Abstract

Light-field near-eye displays can solve the accommodation/convergence conflict problem that can cause severe discomfort to the user. However, in actual systems, convergence depth and accommodation depth may not match each other due to the repeated zones or flipped images produced by traditional light-field methods. Also, Moiré fringes are another problem which is caused by interaction between two periodic structures. We present a method of constructing a light-field near-eye display based on random pinholes, where the random structure is employed as a spatial light modulator to break the periodicity of elemental images. Light-field images for a unique view zone in space without Moiré fringes can be provided. A proof-of-concept prototype has been developed to verify the proposed method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of an optical see-through light-field near-eye display using a discrete lenslet array

Cheng Yao, Dewen Cheng, Tong Yang, and Yongtian Wang
Opt. Express 26(14) 18292-18301 (2018)

Spatial loss factor for the analysis of accommodation depth cue on near-eye light field displays

Jian Zhao, Jun Xia, Qungang Ma, and Jun Wu
Opt. Express 27(24) 34582-34592 (2019)

High-resolution additive light field near-eye display by switchable Pancharatnam–Berry phase lenses

Tao Zhan, Yun-Han Lee, and Shin-Tson Wu
Opt. Express 26(4) 4863-4872 (2018)

References

  • View by:
  • |
  • |
  • |

  1. O. Cakmakci and J. Rolland, “Head-Worn Displays: A Review,” J. Disp. Technol. 2(3), 199–216 (2006).
    [Crossref]
  2. H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
    [Crossref]
  3. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis.8(3) (2008).
  4. J. P. Rolland, M. W. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
    [Crossref] [PubMed]
  5. D. Cheng, Q. Wang, Y. Wang, and G. Jin, “Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett. 11, 031201 (2013)
  6. S. Liu, Y. Li, P. Zhou, Q. Chen, and Y. Su, “Reverse-mode PSLC multi-plane optical see-through display for AR applications,” Opt. Express 26(3), 3394–3403 (2018).
    [Crossref] [PubMed]
  7. S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
    [Crossref] [PubMed]
  8. Y. Takaki and N. Fujimoto, “Flexible retinal image formation by holographic Maxwellian-view display,” Opt. Express 26(18), 22985–22999 (2018).
    [Crossref] [PubMed]
  9. J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
    [Crossref] [PubMed]
  10. C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
    [Crossref]
  11. F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2010).
  12. D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
    [Crossref]
  13. M. Liu, C. Lu, H. Li, and X. Liu, “Near eye light field display based on human visual features,” Opt. Express 25(9), 9886–9900 (2017).
    [Crossref] [PubMed]
  14. D. Chen, X. Sang, X. Yu, X. Zeng, S. Xie, and N. Guo, “Performance improvement of compressive light field display with the viewing-position-dependent weight distribution,” Opt. Express 24(26), 29781–29793 (2016).
    [Crossref] [PubMed]
  15. D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
    [Crossref]
  16. Y. Takaki and Y. Yamaguchi, “Flat-panel see-through three-dimensional display based on integral imaging,” Opt. Lett. 40(8), 1873–1876 (2015).
    [Crossref] [PubMed]
  17. A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
    [Crossref]
  18. W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using micro structure array,” Chin. Opt. Lett.12(6) (2014).
