Abstract

A silicon/silicon-rich nitride hybrid-core waveguide has been proposed and experimentally demonstrated for nonlinear applications to fill the gap between the pure silicon waveguide and the pure silicon nitride waveguide with respect to the nonlinear properties. The hybrid-core waveguide presented here leverages the advantages of the silicon and the silicon-rich nitride waveguide platforms, showing a large nonlinearity γ of 72 ± 5 W−1 m−1 for energy-efficient four-wave mixing wavelength conversion. At the same time, the drawbacks of the material platforms are dramatically mitigated, exhibiting a reduced two-photon absorption coefficient βTPA of 0.023 cm/GW resulting in an increased nonlinear figure-of-merit as large as 21.6. A four-wave-mixing conversion efficiency as large as −5.3 dB has been achieved with the promise to be larger than 0 dB. These findings are strong arguments supporting the silicon/silicon-rich nitride hybrid-core waveguide to be used for energy-efficient nonlinear photonic applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform [Invited]

D. T. H. Tan, K. J. A. Ooi, and D. K. T. Ng
Photon. Res. 6(5) B50-B66 (2018)

Silicon-rich nitride waveguides for ultra-broadband nonlinear signal processing

Mohammad Rezagholipour Dizaji, Clemens J. Krückel, Attila Fülöp, Peter A. Andrekson, Victor Torres-Company, and Lawrence R. Chen
Opt. Express 25(11) 12100-12108 (2017)

Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides

Clemens J. Krückel, Attila Fülöp, Thomas Klintberg, Jörgen Bengtsson, Peter A. Andrekson, and Víctor Torres-Company
Opt. Express 23(20) 25827-25837 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century (Springer, 2000), pp. 195–211.
  2. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [Crossref]
  3. H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
    [Crossref]
  4. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of wavelength conversion by four wave mixing in silicon waveguides,” 2008 Conf. Quantum Electron. Laser Sci. Conf. Lasers Electro-Optics, CLEO/QELS 16(21), 16735–16745 (2008).
  5. T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17(20), 17357–17368 (2009).
    [Crossref] [PubMed]
  6. H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishlda, and Y. Arakawa, “Nonlinear-optic silicon-nanowire waveguides,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 44(9 A), 6541–6545 (2005).
  7. J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient CW four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photonics Technol. Lett. 25(17), 1699–1702 (2013).
    [Crossref]
  8. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36(4), 552–554 (2011).
    [Crossref] [PubMed]
  9. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
    [Crossref] [PubMed]
  10. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20(20), 22609–22615 (2012).
    [Crossref] [PubMed]
  11. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
    [Crossref]
  12. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2009).
    [Crossref]
  13. M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20–25 (2016).
    [Crossref]
  14. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619–624 (2017).
    [Crossref]
  15. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
    [Crossref] [PubMed]
  16. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  17. C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7(1), 22 (2017).
    [Crossref] [PubMed]
  18. C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides: erratum,” Opt. Express 25(7), 7443–7444 (2017).
    [Crossref] [PubMed]
  19. M. Mitrovic, X. Guan, H. Ji, L. K. Oxenløwe, and L. H. Frandsen, “Four-wave mixing in silicon-rich nitride waveguides,” in Frontiers in Optics (2015), p. FM1D–6.
  20. K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
    [Crossref] [PubMed]
  21. T. Wang, D. K. T. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
    [Crossref]
  22. M. Z. Alam, X. Sun, M. Mojahedi, and J. S. Aitchison, “Augmented low index waveguide for confining light in low index media,” Laser Photonics Rev. 11(3), 1500224 (2017).
    [Crossref]
  23. J. Cardenas, C. B. Poitras, K. Luke, L.-W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26(23), 2380–2382 (2014).
    [Crossref]
  24. G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
    [Crossref] [PubMed]
  25. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
    [Crossref] [PubMed]
  26. U. D. Dave, B. Kuyken, F. Leo, S.-P. Gorza, S. Combrie, A. De Rossi, F. Raineri, and G. Roelkens, “Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication wavelength range,” Opt. Express 23(4), 4650–4657 (2015).
    [Crossref] [PubMed]
  27. C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, “Nonlinear properties of AlGaAs waveguides in continuous wave operation regime,” Opt. Express 22(5), 5291–5298 (2014).
    [Crossref] [PubMed]
  28. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
    [Crossref]
  29. M. Sen, T. Datta, and M. K. Das, “Effect of geometry and reverse bias on free carrier lifetime in pin structured optical rib waveguide,” in Microwave and Photonics (ICMAP),2013 International Conference On (2013), pp. 1–5.
  30. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 71115 (2005).
    [Crossref]
  31. J. R. Elmiger, R. Schieck, M. Kunst, J. R. Elmiger, R. Schieck, and M. Kunst, “Recombination at the silicon nitride / silicon interface Recombination at the silicon nitride / silicon interface,” J. Vac. Sci. Technol. A 15(4), 2418–2425 (1997).
    [Crossref]
  32. J. I. Dadap, R. L. Espinola, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Spontaneous Raman scattering in ultrasmall silicon waveguides,” Opt. Lett. 29(23), 2755–2757 (2004).
    [Crossref] [PubMed]
  33. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
    [Crossref] [PubMed]
  34. M. Xiong, Y. Ding, H. Ou, C. Peucheret, and X. Zhang, “Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator,” Front Optoelectron. 9(3), 390–394 (2016).
    [Crossref]

