Abstract

Bioaerosol, a significant constituent of the atmosphere, exhibits excellent broadband extinction performance and has attracted increasing attentions in the fields of atmospheric science, environmental science and electromagnetic field, et al. Relative humidity of the atmosphere has obvious diurnal and seasonal variation characteristics, and the frequent variation of relative humidity has a significant impact on bioaerosol in the atmosphere. However, the influence of relative humidity on broadband extinction performance of bioaerosol is unclear. Herein, we present the humidity growth model of bioaerosol. And the variation law of broadband extinction performance of bioaerosol in different humidity conditions was obtained by simulation. The simulation results and experimental data from an aerosol chamber experiment show that as the relative humidity values above 70%, the broadband extinction performance of bioaerosol will be increased with humidity. As the relative humidity increases from 70% to 90%, the extinction performance of AN0913 spores increase about 30% in visible and mid-infrared bands, about 20% in ultraviolet and far-infrared bands. And the extinction performance of AO0907 spores increase about 23% in the all four bands.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Humidity effects on the backscatter/extinction ratio

G. de Leeuw, G. J. Kunz, and C. W. Lamberts
Appl. Opt. 25(22) 3971-3974 (1986)

References

  • View by:
  • |
  • |
  • |

  1. V. Després, J. A. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. Andreae, and U. Pöschl, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B 64(1), 15598–153 (2012).
    [Crossref]
  2. K. Adachi, S. H. Chung, and P. R. Buseck, “Shapes of soot aerosol particles and implications for their effects on climate,” J. Geophys. Res. 115(D15), D15206 (2010).
    [Crossref]
  3. Y. Hu, X. Zhao, Y. Gu, X. Chen, X. Wang, P. Wang, Z. Zheng, and X. J. S. C. M. Dong, “Significant broadband extinction abilities of bioaerosols,” Sci. China Mater. 62(7), 1033–1045 (2019).
    [Crossref]
  4. I. N. Tang and H. R. Munkelwitz, “Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance,” J. Geophys. Res. 99(D9), 18801–18808 (1994).
    [Crossref]
  5. D. E. Day and W. C. Malm, “Aerosol light scattering measurements as a function of relative humidity: a comparison between measurements made at three different sites,” Atmos. Environ. 35(30), 5169–5176 (2001).
    [Crossref]
  6. X. Li-Jones, H. B. Maring, and J. M. Prospero, “Effect of relative humidity on light scattering by mineral dust aerosol as measured in the marine boundary layer over the tropical Atlantic Ocean,” J. Geophys. Res. 103(D23), 31113–31121 (1998).
    [Crossref]
  7. I. N. Tang, “Chemical and size effects of hygroscopic aerosols on light scattering coefficients,” J. Geophys. Res. 101(D14), 19245–19250 (1996).
    [Crossref]
  8. P. Zieger, U. Frieß, B. Henzing, G. D. Leeuw, U. Baltensperger, E. Weingartner, K. Clemer, S. Yilmaz, H. Irie, and R. Fierz-Schmidhauser, “Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements,” Geochmica Et Cosmochimica Acta 12, 3875–3890 (2010).
  9. H. Liu, W. Peng, Y. Hu, G. Zhao, L. Hui, Z. Li, H. Wu, W. Li, and Z. Zheng, “Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production,” Biocontrol Science & Technology 25(9), 1011–1023 (2015).
    [Crossref]
  10. H. Liu, X. Zhao, M. Guo, H. Liu, and Z. Zheng, “Growth and metabolism of Beauveria bassiana spores and mycelia,” BMC Microbiol. 15(1), 267 (2015).
    [Crossref]
  11. P. Wang, H. Liu, Y. Zhao, Y. Gu, W. Chen, L. Wang, L. Li, X. Zhao, W. Lei, and Y. Hu, “Electromagnetic attenuation characteristics of microbial materials in the infrared band,” Appl. Spectrosc. 70(9), 1456–1463 (2016).
    [Crossref]
  12. H. C. Booij and G. P. J. M. Thoone, “Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities,” Rheol. Acta 21(1), 15–24 (1982).
    [Crossref]
  13. P. Grosse and V. Offermann, “Analysis of reflectance data using the Kramers-Kronig Relations,” Appl. Phys. A 52(2), 138–144 (1991).
    [Crossref]
  14. D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36(15), 1850–1857 (2003).
    [Crossref]
  15. M. Segal-Rosenheimer and R. Linker, “Impact of the non-measured infrared spectral range of the imaginary refractive index on the derivation of the real refractive index using the Kramers-Kronig transform,” J. Quant. Spectrosc. Radiat. Transfer 110(13), 1147–1161 (2009).
    [Crossref]
  16. Y. Gu, Y. Hu, X. Zhao, and C. Xi, “Determination of infrared complex refractive index of microbial materials,” J. Quant. Spectrosc. Radiat. Transfer 217, 305–314 (2018).
    [Crossref]
  17. L. Li, Y. Hu, Y. Gu, W. Chen, and Y. Zhao, “Measurement and qnalysis on complex refraction indices of pear pollen in infrared band,” Spectrosc. Spectral Anal. 35, 89–92 (2015).
  18. L. Li, Y. Hu, Y. Gu, X. Zhao, S. Xu, L. Yu, Z. M. Zheng, and P. Wang, “Infrared extinction performance of randomly oriented microbial-clustered agglomerate materials,” Appl. Spectrosc. 71(11), 2555–2562 (2017).
    [Crossref]
  19. Y. Gu, Y. Hu, X. Zhao, C. Xi, W. Peng, and Z. Zheng, “Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3–5 micrometers,” Opt. Express 26(12), 15842–15850 (2018).
    [Crossref]
  20. D. Sun, Y. Hu, and L. Li, “Test and analysis of infrared and microwave characteristics of metallic farinas,” Infra. Laser Engin. 42, 2531–2535 (2013).
  21. D. J. Sun, “Determination and model construction of microbes’ complex refractive index in far infrared band,” Acta Phys. Sin. 62(9), 94218–094218 (2013).
    [Crossref]
  22. D. J. Sun, Y. Hu, Y. Gu, Y. Wang, and L. Li, “Preparation and performance testing of metallic biologic particles,” Guangzi Xuebao 42(5), 555–558 (2013).
    [Crossref]
  23. X. Zhao, Y. Hu, Y. Gu, and L. Li, “Transmittance of laser in the microorganism aggregated particle swarm,” Acta Opt. Sin. 35(6), 0616001 (2015).
    [Crossref]
  24. X. Zhao, Y. Hu, Y. Gu, and L. Le, “The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm,” Proc. SPIE 9678, 967817 (2015).
    [Crossref]
  25. Y. Gu, Y. Hu, X. Zhao, X. Chen, and Z. Zheng, “Combined analysis of static and dynamic extinction characteristics of microbial spores and mycelia as a mid-infrared extinction material,” Optik 176, 535–541 (2019).
    [Crossref]
  26. L. Shen, F. Gu, J. Zhang, and Y. Liu, “The effect of relative humidity on the extinction coefficient of aerosols,” J. Light Scatt. 29, 251–256 (2017).
  27. G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73–188 (1976).
    [Crossref]
  28. X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Analysis of optical properties of bio-smoke materials in the 0.25-14 µm band,” Chin. Phys. B 28(3), 034201 (2019).
    [Crossref]
  29. X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “A comparison of infrared extinction performances of bioaerosols and traditional smoke materials,” Optik 181, 293–300 (2019).
    [Crossref]
  30. X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Aggregation-driven reductions in the mass extinction coefficient of bioaerosols,” Optik 184, 115–120 (2019).
    [Crossref]
  31. C. Li and H. Xiong, “3D simulation of the Cluster–Cluster Aggregation model,” Comput. Phys. Commun. 185(12), 3424–3429 (2014).
    [Crossref]
  32. B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.3,” (2013).
  33. T. Kozasa, J. Blum, and T. Mukai, “Optical properties of dust aggregates,” Astron. Astrophys. 263, 423–432 (1992).
  34. M. Lattuada, W. Hua, and M. Morbidelli, “Radial density distribution of fractal clusters,” Chem. Eng. Sci. 59(21), 4401–4413 (2004).
    [Crossref]
  35. M. Min, C. Dominik, J. W. Hovenier, A. D. Koter, and L. B. F. M. Waters, “The 10 m amorphous silicate feature of fractal aggregates and compact particles with complex shapes,” Astron. Astrophys. 445(3), 1005–1014 (2006).
    [Crossref]
  36. S. L. Jacques, “Modeling tissue optics using Monte Carlo modeling: a tutorial,” Proc. SPIE 6854, 68540T (2008).
    [Crossref]