  19. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
    [Crossref] [PubMed]
  20. H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
    [Crossref] [PubMed]
  21. K. Akşit, J. Kautz, and D. Luebke, “Slim near-eye display using pinhole aperture arrays,” Appl. Opt. 54(11), 3422–3427 (2015).
    [Crossref] [PubMed]
  22. C. Yao, D. Cheng, T. Yang, and Y. Wang, “Design of an optical see-through light-field near-eye display using a discrete lenslet array,” Opt. Express 26(14), 18292–18301 (2018).
    [Crossref] [PubMed]
  23. H.-L. Zhang, H. Deng, W.-T. Yu, M.-Y. He, D.-H. Li, and Q.-H. Wang, “Tabletop augmented reality 3D display system based on integral imaging,” J. Opt. Soc. Am. B 34(5), B16–B21 (2017).
    [Crossref]
  24. Z.-L. Xiong, Q.-H. Wang, Y. Xing, H. Deng, and D.-H. Li, “Active integral imaging system based on multiple structured light method,” Opt. Express 23(21), 27094–27104 (2015).
    [Crossref] [PubMed]
  25. F. Yi, Y. Jeoung, and I. Moon, “Three-dimensional image authentication scheme using sparse phase information in double random phase encoded integral imaging,” Appl. Opt. 56(15), 4381–4387 (2017).
    [Crossref] [PubMed]
  26. H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
    [Crossref]
  27. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  28. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
    [Crossref] [PubMed]
  29. L. Wei, Y. Li, J. Jing, L. Feng, and J. Zhou, “Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface,” Opt. Express 26(7), 8550–8565 (2018).
    [Crossref] [PubMed]
  30. W. Song, D. Cheng, Z. Deng, Y. Liu, and Y. Wang, “Design and assessment of a wide FOV and high-resolution optical tiled head-mounted display,” Appl. Opt. 54(28), E15–E22 (2015).
    [Crossref] [PubMed]
  31. Á. Tolosa, R. Martinez-Cuenca, H. Navarro, G. Saavedra, M. Martínez-Corral, B. Javidi, and A. Pons, “Enhanced field-of-view integral imaging display using multi-Köhler illumination,” Opt. Express 22(26), 31853–31863 (2014).
    [Crossref] [PubMed]
  32. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
    [Crossref] [PubMed]
  33. A. Nashel and H. Fuchs, “Random hole display: A non-uniform barrier autostereoscopic display”, 2009 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video. IEEE, 2009: 1–4.
    [Crossref]
  34. V. Saveljev and S. K. Kim, “Simulation and measurement of moiré patterns at finite distance,” Opt. Express 20(3), 2163–2177 (2012).
    [Crossref] [PubMed]
  35. R. Liao and R. Dong, “A novel analytical method for moiré phenomenon in autostereoscopic displays,” SID Symp. Dig. Tech. Pap. 45(1), 1074–1076 (2015).
  36. X. Zeng, X. Zhou, T. Guo, L. Yang, E. Chen, and Y. Zhang, “Crosstalk reduction in large-scale autostereoscopic 3D-LED display based on black-stripe occupation ratio,” Opt. Commun. 389, 159–164 (2017).
    [Crossref]
  37. Y. Kim, G. Park, J. H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48(11), 2178–2187 (2009).
    [Crossref] [PubMed]
  38. E. Chen, J. Cai, X. Zeng, S. Xu, Y. Ye, Q. F. Yan, and T. Guo, “Ultra-large moiré-less autostereoscopic three-dimensional light-emitting-diode displays,” Opt. Express 27(7), 10355–10369 (2019).
    [Crossref] [PubMed]
  39. F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
    [Crossref]
  40. Y. H. Lee, T. Zhan, and S. T. Wu, “Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase deflector,” Opt. Lett. 42(22), 4732–4735 (2017).
    [Crossref] [PubMed]
  41. J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
    [Crossref]

