M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).

[Crossref]

H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Tech. 62(10), 2462–2470 (2014).

[Crossref]

H. Emami, N. Sarkhosh, and M. Ashourian, “Reduced cost amplitude independent photonic RF frequency measurement system,” IEEE Microw. Wirel. Compon. Lett. 23(11), 617–619 (2013).

[Crossref]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7(1), 13004 (2016).

[Crossref]
[PubMed]

X. Zhao, C. Li, T. Li, G. Q. Hu, R. X. Li, M. Bai, T. Yasui, and Z. Zheng, “Dead-band-free, high-resolution microwave frequency measurement using a free-running triple-comb fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1101008 (2018).

[Crossref]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).

[Crossref]
[PubMed]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7(1), 13004 (2016).

[Crossref]
[PubMed]

T. Yasui, K. Hayashi, R. Ichikawa, H. Cahyadi, Y. D. Hsieh, Y. Mizutani, H. Yamamoto, T. Iwata, H. Inaba, and K. Minoshima, “Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings,” Opt. Express 23(9), 11367–11377 (2015).

[Crossref]
[PubMed]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).

[Crossref]

M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).

[Crossref]

J. X. Ma, J. J. Yu, C. X. Yu, Z. S. Jia, X. Z. Sang, Z. Zhou, T. Wang, and G. K. Chang, “Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a cross-pump configuration,” J. Lightwave Technol. 24(7), 2851–2858 (2006).

[Crossref]

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).

[Crossref]

Z. Y. Tu, A. J. Wen, Y. S. Gao, W. Chen, Z. X. Peng, and M. Chen, “A photonic technique for instantaneous microwave frequency measurement utilizing a phase modulator,” IEEE Photonics Technol. Lett. 28(24), 2795–2798 (2016).

[Crossref]

Z. Y. Tu, A. J. Wen, Y. S. Gao, W. Chen, Z. X. Peng, and M. Chen, “A photonic technique for instantaneous microwave frequency measurement utilizing a phase modulator,” IEEE Photonics Technol. Lett. 28(24), 2795–2798 (2016).

[Crossref]

X. H. Zou, H. Chi, and J. P. Yao, “Microwave frequency measurement based on optical power monitoring using a complementary optical filter pair,” IEEE Trans. Microw. Theory Tech. 57(2), 505–511 (2009).

[Crossref]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7(1), 13004 (2016).

[Crossref]
[PubMed]

J. Dai, K. Xu, X. Q. Sun, J. Niu, Q. Lv, J. Wu, X. B. Hong, W. Li, and J. T. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photonics Technol. Lett. 22(15), 1162–1164 (2010).

[Crossref]

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).

[Crossref]

M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).

[Crossref]

H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Tech. 62(10), 2462–2470 (2014).

[Crossref]

H. Emami, N. Sarkhosh, and M. Ashourian, “Reduced cost amplitude independent photonic RF frequency measurement system,” IEEE Microw. Wirel. Compon. Lett. 23(11), 617–619 (2013).

[Crossref]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform,” Opt. Express 16(18), 13707–13712 (2008).

[Crossref]
[PubMed]

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).

[Crossref]

Z. Y. Tu, A. J. Wen, Y. S. Gao, W. Chen, Z. X. Peng, and M. Chen, “A photonic technique for instantaneous microwave frequency measurement utilizing a phase modulator,” IEEE Photonics Technol. Lett. 28(24), 2795–2798 (2016).

[Crossref]

M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).

[Crossref]

T. Yasui, K. Hayashi, R. Ichikawa, H. Cahyadi, Y. D. Hsieh, Y. Mizutani, H. Yamamoto, T. Iwata, H. Inaba, and K. Minoshima, “Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings,” Opt. Express 23(9), 11367–11377 (2015).

[Crossref]
[PubMed]

J. Dai, K. Xu, X. Q. Sun, J. Niu, Q. Lv, J. Wu, X. B. Hong, W. Li, and J. T. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photonics Technol. Lett. 22(15), 1162–1164 (2010).

[Crossref]

T. Yasui, K. Hayashi, R. Ichikawa, H. Cahyadi, Y. D. Hsieh, Y. Mizutani, H. Yamamoto, T. Iwata, H. Inaba, and K. Minoshima, “Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings,” Opt. Express 23(9), 11367–11377 (2015).

[Crossref]
[PubMed]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).

[Crossref]
[PubMed]

X. Zhao, C. Li, T. Li, G. Q. Hu, R. X. Li, M. Bai, T. Yasui, and Z. Zheng, “Dead-band-free, high-resolution microwave frequency measurement using a free-running triple-comb fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1101008 (2018).

[Crossref]

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).

[Crossref]

T. Yasui, K. Hayashi, R. Ichikawa, H. Cahyadi, Y. D. Hsieh, Y. Mizutani, H. Yamamoto, T. Iwata, H. Inaba, and K. Minoshima, “Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings,” Opt. Express 23(9), 11367–11377 (2015).