2017 (5)

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619–624 (2017).
[Crossref]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides: erratum,” Opt. Express 25(7), 7443–7444 (2017).
[Crossref] [PubMed]

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

M. Z. Alam, X. Sun, M. Mojahedi, and J. S. Aitchison, “Augmented low index waveguide for confining light in low index media,” Laser Photonics Rev. 11(3), 1500224 (2017).
[Crossref]

2016 (2)

M. Xiong, Y. Ding, H. Ou, C. Peucheret, and X. Zhang, “Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator,” Front Optoelectron. 9(3), 390–394 (2016).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20–25 (2016).
[Crossref]

2015 (2)

T. Wang, D. K. T. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

U. D. Dave, B. Kuyken, F. Leo, S.-P. Gorza, S. Combrie, A. De Rossi, F. Raineri, and G. Roelkens, “Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication wavelength range,” Opt. Express 23(4), 4650–4657 (2015).
[Crossref] [PubMed]

2014 (2)

C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, “Nonlinear properties of AlGaAs waveguides in continuous wave operation regime,” Opt. Express 22(5), 5291–5298 (2014).
[Crossref] [PubMed]

J. Cardenas, C. B. Poitras, K. Luke, L.-W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26(23), 2380–2382 (2014).
[Crossref]

2013 (3)

A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient CW four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photonics Technol. Lett. 25(17), 1699–1702 (2013).
[Crossref]

2012 (1)

2011 (3)

2010 (3)

2009 (2)

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17(20), 17357–17368 (2009).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2009).
[Crossref]

2008 (2)

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[Crossref]

2005 (1)

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 71115 (2005).
[Crossref]

2004 (2)

J. I. Dadap, R. L. Espinola, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Spontaneous Raman scattering in ultrasmall silicon waveguides,” Opt. Lett. 29(23), 2755–2757 (2004).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

1997 (1)

J. R. Elmiger, R. Schieck, M. Kunst, J. R. Elmiger, R. Schieck, and M. Kunst, “Recombination at the silicon nitride / silicon interface Recombination at the silicon nitride / silicon interface,” J. Vac. Sci. Technol. A 15(4), 2418–2425 (1997).
[Crossref]

Agarwal, A. M.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Aguinaldo, R.

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient CW four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photonics Technol. Lett. 25(17), 1699–1702 (2013).
[Crossref]

Aitchison, J. S.

M. Z. Alam, X. Sun, M. Mojahedi, and J. S. Aitchison, “Augmented low index waveguide for confining light in low index media,” Laser Photonics Rev. 11(3), 1500224 (2017).
[Crossref]

Alam, M. Z.

M. Z. Alam, X. Sun, M. Mojahedi, and J. S. Aitchison, “Augmented low index waveguide for confining light in low index media,” Laser Photonics Rev. 11(3), 1500224 (2017).
[Crossref]

Alloatti, L.

Andrekson, P. A.

Ang, L. K.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Arbabi, A.

Bae, H. K.

Baets, R.

Barbosa, F. A. S.

Ben Bakir, B.

Bengtsson, J.

Biaggio, I.

Bogaerts, W.

Bogatscher, S.

Brasch, V.

Bryant, A.

Bucio, T. D.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Cardenas, J.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619–624 (2017).
[Crossref]

J. Cardenas, C. B. Poitras, K. Luke, L.-W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26(23), 2380–2382 (2014).
[Crossref]

Carletti, L.