2019 (5)

Y. Hu, X. Zhao, Y. Gu, X. Chen, X. Wang, P. Wang, Z. Zheng, and X. J. S. C. M. Dong, “Significant broadband extinction abilities of bioaerosols,” Sci. China Mater. 62(7), 1033–1045 (2019).
[Crossref]

Y. Gu, Y. Hu, X. Zhao, X. Chen, and Z. Zheng, “Combined analysis of static and dynamic extinction characteristics of microbial spores and mycelia as a mid-infrared extinction material,” Optik 176, 535–541 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Analysis of optical properties of bio-smoke materials in the 0.25-14 µm band,” Chin. Phys. B 28(3), 034201 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “A comparison of infrared extinction performances of bioaerosols and traditional smoke materials,” Optik 181, 293–300 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Aggregation-driven reductions in the mass extinction coefficient of bioaerosols,” Optik 184, 115–120 (2019).
[Crossref]

2018 (2)

Y. Gu, Y. Hu, X. Zhao, C. Xi, W. Peng, and Z. Zheng, “Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3–5 micrometers,” Opt. Express 26(12), 15842–15850 (2018).
[Crossref]

Y. Gu, Y. Hu, X. Zhao, and C. Xi, “Determination of infrared complex refractive index of microbial materials,” J. Quant. Spectrosc. Radiat. Transfer 217, 305–314 (2018).
[Crossref]

2017 (2)

L. Shen, F. Gu, J. Zhang, and Y. Liu, “The effect of relative humidity on the extinction coefficient of aerosols,” J. Light Scatt. 29, 251–256 (2017).

L. Li, Y. Hu, Y. Gu, X. Zhao, S. Xu, L. Yu, Z. M. Zheng, and P. Wang, “Infrared extinction performance of randomly oriented microbial-clustered agglomerate materials,” Appl. Spectrosc. 71(11), 2555–2562 (2017).
[Crossref]

2016 (1)

2015 (5)

L. Li, Y. Hu, Y. Gu, W. Chen, and Y. Zhao, “Measurement and qnalysis on complex refraction indices of pear pollen in infrared band,” Spectrosc. Spectral Anal. 35, 89–92 (2015).

H. Liu, W. Peng, Y. Hu, G. Zhao, L. Hui, Z. Li, H. Wu, W. Li, and Z. Zheng, “Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production,” Biocontrol Science & Technology 25(9), 1011–1023 (2015).
[Crossref]

H. Liu, X. Zhao, M. Guo, H. Liu, and Z. Zheng, “Growth and metabolism of Beauveria bassiana spores and mycelia,” BMC Microbiol. 15(1), 267 (2015).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, and L. Li, “Transmittance of laser in the microorganism aggregated particle swarm,” Acta Opt. Sin. 35(6), 0616001 (2015).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, and L. Le, “The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm,” Proc. SPIE 9678, 967817 (2015).
[Crossref]

2014 (1)

C. Li and H. Xiong, “3D simulation of the Cluster–Cluster Aggregation model,” Comput. Phys. Commun. 185(12), 3424–3429 (2014).
[Crossref]

2013 (3)

D. Sun, Y. Hu, and L. Li, “Test and analysis of infrared and microwave characteristics of metallic farinas,” Infra. Laser Engin. 42, 2531–2535 (2013).

D. J. Sun, “Determination and model construction of microbes’ complex refractive index in far infrared band,” Acta Phys. Sin. 62(9), 94218–094218 (2013).
[Crossref]

D. J. Sun, Y. Hu, Y. Gu, Y. Wang, and L. Li, “Preparation and performance testing of metallic biologic particles,” Guangzi Xuebao 42(5), 555–558 (2013).
[Crossref]

2012 (1)

V. Després, J. A. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. Andreae, and U. Pöschl, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B 64(1), 15598–153 (2012).
[Crossref]

2010 (2)

K. Adachi, S. H. Chung, and P. R. Buseck, “Shapes of soot aerosol particles and implications for their effects on climate,” J. Geophys. Res. 115(D15), D15206 (2010).
[Crossref]

P. Zieger, U. Frieß, B. Henzing, G. D. Leeuw, U. Baltensperger, E. Weingartner, K. Clemer, S. Yilmaz, H. Irie, and R. Fierz-Schmidhauser, “Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements,” Geochmica Et Cosmochimica Acta 12, 3875–3890 (2010).

2009 (1)

M. Segal-Rosenheimer and R. Linker, “Impact of the non-measured infrared spectral range of the imaginary refractive index on the derivation of the real refractive index using the Kramers-Kronig transform,” J. Quant. Spectrosc. Radiat. Transfer 110(13), 1147–1161 (2009).
[Crossref]

2008 (1)

S. L. Jacques, “Modeling tissue optics using Monte Carlo modeling: a tutorial,” Proc. SPIE 6854, 68540T (2008).
[Crossref]

2006 (1)

M. Min, C. Dominik, J. W. Hovenier, A. D. Koter, and L. B. F. M. Waters, “The 10 m amorphous silicate feature of fractal aggregates and compact particles with complex shapes,” Astron. Astrophys. 445(3), 1005–1014 (2006).
[Crossref]

2004 (1)

M. Lattuada, W. Hua, and M. Morbidelli, “Radial density distribution of fractal clusters,” Chem. Eng. Sci. 59(21), 4401–4413 (2004).
[Crossref]

2003 (1)

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

2001 (1)

D. E. Day and W. C. Malm, “Aerosol light scattering measurements as a function of relative humidity: a comparison between measurements made at three different sites,” Atmos. Environ. 35(30), 5169–5176 (2001).
[Crossref]

1998 (1)

X. Li-Jones, H. B. Maring, and J. M. Prospero, “Effect of relative humidity on light scattering by mineral dust aerosol as measured in the marine boundary layer over the tropical Atlantic Ocean,” J. Geophys. Res. 103(D23), 31113–31121 (1998).
[Crossref]

1996 (1)

I. N. Tang, “Chemical and size effects of hygroscopic aerosols on light scattering coefficients,” J. Geophys. Res. 101(D14), 19245–19250 (1996).
[Crossref]

1994 (1)

I. N. Tang and H. R. Munkelwitz, “Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance,” J. Geophys. Res. 99(D9), 18801–18808 (1994).
[Crossref]

1992 (1)

T. Kozasa, J. Blum, and T. Mukai, “Optical properties of dust aggregates,” Astron. Astrophys. 263, 423–432 (1992).

1991 (1)

P. Grosse and V. Offermann, “Analysis of reflectance data using the Kramers-Kronig Relations,” Appl. Phys. A 52(2), 138–144 (1991).
[Crossref]

1982 (1)

H. C. Booij and G. P. J. M. Thoone, “Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities,” Rheol. Acta 21(1), 15–24 (1982).
[Crossref]

1976 (1)

G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73–188 (1976).
[Crossref]

Adachi, K.