2019 (1)

2018 (6)

2017 (8)

2016 (1)

2015 (4)

2014 (4)

Á. Tolosa, R. Martinez-Cuenca, H. Navarro, G. Saavedra, M. Martínez-Corral, B. Javidi, and A. Pons, “Enhanced field-of-view integral imaging display using multi-Köhler illumination,” Opt. Express 22(26), 31853–31863 (2014).
[Crossref] [PubMed]

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

2013 (3)

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

D. Cheng, Q. Wang, Y. Wang, and G. Jin, “Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett. 11, 031201 (2013)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[Crossref]

2010 (3)

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2010).

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

2009 (3)

2006 (1)

O. Cakmakci and J. Rolland, “Head-Worn Displays: A Review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

2000 (1)

Akeley, K.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis.8(3) (2008).

Aksit, K.

Bang, K.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Banks, M. S.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis.8(3) (2008).

Cai, J.

Cakmakci, O.

O. Cakmakci and J. Rolland, “Head-Worn Displays: A Review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Chang, C. C.

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Chellappan, K. V.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[Crossref]

Chen, D.

Chen, E.

E. Chen, J. Cai, X. Zeng, S. Xu, Y. Ye, Q. F. Yan, and T. Guo, “Ultra-large moiré-less autostereoscopic three-dimensional light-emitting-diode displays,” Opt. Express 27(7), 10355–10369 (2019).
[Crossref] [PubMed]

X. Zeng, X. Zhou, T. Guo, L. Yang, E. Chen, and Y. Zhang, “Crosstalk reduction in large-scale autostereoscopic 3D-LED display based on black-stripe occupation ratio,” Opt. Commun. 389, 159–164 (2017).
[Crossref]

Chen, K.

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2010).

Chen, Q.

Cheng, D.

C. Yao, D. Cheng, T. Yang, and Y. Wang, “Design of an optical see-through light-field near-eye display using a discrete lenslet array,” Opt. Express 26(14), 18292–18301 (2018).
[Crossref] [PubMed]

W. Song, D. Cheng, Z. Deng, Y. Liu, and Y. Wang, “Design and assessment of a wide FOV and high-resolution optical tiled head-mounted display,” Appl. Opt. 54(28), E15–E22 (2015).
[Crossref] [PubMed]

D. Cheng, Q. Wang, Y. Wang, and G. Jin, “Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett. 11, 031201 (2013)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
[Crossref] [PubMed]

W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using micro structure array,” Chin. Opt. Lett.12(6) (2014).

Chou, P. Y.

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Chuang, F. M.

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Deng, H.

Deng, Z.

Erden, E.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[Crossref]

Feng, L.

Fuchs, H.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Fujimoto, N.

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis.8(3) (2008).

Goon, A.

Guo, N.

Guo, T.

E. Chen, J. Cai, X. Zeng, S. Xu, Y. Ye, Q. F. Yan, and T. Guo, “Ultra-large moiré-less autostereoscopic three-dimensional light-emitting-diode displays,” Opt. Express 27(7), 10355–10369 (2019).
[Crossref] [PubMed]

X. Zeng, X. Zhou, T. Guo, L. Yang, E. Chen, and Y. Zhang, “Crosstalk reduction in large-scale autostereoscopic 3D-LED display based on black-stripe occupation ratio,” Opt. Commun. 389, 159–164 (2017).
[Crossref]

He, M.-Y.

Heide, F.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Hirsch, M.

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

Hoffman, D. M.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis.8(3) (2008).

Hong, K.

Hua, H.

Huang, F. C.

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2010).

Huang, H.

Huang, Y. P.

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Jang, C.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Javidi, B.

Jeoung, Y.

Jin, G.

D. Cheng, Q. Wang, Y. Wang, and G. Jin, “Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett. 11, 031201 (2013)

Jing, J.

Jung, J. H.

Kautz, J.

K. Akşit, J. Kautz, and D. Luebke, “Slim near-eye display using pinhole aperture arrays,” Appl. Opt. 54(11), 3422–3427 (2015).
[Crossref] [PubMed]

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Keller, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Kim, J.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Y. Kim, G. Park, J. H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48(11), 2178–2187 (2009).
[Crossref] [PubMed]

Kim, S. K.

Kim, Y.

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

Y. Kim, G. Park, J. H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48(11), 2178–2187 (2009).
[Crossref] [PubMed]

Kim, Y. K.

Krueger, M. W.

Lanman, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

Lee, B.

Lee, J. S.

Lee, S.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Lee, Y. H.

Li, D.-H.

Li, H.

Li, Y.

Liu, M.

Liu, S.

S. Liu, Y. Li, P. Zhou, Q. Chen, and Y. Su, “Reverse-mode PSLC multi-plane optical see-through display for AR applications,” Opt. Express 26(3), 3394–3403 (2018).
[Crossref] [PubMed]

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

Liu, X.

Liu, Y.

W. Song, D. Cheng, Z. Deng, Y. Liu, and Y. Wang, “Design and assessment of a wide FOV and high-resolution optical tiled head-mounted display,” Appl. Opt. 54(28), E15–E22 (2015).
[Crossref] [PubMed]

W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using micro structure array,” Chin. Opt. Lett.12(6) (2014).

Lo, H. H.

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Lu, C.

Luebke, D.

K. Akşit, J. Kautz, and D. Luebke, “Slim near-eye display using pinhole aperture arrays,” Appl. Opt. 54(11), 3422–3427 (2015).
[Crossref] [PubMed]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

Maimone, A.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Martínez-Corral, M.

Martinez-Cuenca, R.

Moon, I.

Moon, S.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Navarro, H.