Chee, A. K. L.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

T. Wang, D. K. T. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Chen, G. F. R.

T. Wang, D. K. T. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Chu, S.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Claps, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 71115 (2005).
[Crossref]

Clemmen, S.

Cohen, O.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Combrie, S.

Cristiani, I.

Dadap, J. I.

Dave, U. D.

De Rossi, A.

Diederich, F.

Dimitropoulos, D.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 71115 (2005).
[Crossref]

Ding, Y.

M. Xiong, Y. Ding, H. Ou, C. Peucheret, and X. Zhang, “Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator,” Front Optoelectron. 9(3), 390–394 (2016).
[Crossref]

Duchesne, D.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Dumon, P.

Dutt, A.

Elmiger, J. R.

J. R. Elmiger, R. Schieck, M. Kunst, J. R. Elmiger, R. Schieck, and M. Kunst, “Recombination at the silicon nitride / silicon interface Recombination at the silicon nitride / silicon interface,” J. Vac. Sci. Technol. A 15(4), 2418–2425 (1997).
[Crossref]

J. R. Elmiger, R. Schieck, M. Kunst, J. R. Elmiger, R. Schieck, and M. Kunst, “Recombination at the silicon nitride / silicon interface Recombination at the silicon nitride / silicon interface,” J. Vac. Sci. Technol. A 15(4), 2418–2425 (1997).
[Crossref]

Emplit, P.

Espinola, R. L.

Fedeli, J. M.

Ferrera, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Foster, M. A.

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2009).
[Crossref]

Freude, W.

Fülöp, A.

Gaeta, A. L.

Galili, M.

Gardes, F. Y.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Geiselmann, M.

Goddard, L. L.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2009).
[Crossref]

Gorza, S.-P.

Grillet, C.

Grosse, P.

Hak, D.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Hu, H.

Jalali, B.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 71115 (2005).
[Crossref]

Jeppesen, P.

Jhaveri, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 71115 (2005).
[Crossref]

Ji, H.

Ji, X.

Jost, J. D.

Khokhar, A. Z.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Kim, G.-D.

Kimerling, L. C.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Kippenberg, T. J.

Klintberg, T.

Koos, C.

Kordts, A.

Krückel, C. J.

Kumar, R.

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient CW four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photonics Technol. Lett. 25(17), 1699–1702 (2013).
[Crossref]

Kunst, M.

J. R. Elmiger, R. Schieck, M. Kunst, J. R. Elmiger, R. Schieck, and M. Kunst, “Recombination at the silicon nitride / silicon interface Recombination at the silicon nitride / silicon interface,” J. Vac. Sci. Technol. A 15(4), 2418–2425 (1997).
[Crossref]

J. R. Elmiger, R. Schieck, M. Kunst, J. R. Elmiger, R. Schieck, and M. Kunst, “Recombination at the silicon nitride / silicon interface Recombination at the silicon nitride / silicon interface,” J. Vac. Sci. Technol. A 15(4), 2418–2425 (1997).
[Crossref]

Kuyken, B.

Lacava, C.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, “Nonlinear properties of AlGaAs waveguides in continuous wave operation regime,” Opt. Express 22(5), 5291–5298 (2014).
[Crossref] [PubMed]

Lee, H.-S.

Lee, S.-S.

Lee, W.-G.

Leo, F.

Leuthold, J.

Levy, J. S.

Lim, B. T.

Lipson, M.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619–624 (2017).
[Crossref]

J. Cardenas, C. B. Poitras, K. Luke, L.-W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26(23), 2380–2382 (2014).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
[Crossref] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2009).
[Crossref]

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Little, B. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Liu, A.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Liu, Y.

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[Crossref]

Luke, K.

J. Cardenas, C. B. Poitras, K. Luke, L.-W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26(23), 2380–2382 (2014).
[Crossref]

Luo, L.-W.

J. Cardenas, C. B. Poitras, K. Luke, L.-W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26(23), 2380–2382 (2014).
[Crossref]

Massar, S.

McNab, S. J.

Menezo, S.

Minzioni, P.

Mojahedi, M.

M. Z. Alam, X. Sun, M. Mojahedi, and J. S. Aitchison, “Augmented low index waveguide for confining light in low index media,” Laser Photonics Rev. 11(3), 1500224 (2017).
[Crossref]

Monat, C.

Mookherjea, S.

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient CW four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photonics Technol. Lett. 25(17), 1699–1702 (2013).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Morthier, G.

Morton, P. A.