K. Adachi, S. H. Chung, and P. R. Buseck, “Shapes of soot aerosol particles and implications for their effects on climate,” J. Geophys. Res. 115(D15), D15206 (2010).
[Crossref]

Andreae, M.

V. Després, J. A. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. Andreae, and U. Pöschl, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B 64(1), 15598–153 (2012).
[Crossref]

Baltensperger, U.

P. Zieger, U. Frieß, B. Henzing, G. D. Leeuw, U. Baltensperger, E. Weingartner, K. Clemer, S. Yilmaz, H. Irie, and R. Fierz-Schmidhauser, “Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements,” Geochmica Et Cosmochimica Acta 12, 3875–3890 (2010).

Blum, J.

T. Kozasa, J. Blum, and T. Mukai, “Optical properties of dust aggregates,” Astron. Astrophys. 263, 423–432 (1992).

Booij, H. C.

H. C. Booij and G. P. J. M. Thoone, “Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities,” Rheol. Acta 21(1), 15–24 (1982).
[Crossref]

Burrows, S. M.

V. Després, J. A. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. Andreae, and U. Pöschl, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B 64(1), 15598–153 (2012).
[Crossref]

Buryak, G.

V. Després, J. A. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. Andreae, and U. Pöschl, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B 64(1), 15598–153 (2012).
[Crossref]

Buseck, P. R.

K. Adachi, S. H. Chung, and P. R. Buseck, “Shapes of soot aerosol particles and implications for their effects on climate,” J. Geophys. Res. 115(D15), D15206 (2010).
[Crossref]

Chen, W.

P. Wang, H. Liu, Y. Zhao, Y. Gu, W. Chen, L. Wang, L. Li, X. Zhao, W. Lei, and Y. Hu, “Electromagnetic attenuation characteristics of microbial materials in the infrared band,” Appl. Spectrosc. 70(9), 1456–1463 (2016).
[Crossref]

L. Li, Y. Hu, Y. Gu, W. Chen, and Y. Zhao, “Measurement and qnalysis on complex refraction indices of pear pollen in infrared band,” Spectrosc. Spectral Anal. 35, 89–92 (2015).

Chen, X.

Y. Hu, X. Zhao, Y. Gu, X. Chen, X. Wang, P. Wang, Z. Zheng, and X. J. S. C. M. Dong, “Significant broadband extinction abilities of bioaerosols,” Sci. China Mater. 62(7), 1033–1045 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “A comparison of infrared extinction performances of bioaerosols and traditional smoke materials,” Optik 181, 293–300 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Aggregation-driven reductions in the mass extinction coefficient of bioaerosols,” Optik 184, 115–120 (2019).
[Crossref]

Y. Gu, Y. Hu, X. Zhao, X. Chen, and Z. Zheng, “Combined analysis of static and dynamic extinction characteristics of microbial spores and mycelia as a mid-infrared extinction material,” Optik 176, 535–541 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Analysis of optical properties of bio-smoke materials in the 0.25-14 µm band,” Chin. Phys. B 28(3), 034201 (2019).
[Crossref]

Chung, S. H.

K. Adachi, S. H. Chung, and P. R. Buseck, “Shapes of soot aerosol particles and implications for their effects on climate,” J. Geophys. Res. 115(D15), D15206 (2010).
[Crossref]

Clemer, K.

P. Zieger, U. Frieß, B. Henzing, G. D. Leeuw, U. Baltensperger, E. Weingartner, K. Clemer, S. Yilmaz, H. Irie, and R. Fierz-Schmidhauser, “Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements,” Geochmica Et Cosmochimica Acta 12, 3875–3890 (2010).

Day, D. E.

D. E. Day and W. C. Malm, “Aerosol light scattering measurements as a function of relative humidity: a comparison between measurements made at three different sites,” Atmos. Environ. 35(30), 5169–5176 (2001).
[Crossref]

Després, V.

V. Després, J. A. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. Andreae, and U. Pöschl, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B 64(1), 15598–153 (2012).
[Crossref]

Dominik, C.

M. Min, C. Dominik, J. W. Hovenier, A. D. Koter, and L. B. F. M. Waters, “The 10 m amorphous silicate feature of fractal aggregates and compact particles with complex shapes,” Astron. Astrophys. 445(3), 1005–1014 (2006).
[Crossref]

Dong, X.

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Aggregation-driven reductions in the mass extinction coefficient of bioaerosols,” Optik 184, 115–120 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “A comparison of infrared extinction performances of bioaerosols and traditional smoke materials,” Optik 181, 293–300 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Analysis of optical properties of bio-smoke materials in the 0.25-14 µm band,” Chin. Phys. B 28(3), 034201 (2019).
[Crossref]

Dong, X. J. S. C. M.

Y. Hu, X. Zhao, Y. Gu, X. Chen, X. Wang, P. Wang, Z. Zheng, and X. J. S. C. M. Dong, “Significant broadband extinction abilities of bioaerosols,” Sci. China Mater. 62(7), 1033–1045 (2019).
[Crossref]

Draine, B. T.

B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.3,” (2013).

Elbert, W.

V. Després, J. A. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. Andreae, and U. Pöschl, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B 64(1), 15598–153 (2012).
[Crossref]

Fierz-Schmidhauser, R.

P. Zieger, U. Frieß, B. Henzing, G. D. Leeuw, U. Baltensperger, E. Weingartner, K. Clemer, S. Yilmaz, H. Irie, and R. Fierz-Schmidhauser, “Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements,” Geochmica Et Cosmochimica Acta 12, 3875–3890 (2010).

Flatau, P. J.

B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.3,” (2013).

Frieß, U.

P. Zieger, U. Frieß, B. Henzing, G. D. Leeuw, U. Baltensperger, E. Weingartner, K. Clemer, S. Yilmaz, H. Irie, and R. Fierz-Schmidhauser, “Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements,” Geochmica Et Cosmochimica Acta 12, 3875–3890 (2010).

Fröhlich-Nowoisky, J.

V. Després, J. A. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. Andreae, and U. Pöschl, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B 64(1), 15598–153 (2012).
[Crossref]

Grosse, P.

P. Grosse and V. Offermann, “Analysis of reflectance data using the Kramers-Kronig Relations,” Appl. Phys. A 52(2), 138–144 (1991).
[Crossref]

Gu, F.