Park, G.

Park, J.-H.

Peng, K. E.

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Pons, A.

Pulli, K.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Raskar, R.

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

Rathinavel, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Reddy, D.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Rolland, J.

O. Cakmakci and J. Rolland, “Head-Worn Displays: A Review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Rolland, J. P.

Saavedra, G.

Sang, X.

Saveljev, V.

Song, W.

W. Song, D. Cheng, Z. Deng, Y. Liu, and Y. Wang, “Design and assessment of a wide FOV and high-resolution optical tiled head-mounted display,” Appl. Opt. 54(28), E15–E22 (2015).
[Crossref] [PubMed]

W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using micro structure array,” Chin. Opt. Lett.12(6) (2014).

Su, Y.

Surman, P.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[Crossref]

Takaki, Y.

Talha, M. M.

Tolosa, Á.

Urey, H.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[Crossref]

Wang, Q.

D. Cheng, Q. Wang, Y. Wang, and G. Jin, “Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett. 11, 031201 (2013)

Wang, Q.-H.

Wang, Y.

Wei, L.

Wetzstein, G.

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2010).

Won, Y. H.

Wu, J. Y.

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Wu, S. T.

Xie, S.

Xing, Y.

Xiong, Z.-L.

Xu, S.

Yamaguchi, Y.

Yan, Q. F.

Yang, L.

X. Zeng, X. Zhou, T. Guo, L. Yang, E. Chen, and Y. Zhang, “Crosstalk reduction in large-scale autostereoscopic 3D-LED display based on black-stripe occupation ratio,” Opt. Commun. 389, 159–164 (2017).
[Crossref]

Yang, T.

Yao, C.

Ye, Y.

Yi, F.

Yu, W.-T.

Yu, X.

Zeng, X.

Zhan, T.

Zhang, H.-L.

Zhang, Y.

X. Zeng, X. Zhou, T. Guo, L. Yang, E. Chen, and Y. Zhang, “Crosstalk reduction in large-scale autostereoscopic 3D-LED display based on black-stripe occupation ratio,” Opt. Commun. 389, 159–164 (2017).
[Crossref]

Zhou, J.

Zhou, P.

Zhou, X.

X. Zeng, X. Zhou, T. Guo, L. Yang, E. Chen, and Y. Zhang, “Crosstalk reduction in large-scale autostereoscopic 3D-LED display based on black-stripe occupation ratio,” Opt. Commun. 389, 159–164 (2017).
[Crossref]

ACM Trans. Graph. (6)

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2010).

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Adv. Opt. Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Appl. Opt. (7)

Chin. Opt. Lett (1)

D. Cheng, Q. Wang, Y. Wang, and G. Jin, “Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett. 11, 031201 (2013)

IEEE Trans. Vis. Comput. Graph. (1)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

J. Disp. Technol. (1)

O. Cakmakci and J. Rolland, “Head-Worn Displays: A Review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Soc. Inf. Disp. (1)

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Opt. Commun. (1)

X. Zeng, X. Zhou, T. Guo, L. Yang, E. Chen, and Y. Zhang, “Crosstalk reduction in large-scale autostereoscopic 3D-LED display based on black-stripe occupation ratio,” Opt. Commun. 389, 159–164 (2017).
[Crossref]

Opt. Express (13)

Z.-L. Xiong, Q.-H. Wang, Y. Xing, H. Deng, and D.-H. Li, “Active integral imaging system based on multiple structured light method,” Opt. Express 23(21), 27094–27104 (2015).
[Crossref] [PubMed]

C. Yao, D. Cheng, T. Yang, and Y. Wang, “Design of an optical see-through light-field near-eye display using a discrete lenslet array,” Opt. Express 26(14), 18292–18301 (2018).
[Crossref] [PubMed]

L. Wei, Y. Li, J. Jing, L. Feng, and J. Zhou, “Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface,” Opt. Express 26(7), 8550–8565 (2018).
[Crossref] [PubMed]

E. Chen, J. Cai, X. Zeng, S. Xu, Y. Ye, Q. F. Yan, and T. Guo, “Ultra-large moiré-less autostereoscopic three-dimensional light-emitting-diode displays,” Opt. Express 27(7), 10355–10369 (2019).
[Crossref] [PubMed]