J. Cardenas, C. B. Poitras, K. Luke, L.-W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26(23), 2380–2382 (2014).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20(20), 22609–22615 (2012).
[Crossref] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Ng, D. K. T.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

T. Wang, D. K. T. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Ng, S. K.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

T. Wang, D. K. T. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Nicolaescu, R.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Okawachi, Y.

Ong, J. R.

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient CW four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photonics Technol. Lett. 25(17), 1699–1702 (2013).
[Crossref]

Ooi, K. J. A.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Osgood, R. M.

Ou, H.

M. Xiong, Y. Ding, H. Ou, C. Peucheret, and X. Zhang, “Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator,” Front Optoelectron. 9(3), 390–394 (2016).
[Crossref]

Oxenløwe, L. K.

Paniccia, M.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Park, C.-H.

Petropoulos, P.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Peucheret, C.

M. Xiong, Y. Ding, H. Ou, C. Peucheret, and X. Zhang, “Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator,” Front Optoelectron. 9(3), 390–394 (2016).
[Crossref]

Pfeiffer, M. H. P.

Poitras, C. B.

J. Cardenas, C. B. Poitras, K. Luke, L.-W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26(23), 2380–2382 (2014).
[Crossref]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[Crossref] [PubMed]

Pu, M.

Pusino, V.

Raineri, F.

Razzari, L.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Reed, G. T.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Richardson, D. J.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Roberts, S. P.

Roelkens, G.

Rong, H.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Saha, K.

Salem, R.

Schieck, R.

J. R. Elmiger, R. Schieck, M. Kunst, J. R. Elmiger, R. Schieck, and M. Kunst, “Recombination at the silicon nitride / silicon interface Recombination at the silicon nitride / silicon interface,” J. Vac. Sci. Technol. A 15(4), 2418–2425 (1997).
[Crossref]

J. R. Elmiger, R. Schieck, M. Kunst, J. R. Elmiger, R. Schieck, and M. Kunst, “Recombination at the silicon nitride / silicon interface Recombination at the silicon nitride / silicon interface,” J. Vac. Sci. Technol. A 15(4), 2418–2425 (1997).
[Crossref]

Scimeca, M. L.

Selvaraja, S. K.

Sipe, J. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Sorel, M.

Stankovic, S.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Sun, X.

M. Z. Alam, X. Sun, M. Mojahedi, and J. S. Aitchison, “Augmented low index waveguide for confining light in low index media,” Laser Photonics Rev. 11(3), 1500224 (2017).
[Crossref]

Tan, D. T. H.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

T. Wang, D. K. T. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Toh, Y. T.

T. Wang, D. K. T. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Torres-Company, V.

Tsang, H. K.

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[Crossref]

Turner-Foster, A. C.

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2009).
[Crossref]

Vallaitis, T.

Van Thourhout, D.

Vlasov, Y. A.

Wang, Q.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

T. Wang, D. K. T. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Wang, T.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

T. Wang, D. K. T. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Wen, Y. H.

Woo, J. C. S.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 71115 (2005).
[Crossref]

Xiong, M.

M. Xiong, Y. Ding, H. Ou, C. Peucheret, and X. Zhang, “Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator,” Front Optoelectron. 9(3), 390–394 (2016).
[Crossref]

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Zervas, M.

Zhang, X.

M. Xiong, Y. Ding, H. Ou, C. Peucheret, and X. Zhang, “Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator,” Front Optoelectron. 9(3), 390–394 (2016).
[Crossref]

Appl. Phys. Lett. (2)

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 71115 (2005).
[Crossref]

Front Optoelectron. (1)

M. Xiong, Y. Ding, H. Ou, C. Peucheret, and X. Zhang, “Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator,” Front Optoelectron. 9(3), 390–394 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. Cardenas, C. B. Poitras, K. Luke, L.-W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26(23), 2380–2382 (2014).
[Crossref]

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient CW four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photonics Technol. Lett. 25(17), 1699–1702 (2013).
[Crossref]

J. Vac. Sci. Technol. A (1)

J. R. Elmiger, R. Schieck, M. Kunst, J. R. Elmiger, R. Schieck, and M. Kunst, “Recombination at the silicon nitride / silicon interface Recombination at the silicon nitride / silicon interface,” J. Vac. Sci. Technol. A 15(4), 2418–2425 (1997).
[Crossref]

Laser Photonics Rev. (2)

T. Wang, D. K. T. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

M. Z. Alam, X. Sun, M. Mojahedi, and J. S. Aitchison, “Augmented low index waveguide for confining light in low index media,” Laser Photonics Rev. 11(3), 1500224 (2017).
[Crossref]