L. Shen, F. Gu, J. Zhang, and Y. Liu, “The effect of relative humidity on the extinction coefficient of aerosols,” J. Light Scatt. 29, 251–256 (2017).

Gu, Y.

Y. Gu, Y. Hu, X. Zhao, X. Chen, and Z. Zheng, “Combined analysis of static and dynamic extinction characteristics of microbial spores and mycelia as a mid-infrared extinction material,” Optik 176, 535–541 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Analysis of optical properties of bio-smoke materials in the 0.25-14 µm band,” Chin. Phys. B 28(3), 034201 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Aggregation-driven reductions in the mass extinction coefficient of bioaerosols,” Optik 184, 115–120 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “A comparison of infrared extinction performances of bioaerosols and traditional smoke materials,” Optik 181, 293–300 (2019).
[Crossref]

Y. Hu, X. Zhao, Y. Gu, X. Chen, X. Wang, P. Wang, Z. Zheng, and X. J. S. C. M. Dong, “Significant broadband extinction abilities of bioaerosols,” Sci. China Mater. 62(7), 1033–1045 (2019).
[Crossref]

Y. Gu, Y. Hu, X. Zhao, and C. Xi, “Determination of infrared complex refractive index of microbial materials,” J. Quant. Spectrosc. Radiat. Transfer 217, 305–314 (2018).
[Crossref]

Y. Gu, Y. Hu, X. Zhao, C. Xi, W. Peng, and Z. Zheng, “Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3–5 micrometers,” Opt. Express 26(12), 15842–15850 (2018).
[Crossref]

L. Li, Y. Hu, Y. Gu, X. Zhao, S. Xu, L. Yu, Z. M. Zheng, and P. Wang, “Infrared extinction performance of randomly oriented microbial-clustered agglomerate materials,” Appl. Spectrosc. 71(11), 2555–2562 (2017).
[Crossref]

P. Wang, H. Liu, Y. Zhao, Y. Gu, W. Chen, L. Wang, L. Li, X. Zhao, W. Lei, and Y. Hu, “Electromagnetic attenuation characteristics of microbial materials in the infrared band,” Appl. Spectrosc. 70(9), 1456–1463 (2016).
[Crossref]

L. Li, Y. Hu, Y. Gu, W. Chen, and Y. Zhao, “Measurement and qnalysis on complex refraction indices of pear pollen in infrared band,” Spectrosc. Spectral Anal. 35, 89–92 (2015).

X. Zhao, Y. Hu, Y. Gu, and L. Li, “Transmittance of laser in the microorganism aggregated particle swarm,” Acta Opt. Sin. 35(6), 0616001 (2015).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, and L. Le, “The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm,” Proc. SPIE 9678, 967817 (2015).
[Crossref]

D. J. Sun, Y. Hu, Y. Gu, Y. Wang, and L. Li, “Preparation and performance testing of metallic biologic particles,” Guangzi Xuebao 42(5), 555–558 (2013).
[Crossref]

Guo, M.

H. Liu, X. Zhao, M. Guo, H. Liu, and Z. Zheng, “Growth and metabolism of Beauveria bassiana spores and mycelia,” BMC Microbiol. 15(1), 267 (2015).
[Crossref]

Hänel, G.

G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73–188 (1976).
[Crossref]

Henzing, B.

P. Zieger, U. Frieß, B. Henzing, G. D. Leeuw, U. Baltensperger, E. Weingartner, K. Clemer, S. Yilmaz, H. Irie, and R. Fierz-Schmidhauser, “Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements,” Geochmica Et Cosmochimica Acta 12, 3875–3890 (2010).

Hoose, C.

V. Després, J. A. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. Andreae, and U. Pöschl, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B 64(1), 15598–153 (2012).
[Crossref]

Hovenier, J. W.

M. Min, C. Dominik, J. W. Hovenier, A. D. Koter, and L. B. F. M. Waters, “The 10 m amorphous silicate feature of fractal aggregates and compact particles with complex shapes,” Astron. Astrophys. 445(3), 1005–1014 (2006).
[Crossref]

Hu, Y.

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “A comparison of infrared extinction performances of bioaerosols and traditional smoke materials,” Optik 181, 293–300 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Aggregation-driven reductions in the mass extinction coefficient of bioaerosols,” Optik 184, 115–120 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Analysis of optical properties of bio-smoke materials in the 0.25-14 µm band,” Chin. Phys. B 28(3), 034201 (2019).
[Crossref]

Y. Gu, Y. Hu, X. Zhao, X. Chen, and Z. Zheng, “Combined analysis of static and dynamic extinction characteristics of microbial spores and mycelia as a mid-infrared extinction material,” Optik 176, 535–541 (2019).
[Crossref]

Y. Hu, X. Zhao, Y. Gu, X. Chen, X. Wang, P. Wang, Z. Zheng, and X. J. S. C. M. Dong, “Significant broadband extinction abilities of bioaerosols,” Sci. China Mater. 62(7), 1033–1045 (2019).
[Crossref]

Y. Gu, Y. Hu, X. Zhao, and C. Xi, “Determination of infrared complex refractive index of microbial materials,” J. Quant. Spectrosc. Radiat. Transfer 217, 305–314 (2018).
[Crossref]

Y. Gu, Y. Hu, X. Zhao, C. Xi, W. Peng, and Z. Zheng, “Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3–5 micrometers,” Opt. Express 26(12), 15842–15850 (2018).
[Crossref]

L. Li, Y. Hu, Y. Gu, X. Zhao, S. Xu, L. Yu, Z. M. Zheng, and P. Wang, “Infrared extinction performance of randomly oriented microbial-clustered agglomerate materials,” Appl. Spectrosc. 71(11), 2555–2562 (2017).
[Crossref]

P. Wang, H. Liu, Y. Zhao, Y. Gu, W. Chen, L. Wang, L. Li, X. Zhao, W. Lei, and Y. Hu, “Electromagnetic attenuation characteristics of microbial materials in the infrared band,” Appl. Spectrosc. 70(9), 1456–1463 (2016).
[Crossref]

L. Li, Y. Hu, Y. Gu, W. Chen, and Y. Zhao, “Measurement and qnalysis on complex refraction indices of pear pollen in infrared band,” Spectrosc. Spectral Anal. 35, 89–92 (2015).

H. Liu, W. Peng, Y. Hu, G. Zhao, L. Hui, Z. Li, H. Wu, W. Li, and Z. Zheng, “Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production,” Biocontrol Science & Technology 25(9), 1011–1023 (2015).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, and L. Li, “Transmittance of laser in the microorganism aggregated particle swarm,” Acta Opt. Sin. 35(6), 0616001 (2015).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, and L. Le, “The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm,” Proc. SPIE 9678, 967817 (2015).
[Crossref]

D. J. Sun, Y. Hu, Y. Gu, Y. Wang, and L. Li, “Preparation and performance testing of metallic biologic particles,” Guangzi Xuebao 42(5), 555–558 (2013).
[Crossref]

D. Sun, Y. Hu, and L. Li, “Test and analysis of infrared and microwave characteristics of metallic farinas,” Infra. Laser Engin. 42, 2531–2535 (2013).

