. S. Fernandes, A. I. Pereira, V. Garcia, J. M. Miranda, and R. Lima, “Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: Flow visualizations and measurements,” Micromachines (Basel) 9(4), 151 (2018).
[Crossref] [PubMed]

Lindken, R.

R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, “Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines,” Lab Chip 9(17), 2551–2567 (2009).
[Crossref] [PubMed]

Matsuo, T.

X.-B. Li, M. Oishi, T. Matsuo, M. Oshima, and F.-C. Li, “Measurement of viscoelastic fluid flow in the curved microchannel using digital holographic microscope and polarized camera,” J. Fluids Eng. 138(9), 091401 (2016).
[Crossref]

Messina, M.

R. Amin, S. Knowlton, A. Hart, B. Yenilmez, F. Ghaderinezhad, S. Katebifar, M. Messina, A. Khademhosseini, and S. Tasoglu, “3D-printed microfluidic devices,” Biofabrication 8(2), 022001 (2016).
[Crossref] [PubMed]

Minneman, M. P.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).
[Crossref]

Miranda, J. M.

D. Bento, R. O. Rodrigues, V. Faustino, D. Pinho, C. S. Fernandes, A. I. Pereira, V. Garcia, J. M. Miranda, and R. Lima, “Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: Flow visualizations and measurements,” Micromachines (Basel) 9(4), 151 (2018).
[Crossref] [PubMed]

Moran, J. L.

A. Klein, J. L. Moran, D. H. Frakes, and J. D. Posner, “Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning,” Meas. Sci. Technol. 23(8), 085304 (2012).
[Crossref]

Myllylä, R.

J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, “Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1 µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015).
[Crossref]

Oishi, M.

X.-B. Li, M. Oishi, T. Matsuo, M. Oshima, and F.-C. Li, “Measurement of viscoelastic fluid flow in the curved microchannel using digital holographic microscope and polarized camera,” J. Fluids Eng. 138(9), 091401 (2016).
[Crossref]

Oshima, M.

X.-B. Li, M. Oishi, T. Matsuo, M. Oshima, and F.-C. Li, “Measurement of viscoelastic fluid flow in the curved microchannel using digital holographic microscope and polarized camera,” J. Fluids Eng. 138(9), 091401 (2016).
[Crossref]

Pereira, A. I.

D. Bento, R. O. Rodrigues, V. Faustino, D. Pinho, C. S. Fernandes, A. I. Pereira, V. Garcia, J. M. Miranda, and R. Lima, “Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: Flow visualizations and measurements,” Micromachines (Basel) 9(4), 151 (2018).
[Crossref] [PubMed]

Pinho, D.

D. Bento, R. O. Rodrigues, V. Faustino, D. Pinho, C. S. Fernandes, A. I. Pereira, V. Garcia, J. M. Miranda, and R. Lima, “Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: Flow visualizations and measurements,” Micromachines (Basel) 9(4), 151 (2018).
[Crossref] [PubMed]

Posner, J. D.

A. Klein, J. L. Moran, D. H. Frakes, and J. D. Posner, “Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning,” Meas. Sci. Technol. 23(8), 085304 (2012).
[Crossref]

Raffel, M.

M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry - A Practical Guide (Springer, 2007).

Rodrigues, R. O.

D. Bento, R. O. Rodrigues, V. Faustino, D. Pinho, C. S. Fernandes, A. I. Pereira, V. Garcia, J. M. Miranda, and R. Lima, “Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: Flow visualizations and measurements,” Micromachines (Basel) 9(4), 151 (2018).
[Crossref] [PubMed]

Rossi, M.

R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, “Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines,” Lab Chip 9(17), 2551–2567 (2009).
[Crossref] [PubMed]

Sadabadi, H.

M. H. Zarifi, H. Sadabadi, S. H. Hejazi, M. Daneshmand, and A. Sanati-Nezhad, “Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering,” Sci. Rep. 8(1), 139 (2018).
[Crossref] [PubMed]

Sanati-Nezhad, A.

M. H. Zarifi, H. Sadabadi, S. H. Hejazi, M. Daneshmand, and A. Sanati-Nezhad, “Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering,” Sci. Rep. 8(1), 139 (2018).
[Crossref] [PubMed]

Schroën, C. G. P. H.

A. M. C. van Dinther, C. G. P. H. Schroën, F. J. Vergeldt, R. G. M. van der Sman, and R. M. Boom, “Suspension flow in microfluidic devices--a review of experimental techniques focussing on concentration and velocity gradients,” Adv. Colloid Interface Sci. 173, 23–34 (2012).
[Crossref] [PubMed]

Song, S.

R. K. Wang, Q. Zhang, Y. Li, and S. Song, “Optical coherence tomography angiography-based capillary velocimetry,” J. Biomed. Opt. 22(6), 66008 (2017).
[Crossref] [PubMed]

Sun, C.