V. Saveljev and S. K. Kim, “Simulation and measurement of moiré patterns at finite distance,” Opt. Express 20(3), 2163–2177 (2012).
[Crossref] [PubMed]

Á. Tolosa, R. Martinez-Cuenca, H. Navarro, G. Saavedra, M. Martínez-Corral, B. Javidi, and A. Pons, “Enhanced field-of-view integral imaging display using multi-Köhler illumination,” Opt. Express 22(26), 31853–31863 (2014).
[Crossref] [PubMed]

S. Liu, Y. Li, P. Zhou, Q. Chen, and Y. Su, “Reverse-mode PSLC multi-plane optical see-through display for AR applications,” Opt. Express 26(3), 3394–3403 (2018).
[Crossref] [PubMed]

M. Liu, C. Lu, H. Li, and X. Liu, “Near eye light field display based on human visual features,” Opt. Express 25(9), 9886–9900 (2017).
[Crossref] [PubMed]

D. Chen, X. Sang, X. Yu, X. Zeng, S. Xie, and N. Guo, “Performance improvement of compressive light field display with the viewing-position-dependent weight distribution,” Opt. Express 24(26), 29781–29793 (2016).
[Crossref] [PubMed]

Y. Takaki and N. Fujimoto, “Flexible retinal image formation by holographic Maxwellian-view display,” Opt. Express 26(18), 22985–22999 (2018).
[Crossref] [PubMed]

J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
[Crossref] [PubMed]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. IEEE (2)

H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
[Crossref]

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[Crossref]

Other (4)

A. Nashel and H. Fuchs, “Random hole display: A non-uniform barrier autostereoscopic display”, 2009 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video. IEEE, 2009: 1–4.
[Crossref]

R. Liao and R. Dong, “A novel analytical method for moiré phenomenon in autostereoscopic displays,” SID Symp. Dig. Tech. Pap. 45(1), 1074–1076 (2015).

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis.8(3) (2008).

W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using micro structure array,” Chin. Opt. Lett.12(6) (2014).

Supplementary Material (2)

NameDescription
» Visualization 1       Repeated zones can be observed along with Moiré fringes in traditional light-field near-eye displays
» Visualization 2       No repeated zones can be observed in the proposed light-field near-eye displays using random holes, and Moiré fringes problem also be solved.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Ideal light-field near-eye displays. (b) Actual systems with the repeated zones problem.
Fig. 2
Fig. 2 Schematic diagram of the light-field near-eye display using random pinholes.
Fig. 3
Fig. 3 (a) Schematic diagram of rendering method. (b) Schematic diagram of the view zone of a light-field random-hole near-eye display.
Fig. 4
Fig. 4 (a) Schematic diagram of the designed light-field near-eye displays based on random holes. (b) Photograph of the developed prototype and the camera (that simulates human eye). (c) Photograph of the components.
Fig. 5
Fig. 5 (a) Schematic diagram of the view zones with different signal-noise ratios along with the light-field near-eye display system. The signal-noise ratio of the positions on the eye-relief of (b) 40mm, (c)50mm and (d) 60mm.
Fig. 6
Fig. 6 (a) Image of the pinhole array. (b) Enlarged image of the pinhole array. (c) Elemental image displayed in the light-field near-eye display using pinhole array. (d) Enlarged image of the elemental image. (e) Display performance in the view zone. (f) and (g) Display performance out of the view zone. (Visualization 1) (h) Image of the random holes. (i) Enlarged image of the random holes. (j) Elemental image displayed in the developed light-field near-eye display using random holes. (k) Enlarged image of the elemental image. (l) Display performance in the view zone. (m) and (n) Display performance out of the view zone. (Visualization 2)
Fig. 7
Fig. 7 Display performance using a standard test chart. (a) Elemental image displayed in the light-field near-eye display using pinhole array. (b) Display performance in the view zone. (c) and (d) Display performance out of the view zone. (e) Elemental image displayed in the developed light-field near-eye display using random holes. (f) Display performance in the view zone. (g) and (h) Display performance out of the view zone.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E i = l r 2 l r +2g ( h i + h i+1 ),
D= min i D i = min i ( l r E i g )= l r 2 l r g+ g 2 min i h i .
R=round( g l r π p 2 4 s 2 N ).

Metrics