Hua, W.

M. Lattuada, W. Hua, and M. Morbidelli, “Radial density distribution of fractal clusters,” Chem. Eng. Sci. 59(21), 4401–4413 (2004).
[Crossref]

Huffman, J. A.

V. Després, J. A. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. Andreae, and U. Pöschl, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B 64(1), 15598–153 (2012).
[Crossref]

Hui, L.

H. Liu, W. Peng, Y. Hu, G. Zhao, L. Hui, Z. Li, H. Wu, W. Li, and Z. Zheng, “Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production,” Biocontrol Science & Technology 25(9), 1011–1023 (2015).
[Crossref]

Irie, H.

P. Zieger, U. Frieß, B. Henzing, G. D. Leeuw, U. Baltensperger, E. Weingartner, K. Clemer, S. Yilmaz, H. Irie, and R. Fierz-Schmidhauser, “Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements,” Geochmica Et Cosmochimica Acta 12, 3875–3890 (2010).

Jacques, S. L.

S. L. Jacques, “Modeling tissue optics using Monte Carlo modeling: a tutorial,” Proc. SPIE 6854, 68540T (2008).
[Crossref]

Koter, A. D.

M. Min, C. Dominik, J. W. Hovenier, A. D. Koter, and L. B. F. M. Waters, “The 10 m amorphous silicate feature of fractal aggregates and compact particles with complex shapes,” Astron. Astrophys. 445(3), 1005–1014 (2006).
[Crossref]

Kozasa, T.

T. Kozasa, J. Blum, and T. Mukai, “Optical properties of dust aggregates,” Astron. Astrophys. 263, 423–432 (1992).

Lattuada, M.

M. Lattuada, W. Hua, and M. Morbidelli, “Radial density distribution of fractal clusters,” Chem. Eng. Sci. 59(21), 4401–4413 (2004).
[Crossref]

Le, L.

X. Zhao, Y. Hu, Y. Gu, and L. Le, “The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm,” Proc. SPIE 9678, 967817 (2015).
[Crossref]

Leeuw, G. D.

P. Zieger, U. Frieß, B. Henzing, G. D. Leeuw, U. Baltensperger, E. Weingartner, K. Clemer, S. Yilmaz, H. Irie, and R. Fierz-Schmidhauser, “Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements,” Geochmica Et Cosmochimica Acta 12, 3875–3890 (2010).

Lei, W.

Li, C.

C. Li and H. Xiong, “3D simulation of the Cluster–Cluster Aggregation model,” Comput. Phys. Commun. 185(12), 3424–3429 (2014).
[Crossref]

Li, L.

L. Li, Y. Hu, Y. Gu, X. Zhao, S. Xu, L. Yu, Z. M. Zheng, and P. Wang, “Infrared extinction performance of randomly oriented microbial-clustered agglomerate materials,” Appl. Spectrosc. 71(11), 2555–2562 (2017).
[Crossref]

P. Wang, H. Liu, Y. Zhao, Y. Gu, W. Chen, L. Wang, L. Li, X. Zhao, W. Lei, and Y. Hu, “Electromagnetic attenuation characteristics of microbial materials in the infrared band,” Appl. Spectrosc. 70(9), 1456–1463 (2016).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, and L. Li, “Transmittance of laser in the microorganism aggregated particle swarm,” Acta Opt. Sin. 35(6), 0616001 (2015).
[Crossref]

L. Li, Y. Hu, Y. Gu, W. Chen, and Y. Zhao, “Measurement and qnalysis on complex refraction indices of pear pollen in infrared band,” Spectrosc. Spectral Anal. 35, 89–92 (2015).

D. J. Sun, Y. Hu, Y. Gu, Y. Wang, and L. Li, “Preparation and performance testing of metallic biologic particles,” Guangzi Xuebao 42(5), 555–558 (2013).
[Crossref]

D. Sun, Y. Hu, and L. Li, “Test and analysis of infrared and microwave characteristics of metallic farinas,” Infra. Laser Engin. 42, 2531–2535 (2013).

Li, W.

H. Liu, W. Peng, Y. Hu, G. Zhao, L. Hui, Z. Li, H. Wu, W. Li, and Z. Zheng, “Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production,” Biocontrol Science & Technology 25(9), 1011–1023 (2015).
[Crossref]

Li, Z.

H. Liu, W. Peng, Y. Hu, G. Zhao, L. Hui, Z. Li, H. Wu, W. Li, and Z. Zheng, “Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production,” Biocontrol Science & Technology 25(9), 1011–1023 (2015).
[Crossref]

Li-Jones, X.

X. Li-Jones, H. B. Maring, and J. M. Prospero, “Effect of relative humidity on light scattering by mineral dust aerosol as measured in the marine boundary layer over the tropical Atlantic Ocean,” J. Geophys. Res. 103(D23), 31113–31121 (1998).
[Crossref]

Linker, R.

M. Segal-Rosenheimer and R. Linker, “Impact of the non-measured infrared spectral range of the imaginary refractive index on the derivation of the real refractive index using the Kramers-Kronig transform,” J. Quant. Spectrosc. Radiat. Transfer 110(13), 1147–1161 (2009).
[Crossref]

Liu, H.

P. Wang, H. Liu, Y. Zhao, Y. Gu, W. Chen, L. Wang, L. Li, X. Zhao, W. Lei, and Y. Hu, “Electromagnetic attenuation characteristics of microbial materials in the infrared band,” Appl. Spectrosc. 70(9), 1456–1463 (2016).
[Crossref]

H. Liu, X. Zhao, M. Guo, H. Liu, and Z. Zheng, “Growth and metabolism of Beauveria bassiana spores and mycelia,” BMC Microbiol. 15(1), 267 (2015).
[Crossref]

H. Liu, X. Zhao, M. Guo, H. Liu, and Z. Zheng, “Growth and metabolism of Beauveria bassiana spores and mycelia,” BMC Microbiol. 15(1), 267 (2015).
[Crossref]

H. Liu, W. Peng, Y. Hu, G. Zhao, L. Hui, Z. Li, H. Wu, W. Li, and Z. Zheng, “Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production,” Biocontrol Science & Technology 25(9), 1011–1023 (2015).
[Crossref]

Liu, Y.

L. Shen, F. Gu, J. Zhang, and Y. Liu, “The effect of relative humidity on the extinction coefficient of aerosols,” J. Light Scatt. 29, 251–256 (2017).

Malm, W. C.

D. E. Day and W. C. Malm, “Aerosol light scattering measurements as a function of relative humidity: a comparison between measurements made at three different sites,” Atmos. Environ. 35(30), 5169–5176 (2001).
[Crossref]

Maring, H. B.

X. Li-Jones, H. B. Maring, and J. M. Prospero, “Effect of relative humidity on light scattering by mineral dust aerosol as measured in the marine boundary layer over the tropical Atlantic Ocean,” J. Geophys. Res. 103(D23), 31113–31121 (1998).
[Crossref]

Min, M.

M. Min, C. Dominik, J. W. Hovenier, A. D. Koter, and L. B. F. M. Waters, “The 10 m amorphous silicate feature of fractal aggregates and compact particles with complex shapes,” Astron. Astrophys. 445(3), 1005–1014 (2006).
[Crossref]

Morbidelli, M.