B. Dong, S. Chen, F. Zhou, C. H. Y. Chan, J. Yi, H. F. Zhang, and C. Sun, “Real-time functional analysis of inertial microfluidic devices via spectral domain optical coherence tomography,” Sci. Rep. 6(1), 33250 (2016).
[Crossref] [PubMed]

Tasoglu, S.

R. Amin, S. Knowlton, A. Hart, B. Yenilmez, F. Ghaderinezhad, S. Katebifar, M. Messina, A. Khademhosseini, and S. Tasoglu, “3D-printed microfluidic devices,” Biofabrication 8(2), 022001 (2016).
[Crossref] [PubMed]

Tatam, R. P.

H. D. Ford and R. P. Tatam, “Spatially-resolved volume monitoring of adhesive cure using correlated-image optical coherence tomography,” Int. J. Adhes. Adhes. 42, 21–29 (2013).
[Crossref]

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: A review,” Meas. Sci. Technol. 23(3), 032001 (2012).
[Crossref]

Tropea, C.

C. Tropea, A. Yarin, and J. F. Foss, Springer Handbook of Experimental Fluid Mechanics (Springer, 2007).

van der Sman, R. G. M.

A. M. C. van Dinther, C. G. P. H. Schroën, F. J. Vergeldt, R. G. M. van der Sman, and R. M. Boom, “Suspension flow in microfluidic devices--a review of experimental techniques focussing on concentration and velocity gradients,” Adv. Colloid Interface Sci. 173, 23–34 (2012).
[Crossref] [PubMed]

van Dinther, A. M. C.

A. M. C. van Dinther, C. G. P. H. Schroën, F. J. Vergeldt, R. G. M. van der Sman, and R. M. Boom, “Suspension flow in microfluidic devices--a review of experimental techniques focussing on concentration and velocity gradients,” Adv. Colloid Interface Sci. 173, 23–34 (2012).
[Crossref] [PubMed]

Vashist, S. K.

M. Karle, S. K. Vashist, R. Zengerle, and F. von Stetten, “Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review,” Anal. Chim. Acta 929, 1–22 (2016).
[Crossref] [PubMed]

Vergeldt, F. J.

A. M. C. van Dinther, C. G. P. H. Schroën, F. J. Vergeldt, R. G. M. van der Sman, and R. M. Boom, “Suspension flow in microfluidic devices--a review of experimental techniques focussing on concentration and velocity gradients,” Adv. Colloid Interface Sci. 173, 23–34 (2012).
[Crossref] [PubMed]

von Stetten, F.

M. Karle, S. K. Vashist, R. Zengerle, and F. von Stetten, “Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review,” Anal. Chim. Acta 929, 1–22 (2016).
[Crossref] [PubMed]

Wang, R. K.

R. K. Wang, Q. Zhang, Y. Li, and S. Song, “Optical coherence tomography angiography-based capillary velocimetry,” J. Biomed. Opt. 22(6), 66008 (2017).
[Crossref] [PubMed]

Westerweel, J.

H. Kim, J. Westerweel, and G. E. Elsinga, “Comparison of tomo-PIV and 3D-PTV for microfluidic flows,” Meas. Sci. Technol. 24(2), 024007 (2013).
[Crossref]

R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, “Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines,” Lab Chip 9(17), 2551–2567 (2009).
[Crossref] [PubMed]

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Willert, C. E.

M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry - A Practical Guide (Springer, 2007).

Wu, J.

J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip 12(19), 3566–3575 (2012).
[Crossref] [PubMed]

Yarin, A.

C. Tropea, A. Yarin, and J. F. Foss, Springer Handbook of Experimental Fluid Mechanics (Springer, 2007).

Yenilmez, B.

R. Amin, S. Knowlton, A. Hart, B. Yenilmez, F. Ghaderinezhad, S. Katebifar, M. Messina, A. Khademhosseini, and S. Tasoglu, “3D-printed microfluidic devices,” Biofabrication 8(2), 022001 (2016).
[Crossref] [PubMed]

Yi, J.

B. Dong, S. Chen, F. Zhou, C. H. Y. Chan, J. Yi, H. F. Zhang, and C. Sun, “Real-time functional analysis of inertial microfluidic devices via spectral domain optical coherence tomography,” Sci. Rep. 6(1), 33250 (2016).
[Crossref] [PubMed]

Yuan, W.

F. Zhang, Z. Geng, and W. Yuan, “The algorithm of interpolating windowed FFT for harmonic analysis of electric power system,” IEEE Trans. Power Deliv. 16(2), 160–164 (2001).
[Crossref]

Zarifi, M. H.