Nat. Commun. (1)

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Nat. Photonics (4)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2009).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Opt. Express (8)

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17(20), 17357–17368 (2009).
[Crossref] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[Crossref] [PubMed]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20(20), 22609–22615 (2012).
[Crossref] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[Crossref] [PubMed]

C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides: erratum,” Opt. Express 25(7), 7443–7444 (2017).
[Crossref] [PubMed]

G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
[Crossref] [PubMed]

U. D. Dave, B. Kuyken, F. Leo, S.-P. Gorza, S. Combrie, A. De Rossi, F. Raineri, and G. Roelkens, “Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication wavelength range,” Opt. Express 23(4), 4650–4657 (2015).
[Crossref] [PubMed]

C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, “Nonlinear properties of AlGaAs waveguides in continuous wave operation regime,” Opt. Express 22(5), 5291–5298 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Optica (2)

Sci. Rep. (1)

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[Crossref]

Other (5)

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of wavelength conversion by four wave mixing in silicon waveguides,” 2008 Conf. Quantum Electron. Laser Sci. Conf. Lasers Electro-Optics, CLEO/QELS 16(21), 16735–16745 (2008).

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishlda, and Y. Arakawa, “Nonlinear-optic silicon-nanowire waveguides,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 44(9 A), 6541–6545 (2005).

G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century (Springer, 2000), pp. 195–211.

M. Sen, T. Datta, and M. K. Das, “Effect of geometry and reverse bias on free carrier lifetime in pin structured optical rib waveguide,” in Microwave and Photonics (ICMAP),2013 International Conference On (2013), pp. 1–5.

M. Mitrovic, X. Guan, H. Ji, L. K. Oxenløwe, and L. H. Frandsen, “Four-wave mixing in silicon-rich nitride waveguides,” in Frontiers in Optics (2015), p. FM1D–6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the proposed Si/SRN hybrid-core waveguide (HCW). (b) Power ratios in Si and SRN and the effective indices of a 1200 nm-wide HCW as a function of the thickness of the Si layer. (c) TE intensity mode profile of a 1200 nm-wide HCW when hSi = 70 nm. For (b) and (c), the wavelength is 1550 nm and the thickness of SRN is fixed at 400 nm.
Fig. 2
Fig. 2 (a) SEM image of a fabricated HCW before the Al mask residual stripping. (b) Propagation loss (blue dot) and coupling loss to a lensed fiber (red cross) of the fabricated HCWs with respect to the waveguide width. (c) Measured spectrum of an HCW MRR with the waveguide width 1200 nm and a coupling gap 200 nm. (d) Close-up of the spectrum and the Lorentzian fitting curve (solid green) at the resonant wavelength around 1535.015 nm.
Fig. 3
Fig. 3 (a) Experimental setup for measuring the four-wave mixing (FWM) conversion efficiency (CE) of the presented HCWs. (b) FWM spectrum at the maximal coupled pump power of 81 mW of a fabricated HCW with a width of 1200 nm and a length of 11.5 mm. (c) Measured CE versus the coupled pump power for the waveguides with a length of 11.5 mm. Dashed lines show the linear fittings with a slope of 2. Acronyms in (a): CW, continuous wave; PC, polarization controller; EDFA, erbium-doped fiber amplifier; BPF, band-pass filter; PBS, polarization beam splitter; OSA, optical spectrum analyzer.
Fig. 4
Fig. 4 (a) Experimental setup for measuring the TPA coefficient (βTPA) using a pulsed pump. (b) Measured values (black dots) and fitted curves for different TPA coefficients (solid lines) for the output peak power as a function of the coupled input peak power. The waveguide width is 1200 nm and the length is 11.5 mm. (c) FWM CEs with respect to the coupled input peak pump power. Red dashed lines in (c) show the linear fittings with slopes of 2.

Tables (1)

Tables Icon

Table 1 Comparison of the different CMOS-compatible waveguides for nonlinear photonics.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

10log(CE)=10log( P pump L eff γ ) 2 =2*10log( P pump )+20log( L eff γ)
d(P(z)/ A eff ) dz =α( P(z) A eff ) β TPA ( P(z) A eff ) 2 γ FCA ( P(z) A eff ) 3
γ FCA =Dτ β TPA /(hν)
1 τ = 1 τ bulk + (w+2 h Si ) w h Si S SiSiO2 + w w h Si S SiSiN

Metrics