M. Lattuada, W. Hua, and M. Morbidelli, “Radial density distribution of fractal clusters,” Chem. Eng. Sci. 59(21), 4401–4413 (2004).
[Crossref]

Mukai, T.

T. Kozasa, J. Blum, and T. Mukai, “Optical properties of dust aggregates,” Astron. Astrophys. 263, 423–432 (1992).

Munkelwitz, H. R.

I. N. Tang and H. R. Munkelwitz, “Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance,” J. Geophys. Res. 99(D9), 18801–18808 (1994).
[Crossref]

Offermann, V.

P. Grosse and V. Offermann, “Analysis of reflectance data using the Kramers-Kronig Relations,” Appl. Phys. A 52(2), 138–144 (1991).
[Crossref]

Peng, W.

Y. Gu, Y. Hu, X. Zhao, C. Xi, W. Peng, and Z. Zheng, “Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3–5 micrometers,” Opt. Express 26(12), 15842–15850 (2018).
[Crossref]

H. Liu, W. Peng, Y. Hu, G. Zhao, L. Hui, Z. Li, H. Wu, W. Li, and Z. Zheng, “Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production,” Biocontrol Science & Technology 25(9), 1011–1023 (2015).
[Crossref]

Poelman, D.

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

Pöschl, U.

V. Després, J. A. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. Andreae, and U. Pöschl, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B 64(1), 15598–153 (2012).
[Crossref]

Prospero, J. M.

X. Li-Jones, H. B. Maring, and J. M. Prospero, “Effect of relative humidity on light scattering by mineral dust aerosol as measured in the marine boundary layer over the tropical Atlantic Ocean,” J. Geophys. Res. 103(D23), 31113–31121 (1998).
[Crossref]

Safatov, A.

V. Després, J. A. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. Andreae, and U. Pöschl, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B 64(1), 15598–153 (2012).
[Crossref]

Segal-Rosenheimer, M.

M. Segal-Rosenheimer and R. Linker, “Impact of the non-measured infrared spectral range of the imaginary refractive index on the derivation of the real refractive index using the Kramers-Kronig transform,” J. Quant. Spectrosc. Radiat. Transfer 110(13), 1147–1161 (2009).
[Crossref]

Shen, L.

L. Shen, F. Gu, J. Zhang, and Y. Liu, “The effect of relative humidity on the extinction coefficient of aerosols,” J. Light Scatt. 29, 251–256 (2017).

Smet, P. F.

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

Sun, D.

D. Sun, Y. Hu, and L. Li, “Test and analysis of infrared and microwave characteristics of metallic farinas,” Infra. Laser Engin. 42, 2531–2535 (2013).

Sun, D. J.

D. J. Sun, “Determination and model construction of microbes’ complex refractive index in far infrared band,” Acta Phys. Sin. 62(9), 94218–094218 (2013).
[Crossref]

D. J. Sun, Y. Hu, Y. Gu, Y. Wang, and L. Li, “Preparation and performance testing of metallic biologic particles,” Guangzi Xuebao 42(5), 555–558 (2013).
[Crossref]

Tang, I. N.

I. N. Tang, “Chemical and size effects of hygroscopic aerosols on light scattering coefficients,” J. Geophys. Res. 101(D14), 19245–19250 (1996).
[Crossref]

I. N. Tang and H. R. Munkelwitz, “Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance,” J. Geophys. Res. 99(D9), 18801–18808 (1994).
[Crossref]

Thoone, G. P. J. M.

H. C. Booij and G. P. J. M. Thoone, “Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities,” Rheol. Acta 21(1), 15–24 (1982).
[Crossref]

Wang, L.

Wang, P.

Y. Hu, X. Zhao, Y. Gu, X. Chen, X. Wang, P. Wang, Z. Zheng, and X. J. S. C. M. Dong, “Significant broadband extinction abilities of bioaerosols,” Sci. China Mater. 62(7), 1033–1045 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Aggregation-driven reductions in the mass extinction coefficient of bioaerosols,” Optik 184, 115–120 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Analysis of optical properties of bio-smoke materials in the 0.25-14 µm band,” Chin. Phys. B 28(3), 034201 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “A comparison of infrared extinction performances of bioaerosols and traditional smoke materials,” Optik 181, 293–300 (2019).
[Crossref]

L. Li, Y. Hu, Y. Gu, X. Zhao, S. Xu, L. Yu, Z. M. Zheng, and P. Wang, “Infrared extinction performance of randomly oriented microbial-clustered agglomerate materials,” Appl. Spectrosc. 71(11), 2555–2562 (2017).
[Crossref]

P. Wang, H. Liu, Y. Zhao, Y. Gu, W. Chen, L. Wang, L. Li, X. Zhao, W. Lei, and Y. Hu, “Electromagnetic attenuation characteristics of microbial materials in the infrared band,” Appl. Spectrosc. 70(9), 1456–1463 (2016).
[Crossref]

Wang, X.

Y. Hu, X. Zhao, Y. Gu, X. Chen, X. Wang, P. Wang, Z. Zheng, and X. J. S. C. M. Dong, “Significant broadband extinction abilities of bioaerosols,” Sci. China Mater. 62(7), 1033–1045 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “A comparison of infrared extinction performances of bioaerosols and traditional smoke materials,” Optik 181, 293–300 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Aggregation-driven reductions in the mass extinction coefficient of bioaerosols,” Optik 184, 115–120 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Analysis of optical properties of bio-smoke materials in the 0.25-14 µm band,” Chin. Phys. B 28(3), 034201 (2019).
[Crossref]

Wang, Y.

D. J. Sun, Y. Hu, Y. Gu, Y. Wang, and L. Li, “Preparation and performance testing of metallic biologic particles,” Guangzi Xuebao 42(5), 555–558 (2013).
[Crossref]

Waters, L. B. F. M.

M. Min, C. Dominik, J. W. Hovenier, A. D. Koter, and L. B. F. M. Waters, “The 10 m amorphous silicate feature of fractal aggregates and compact particles with complex shapes,” Astron. Astrophys. 445(3), 1005–1014 (2006).
[Crossref]

Weingartner, E.

P. Zieger, U. Frieß, B. Henzing, G. D. Leeuw, U. Baltensperger, E. Weingartner, K. Clemer, S. Yilmaz, H. Irie, and R. Fierz-Schmidhauser, “Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements,” Geochmica Et Cosmochimica Acta 12, 3875–3890 (2010).

Wu, H.

H. Liu, W. Peng, Y. Hu, G. Zhao, L. Hui, Z. Li, H. Wu, W. Li, and Z. Zheng, “Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production,” Biocontrol Science & Technology 25(9), 1011–1023 (2015).
[Crossref]

Xi, C.

Y. Gu, Y. Hu, X. Zhao, and C. Xi, “Determination of infrared complex refractive index of microbial materials,” J. Quant. Spectrosc. Radiat. Transfer 217, 305–314 (2018).
[Crossref]

Y. Gu, Y. Hu, X. Zhao, C. Xi, W. Peng, and Z. Zheng, “Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3–5 micrometers,” Opt. Express 26(12), 15842–15850 (2018).
[Crossref]

Xiong, H.

C. Li and H. Xiong, “3D simulation of the Cluster–Cluster Aggregation model,” Comput. Phys. Commun. 185(12), 3424–3429 (2014).
[Crossref]

Xu, S.