M. H. Zarifi, H. Sadabadi, S. H. Hejazi, M. Daneshmand, and A. Sanati-Nezhad, “Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering,” Sci. Rep. 8(1), 139 (2018).
[Crossref] [PubMed]

Zengerle, R.

M. Karle, S. K. Vashist, R. Zengerle, and F. von Stetten, “Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review,” Anal. Chim. Acta 929, 1–22 (2016).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, Z. Geng, and W. Yuan, “The algorithm of interpolating windowed FFT for harmonic analysis of electric power system,” IEEE Trans. Power Deliv. 16(2), 160–164 (2001).
[Crossref]

Zhang, H. F.

B. Dong, S. Chen, F. Zhou, C. H. Y. Chan, J. Yi, H. F. Zhang, and C. Sun, “Real-time functional analysis of inertial microfluidic devices via spectral domain optical coherence tomography,” Sci. Rep. 6(1), 33250 (2016).
[Crossref] [PubMed]

Zhang, Q.

R. K. Wang, Q. Zhang, Y. Li, and S. Song, “Optical coherence tomography angiography-based capillary velocimetry,” J. Biomed. Opt. 22(6), 66008 (2017).
[Crossref] [PubMed]

Zheng, G.

J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip 12(19), 3566–3575 (2012).
[Crossref] [PubMed]

Zhou, F.

B. Dong, S. Chen, F. Zhou, C. H. Y. Chan, J. Yi, H. F. Zhang, and C. Sun, “Real-time functional analysis of inertial microfluidic devices via spectral domain optical coherence tomography,” Sci. Rep. 6(1), 33250 (2016).
[Crossref] [PubMed]

Adv. Colloid Interface Sci. (1)

A. M. C. van Dinther, C. G. P. H. Schroën, F. J. Vergeldt, R. G. M. van der Sman, and R. M. Boom, “Suspension flow in microfluidic devices--a review of experimental techniques focussing on concentration and velocity gradients,” Adv. Colloid Interface Sci. 173, 23–34 (2012).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

M. Karle, S. K. Vashist, R. Zengerle, and F. von Stetten, “Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review,” Anal. Chim. Acta 929, 1–22 (2016).
[Crossref] [PubMed]

Biofabrication (1)

R. Amin, S. Knowlton, A. Hart, B. Yenilmez, F. Ghaderinezhad, S. Katebifar, M. Messina, A. Khademhosseini, and S. Tasoglu, “3D-printed microfluidic devices,” Biofabrication 8(2), 022001 (2016).
[Crossref] [PubMed]

Flow Meas. Instrum. (1)

J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, “Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1 µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015).
[Crossref]

IEEE Trans. Power Deliv. (1)

F. Zhang, Z. Geng, and W. Yuan, “The algorithm of interpolating windowed FFT for harmonic analysis of electric power system,” IEEE Trans. Power Deliv. 16(2), 160–164 (2001).
[Crossref]

Int. J. Adhes. Adhes. (1)

H. D. Ford and R. P. Tatam, “Spatially-resolved volume monitoring of adhesive cure using correlated-image optical coherence tomography,” Int. J. Adhes. Adhes. 42, 21–29 (2013).
[Crossref]

J. Biomed. Opt. (1)

R. K. Wang, Q. Zhang, Y. Li, and S. Song, “Optical coherence tomography angiography-based capillary velocimetry,” J. Biomed. Opt. 22(6), 66008 (2017).
[Crossref] [PubMed]

J. Fluids Eng. (1)

X.-B. Li, M. Oishi, T. Matsuo, M. Oshima, and F.-C. Li, “Measurement of viscoelastic fluid flow in the curved microchannel using digital holographic microscope and polarized camera,” J. Fluids Eng. 138(9), 091401 (2016).
[Crossref]

J. Vis. (Tokyo) (1)

C. Cierpka and C. J. Kähler, “Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics,” J. Vis. (Tokyo) 15(1), 1–31 (2012).
[Crossref]

Lab Chip (2)

J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip 12(19), 3566–3575 (2012).
[Crossref] [PubMed]

R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, “Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines,” Lab Chip 9(17), 2551–2567 (2009).
[Crossref] [PubMed]

Meas. Sci. Technol. (4)

S. M. Azmayesh-Fard and R. G. DeCorby, “Lab on a chip for measurement of particulate flow velocity using a single detector,” Meas. Sci. Technol. 29(9), 095013 (2018).
[Crossref]

A. Klein, J. L. Moran, D. H. Frakes, and J. D. Posner, “Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning,” Meas. Sci. Technol. 23(8), 085304 (2012).
[Crossref]

H. Kim, J. Westerweel, and G. E. Elsinga, “Comparison of tomo-PIV and 3D-PTV for microfluidic flows,” Meas. Sci. Technol. 24(2), 024007 (2013).
[Crossref]

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: A review,” Meas. Sci. Technol. 23(3), 032001 (2012).
[Crossref]

Micromachines (Basel) (1)

D. Bento, R. O. Rodrigues, V. Faustino, D. Pinho, C. S. Fernandes, A. I. Pereira, V. Garcia, J. M. Miranda, and R. Lima, “Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: Flow visualizations and measurements,” Micromachines (Basel) 9(4), 151 (2018).
[Crossref] [PubMed]

Nature (1)

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).
[Crossref]

Sci. Rep. (2)

M. H. Zarifi, H. Sadabadi, S. H. Hejazi, M. Daneshmand, and A. Sanati-Nezhad, “Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering,” Sci. Rep. 8(1), 139 (2018).
[Crossref] [PubMed]

B. Dong, S. Chen, F. Zhou, C. H. Y. Chan, J. Yi, H. F. Zhang, and C. Sun, “Real-time functional analysis of inertial microfluidic devices via spectral domain optical coherence tomography,” Sci. Rep. 6(1), 33250 (2016).
[Crossref] [PubMed]

Other (6)

J. A. Izatt, M. A. Choma, and A.-H. Dalla, “Theory of optical coherence tomography,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), 2nd ed, vol. 1.

M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry - A Practical Guide (Springer, 2007).

C. Tropea, A. Yarin, and J. F. Foss, Springer Handbook of Experimental Fluid Mechanics (Springer, 2007).

D. Allan, T. Caswell, N. Keim, and C. van der Wel, trackpy: Trackpy v0.3.2 (2016). https://soft-matter.github.io/trackpy/v0.3.2/ .

D. T. Larose, Discovering Knowledge in Data: An Introduction to Data Mining (Wiley-Interscience, 2005).

Y. A. Cengel and J. M. Cimbala, Fluid Mechanics: Fundamentals and Applications (McGraw-Hill, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Principle of scanned dual beam OCT system, creating a pair of depth-sectional image-frames within the volume of a microfluidic channel. 1(b)-1(d) are theoretical cases of beam-particle interaction in a scanned dual beam system, described in the text. The ‘spanwise’ 2D depth-section has been collapsed to a 1D line, leaving only the ‘streamwise’ velocity. dp is the distance moved by the particle between the paired image-frames, db is the distance moved by the beam scan in the same time, and ds is the fixed separation between the beams.
Fig. 2
Fig. 2 Particle velocity vp (as a multiple of negative scan velocity vb), expressed as a function of the displacement of the particle between each image-frame of the pair dp (as a multiple of the beam diameter) with a beam separation ds of 55 times the beam diameter bx. Hence both axis are dimensionless ratios between a measurement of the particle flow and a property of the instrument. Error band representing a 1-beam-diameter error in the determination of the particle displacement are shown.
Fig. 3
Fig. 3 Schematic of scanned dual beam OCT system. The laser output propagates to an optical-fibre coupler separating it into two OCT interferometers operating in parallel through the same set of bulk optic components. In free space Beam A is shown red and Beam B is shown blue, although their wavelengths are the same (colour online).
Fig. 4
Fig. 4 (a) en-face microscope image of the bespoke dual optical fibre end, with the optical cores illuminated from the far end using a 560nm laser, resulting in multimode beam spots. 4(b) infrared CMOS-chip image of the beam spots from the OCT system using the 1526-1608 nm Insight laser. 4(c) OCT image of the optical fibre end showing the orientation of the angle polish. The optical fibre transmits the light and appears dark, the epoxy bonding agent scatters the light and appears bright.
Fig. 5
Fig. 5 Particle identification and flow tracking procedure using trackpy 0.3.2 library.
Fig. 6
Fig. 6 K-mean filtering used to separate valid and invalid sets of particle trajectories. Particles are binned in spanwise, streamwise and in time. The chosen example bin is at the middle of the channel.
Fig. 7
Fig. 7 (a) Microfluidic channel schematic, (b) Beam A image-frame and Beam B image-frame, (c) with particle identification, (d) with flow tracking vectors. The OCT images have been colour-inverted for display.
Fig. 8
Fig. 8 Individual velocity vectors, unconstrained parabolic fit, and constrained parabolic fit from t = 0 sec to t = 3.6 sec, taken at 0.61 mm width (the middle of the channel).
Fig. 9
Fig. 9 Evolution of the flow velocity over time as determined using the dual beam OCT system and particle tracking approach. Here the average flow velocity computed over a rolling 20 frame period is shown for each of 30 spanwise depth bins to determine the streamwise flow velocity.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

v p = d p /t ,
v b = d b /t .
v p = d p v b / d b .
d p = d s + d b .
v p = d p v b d p d s .

Metrics