Yilmaz, S.

P. Zieger, U. Frieß, B. Henzing, G. D. Leeuw, U. Baltensperger, E. Weingartner, K. Clemer, S. Yilmaz, H. Irie, and R. Fierz-Schmidhauser, “Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements,” Geochmica Et Cosmochimica Acta 12, 3875–3890 (2010).

Yu, L.

Zhang, J.

L. Shen, F. Gu, J. Zhang, and Y. Liu, “The effect of relative humidity on the extinction coefficient of aerosols,” J. Light Scatt. 29, 251–256 (2017).

Zhao, G.

H. Liu, W. Peng, Y. Hu, G. Zhao, L. Hui, Z. Li, H. Wu, W. Li, and Z. Zheng, “Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production,” Biocontrol Science & Technology 25(9), 1011–1023 (2015).
[Crossref]

Zhao, X.

Y. Hu, X. Zhao, Y. Gu, X. Chen, X. Wang, P. Wang, Z. Zheng, and X. J. S. C. M. Dong, “Significant broadband extinction abilities of bioaerosols,” Sci. China Mater. 62(7), 1033–1045 (2019).
[Crossref]

Y. Gu, Y. Hu, X. Zhao, X. Chen, and Z. Zheng, “Combined analysis of static and dynamic extinction characteristics of microbial spores and mycelia as a mid-infrared extinction material,” Optik 176, 535–541 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “A comparison of infrared extinction performances of bioaerosols and traditional smoke materials,” Optik 181, 293–300 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Analysis of optical properties of bio-smoke materials in the 0.25-14 µm band,” Chin. Phys. B 28(3), 034201 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Aggregation-driven reductions in the mass extinction coefficient of bioaerosols,” Optik 184, 115–120 (2019).
[Crossref]

Y. Gu, Y. Hu, X. Zhao, and C. Xi, “Determination of infrared complex refractive index of microbial materials,” J. Quant. Spectrosc. Radiat. Transfer 217, 305–314 (2018).
[Crossref]

Y. Gu, Y. Hu, X. Zhao, C. Xi, W. Peng, and Z. Zheng, “Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3–5 micrometers,” Opt. Express 26(12), 15842–15850 (2018).
[Crossref]

L. Li, Y. Hu, Y. Gu, X. Zhao, S. Xu, L. Yu, Z. M. Zheng, and P. Wang, “Infrared extinction performance of randomly oriented microbial-clustered agglomerate materials,” Appl. Spectrosc. 71(11), 2555–2562 (2017).
[Crossref]

P. Wang, H. Liu, Y. Zhao, Y. Gu, W. Chen, L. Wang, L. Li, X. Zhao, W. Lei, and Y. Hu, “Electromagnetic attenuation characteristics of microbial materials in the infrared band,” Appl. Spectrosc. 70(9), 1456–1463 (2016).
[Crossref]

H. Liu, X. Zhao, M. Guo, H. Liu, and Z. Zheng, “Growth and metabolism of Beauveria bassiana spores and mycelia,” BMC Microbiol. 15(1), 267 (2015).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, and L. Li, “Transmittance of laser in the microorganism aggregated particle swarm,” Acta Opt. Sin. 35(6), 0616001 (2015).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, and L. Le, “The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm,” Proc. SPIE 9678, 967817 (2015).
[Crossref]

Zhao, Y.

P. Wang, H. Liu, Y. Zhao, Y. Gu, W. Chen, L. Wang, L. Li, X. Zhao, W. Lei, and Y. Hu, “Electromagnetic attenuation characteristics of microbial materials in the infrared band,” Appl. Spectrosc. 70(9), 1456–1463 (2016).
[Crossref]

L. Li, Y. Hu, Y. Gu, W. Chen, and Y. Zhao, “Measurement and qnalysis on complex refraction indices of pear pollen in infrared band,” Spectrosc. Spectral Anal. 35, 89–92 (2015).

Zheng, Z.

Y. Hu, X. Zhao, Y. Gu, X. Chen, X. Wang, P. Wang, Z. Zheng, and X. J. S. C. M. Dong, “Significant broadband extinction abilities of bioaerosols,” Sci. China Mater. 62(7), 1033–1045 (2019).
[Crossref]

Y. Gu, Y. Hu, X. Zhao, X. Chen, and Z. Zheng, “Combined analysis of static and dynamic extinction characteristics of microbial spores and mycelia as a mid-infrared extinction material,” Optik 176, 535–541 (2019).
[Crossref]

Y. Gu, Y. Hu, X. Zhao, C. Xi, W. Peng, and Z. Zheng, “Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3–5 micrometers,” Opt. Express 26(12), 15842–15850 (2018).
[Crossref]

H. Liu, W. Peng, Y. Hu, G. Zhao, L. Hui, Z. Li, H. Wu, W. Li, and Z. Zheng, “Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production,” Biocontrol Science & Technology 25(9), 1011–1023 (2015).
[Crossref]

H. Liu, X. Zhao, M. Guo, H. Liu, and Z. Zheng, “Growth and metabolism of Beauveria bassiana spores and mycelia,” BMC Microbiol. 15(1), 267 (2015).
[Crossref]

Zheng, Z. M.

Zieger, P.

P. Zieger, U. Frieß, B. Henzing, G. D. Leeuw, U. Baltensperger, E. Weingartner, K. Clemer, S. Yilmaz, H. Irie, and R. Fierz-Schmidhauser, “Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements,” Geochmica Et Cosmochimica Acta 12, 3875–3890 (2010).

Acta Opt. Sin. (1)

X. Zhao, Y. Hu, Y. Gu, and L. Li, “Transmittance of laser in the microorganism aggregated particle swarm,” Acta Opt. Sin. 35(6), 0616001 (2015).
[Crossref]

Acta Phys. Sin. (1)

D. J. Sun, “Determination and model construction of microbes’ complex refractive index in far infrared band,” Acta Phys. Sin. 62(9), 94218–094218 (2013).
[Crossref]

Adv. Geophys. (1)

G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73–188 (1976).
[Crossref]

Appl. Phys. A (1)

P. Grosse and V. Offermann, “Analysis of reflectance data using the Kramers-Kronig Relations,” Appl. Phys. A 52(2), 138–144 (1991).
[Crossref]

Appl. Spectrosc. (2)

Astron. Astrophys. (2)

M. Min, C. Dominik, J. W. Hovenier, A. D. Koter, and L. B. F. M. Waters, “The 10 m amorphous silicate feature of fractal aggregates and compact particles with complex shapes,” Astron. Astrophys. 445(3), 1005–1014 (2006).
[Crossref]

T. Kozasa, J. Blum, and T. Mukai, “Optical properties of dust aggregates,” Astron. Astrophys. 263, 423–432 (1992).

Atmos. Environ. (1)

D. E. Day and W. C. Malm, “Aerosol light scattering measurements as a function of relative humidity: a comparison between measurements made at three different sites,” Atmos. Environ. 35(30), 5169–5176 (2001).
[Crossref]

Biocontrol Science & Technology (1)

H. Liu, W. Peng, Y. Hu, G. Zhao, L. Hui, Z. Li, H. Wu, W. Li, and Z. Zheng, “Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production,” Biocontrol Science & Technology 25(9), 1011–1023 (2015).
[Crossref]

BMC Microbiol. (1)

H. Liu, X. Zhao, M. Guo, H. Liu, and Z. Zheng, “Growth and metabolism of Beauveria bassiana spores and mycelia,” BMC Microbiol. 15(1), 267 (2015).
[Crossref]

Chem. Eng. Sci. (1)

M. Lattuada, W. Hua, and M. Morbidelli, “Radial density distribution of fractal clusters,” Chem. Eng. Sci. 59(21), 4401–4413 (2004).
[Crossref]

Chin. Phys. B (1)

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Analysis of optical properties of bio-smoke materials in the 0.25-14 µm band,” Chin. Phys. B 28(3), 034201 (2019).
[Crossref]

Comput. Phys. Commun. (1)

C. Li and H. Xiong, “3D simulation of the Cluster–Cluster Aggregation model,” Comput. Phys. Commun. 185(12), 3424–3429 (2014).
[Crossref]

Geochmica Et Cosmochimica Acta (1)

P. Zieger, U. Frieß, B. Henzing, G. D. Leeuw, U. Baltensperger, E. Weingartner, K. Clemer, S. Yilmaz, H. Irie, and R. Fierz-Schmidhauser, “Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements,” Geochmica Et Cosmochimica Acta 12, 3875–3890 (2010).

Guangzi Xuebao (1)

D. J. Sun, Y. Hu, Y. Gu, Y. Wang, and L. Li, “Preparation and performance testing of metallic biologic particles,” Guangzi Xuebao 42(5), 555–558 (2013).
[Crossref]

Infra. Laser Engin. (1)

D. Sun, Y. Hu, and L. Li, “Test and analysis of infrared and microwave characteristics of metallic farinas,” Infra. Laser Engin. 42, 2531–2535 (2013).

J. Geophys. Res. (4)

X. Li-Jones, H. B. Maring, and J. M. Prospero, “Effect of relative humidity on light scattering by mineral dust aerosol as measured in the marine boundary layer over the tropical Atlantic Ocean,” J. Geophys. Res. 103(D23), 31113–31121 (1998).
[Crossref]

I. N. Tang, “Chemical and size effects of hygroscopic aerosols on light scattering coefficients,” J. Geophys. Res. 101(D14), 19245–19250 (1996).
[Crossref]

K. Adachi, S. H. Chung, and P. R. Buseck, “Shapes of soot aerosol particles and implications for their effects on climate,” J. Geophys. Res. 115(D15), D15206 (2010).
[Crossref]

I. N. Tang and H. R. Munkelwitz, “Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance,” J. Geophys. Res. 99(D9), 18801–18808 (1994).
[Crossref]

J. Light Scatt. (1)

L. Shen, F. Gu, J. Zhang, and Y. Liu, “The effect of relative humidity on the extinction coefficient of aerosols,” J. Light Scatt. 29, 251–256 (2017).

J. Phys. D: Appl. Phys. (1)

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

M. Segal-Rosenheimer and R. Linker, “Impact of the non-measured infrared spectral range of the imaginary refractive index on the derivation of the real refractive index using the Kramers-Kronig transform,” J. Quant. Spectrosc. Radiat. Transfer 110(13), 1147–1161 (2009).
[Crossref]

Y. Gu, Y. Hu, X. Zhao, and C. Xi, “Determination of infrared complex refractive index of microbial materials,” J. Quant. Spectrosc. Radiat. Transfer 217, 305–314 (2018).
[Crossref]

Opt. Express (1)

Optik (3)

Y. Gu, Y. Hu, X. Zhao, X. Chen, and Z. Zheng, “Combined analysis of static and dynamic extinction characteristics of microbial spores and mycelia as a mid-infrared extinction material,” Optik 176, 535–541 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “A comparison of infrared extinction performances of bioaerosols and traditional smoke materials,” Optik 181, 293–300 (2019).
[Crossref]

X. Zhao, Y. Hu, Y. Gu, X. Chen, X. Wang, P. Wang, and X. Dong, “Aggregation-driven reductions in the mass extinction coefficient of bioaerosols,” Optik 184, 115–120 (2019).
[Crossref]

Proc. SPIE (2)

X. Zhao, Y. Hu, Y. Gu, and L. Le, “The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm,” Proc. SPIE 9678, 967817 (2015).
[Crossref]

S. L. Jacques, “Modeling tissue optics using Monte Carlo modeling: a tutorial,” Proc. SPIE 6854, 68540T (2008).
[Crossref]

Rheol. Acta (1)

H. C. Booij and G. P. J. M. Thoone, “Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities,” Rheol. Acta 21(1), 15–24 (1982).
[Crossref]

Sci. China Mater. (1)

Y. Hu, X. Zhao, Y. Gu, X. Chen, X. Wang, P. Wang, Z. Zheng, and X. J. S. C. M. Dong, “Significant broadband extinction abilities of bioaerosols,” Sci. China Mater. 62(7), 1033–1045 (2019).
[Crossref]

Spectrosc. Spectral Anal. (1)

L. Li, Y. Hu, Y. Gu, W. Chen, and Y. Zhao, “Measurement and qnalysis on complex refraction indices of pear pollen in infrared band,” Spectrosc. Spectral Anal. 35, 89–92 (2015).

Tellus B (1)

V. Després, J. A. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. Andreae, and U. Pöschl, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B 64(1), 15598–153 (2012).
[Crossref]

Other (1)

B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.3,” (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Structures of bioaerosol. (a, b) Electron micrographs of AN0913 spores and AO0907 spores. (c) Agglomerated particle structures constructed by the cluster-cluster aggregation model to describe the structures of the bioaerosol materials when they are floating in space.
Fig. 2.
Fig. 2. Schematic diagram of the aerosol chamber experiment.
Fig. 3.
Fig. 3. Complex refractive index of the two kinds of bioaerosol. (a) Real part of complex refractive index. (b) Imaginary part of complex refractive index.
Fig. 4.
Fig. 4. Humidity growth model of bioaerosol. (a-d)Humidity growth model of complex refractive index: (a) and (b) for AN0913 spores, (c) and (d) for AO0907 spores. (e) Humidity growth model of bioaerosol particle size.
Fig. 5.
Fig. 5. Simulation results of extinction performance parameters in different humidity conditions. (a, c-f) Extinction performance parameters of AN0913 spores in different humidity conditions. (b) Contour map of transmittance simulation results of AN0913 spores. (g, h) Contrast analysis of transmittance contour map and absorption coefficient spectrum of the two spores.
Fig. 6.
Fig. 6. Percentage increases of the attenuation ability per unit concentration as the relative humidity increase from 70% to 80% and 90% in the four wavebands. (a)Broadband attenuation ability per unit concentration of AN0913 spores in three relative humidity conditions. (b) Broadband attenuation ability per unit concentration of AO0907 spores in three relative humidity conditions of AO0907 spores.

Tables (2)

Tables Icon

Table 1. The model of the light sources and detectors in the experiment

Tables Icon

Table 2. Results of the aerosol chamber experiment

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m = m w + ( m 0 m w ) ( r 0 r R H ) 3 ,
r 0 r R H = ( 1 R H ) 1 / 1 u u ,

Metrics