[Crossref]
[PubMed]

T. Yasui, K. Hayashi, R. Ichikawa, H. Cahyadi, Y. D. Hsieh, Y. Mizutani, H. Yamamoto, T. Iwata, H. Inaba, and K. Minoshima, “Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings,” Opt. Express 23(9), 11367–11377 (2015).

[Crossref]
[PubMed]

T. Yasui, K. Hayashi, R. Ichikawa, H. Cahyadi, Y. D. Hsieh, Y. Mizutani, H. Yamamoto, T. Iwata, H. Inaba, and K. Minoshima, “Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings,” Opt. Express 23(9), 11367–11377 (2015).

[Crossref]
[PubMed]

J. X. Ma, J. J. Yu, C. X. Yu, Z. S. Jia, X. Z. Sang, Z. Zhou, T. Wang, and G. K. Chang, “Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a cross-pump configuration,” J. Lightwave Technol. 24(7), 2851–2858 (2006).

[Crossref]

M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).

[Crossref]

X. Zhao, C. Li, T. Li, G. Q. Hu, R. X. Li, M. Bai, T. Yasui, and Z. Zheng, “Dead-band-free, high-resolution microwave frequency measurement using a free-running triple-comb fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1101008 (2018).

[Crossref]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).

[Crossref]
[PubMed]

X. H. Zou, S. J. Zhang, H. Wang, Z. Y. Zhang, J. J. Li, Y. L. Zhang, S. Liu, and Y. Liu, “Microwave photonic harmonic down-conversion based on cascaded four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics J. 10(1), 5500308 (2018).

[Crossref]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7(1), 13004 (2016).

[Crossref]
[PubMed]

X. Zhao, C. Li, T. Li, G. Q. Hu, R. X. Li, M. Bai, T. Yasui, and Z. Zheng, “Dead-band-free, high-resolution microwave frequency measurement using a free-running triple-comb fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1101008 (2018).

[Crossref]

X. Zhao, C. Li, T. Li, G. Q. Hu, R. X. Li, M. Bai, T. Yasui, and Z. Zheng, “Dead-band-free, high-resolution microwave frequency measurement using a free-running triple-comb fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1101008 (2018).

[Crossref]

J. Dai, K. Xu, X. Q. Sun, J. Niu, Q. Lv, J. Wu, X. B. Hong, W. Li, and J. T. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photonics Technol. Lett. 22(15), 1162–1164 (2010).

[Crossref]

J. Dai, K. Xu, X. Q. Sun, J. Niu, Q. Lv, J. Wu, X. B. Hong, W. Li, and J. T. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photonics Technol. Lett. 22(15), 1162–1164 (2010).

[Crossref]

X. H. Zou, S. J. Zhang, H. Wang, Z. Y. Zhang, J. J. Li, Y. L. Zhang, S. Liu, and Y. Liu, “Microwave photonic harmonic down-conversion based on cascaded four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics J. 10(1), 5500308 (2018).

[Crossref]

X. H. Zou, S. J. Zhang, H. Wang, Z. Y. Zhang, J. J. Li, Y. L. Zhang, S. Liu, and Y. Liu, “Microwave photonic harmonic down-conversion based on cascaded four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics J. 10(1), 5500308 (2018).

[Crossref]

H. Wang, S. J. Zhang, X. H. Zou, Z. Y. Zhang, Y. L. Zhang, and Y. Liu, “Photonic microwave frequency measurement based on frequency-configurable pilot tones,” IEEE Photonics Technol. Lett. 30(4), 363–366 (2018).

[Crossref]

Y. Ma, D. Liang, D. Peng, Z. Zhang, Y. Zhang, S. Zhang, and Y. Liu, “Broadband high-resolution microwave frequency measurement based on low-speed photonic analog-to-digital converters,” Opt. Express 25(3), 2355–2368 (2017).

[Crossref]
[PubMed]

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photonics J. 6(4), 5501008 (2014).

X. H. Zou, B. Lu, W. Pan, L. S. Yan, A. Stöhr, and J. P. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).

[Crossref]

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photonics J. 6(4), 5501008 (2014).

J. Dai, K. Xu, X. Q. Sun, J. Niu, Q. Lv, J. Wu, X. B. Hong, W. Li, and J. T. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photonics Technol. Lett. 22(15), 1162–1164 (2010).

[Crossref]

J. X. Ma, J. J. Yu, C. X. Yu, Z. S. Jia, X. Z. Sang, Z. Zhou, T. Wang, and G. K. Chang, “Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a cross-pump configuration,” J. Lightwave Technol. 24(7), 2851–2858 (2006).

[Crossref]

M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).

[Crossref]

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photonics Technol. Lett. 25(9), 837–840 (2013).

[Crossref]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).

[Crossref]
[PubMed]

T. Yasui, K. Hayashi, R. Ichikawa, H. Cahyadi, Y. D. Hsieh, Y. Mizutani, H. Yamamoto, T. Iwata, H. Inaba, and K. Minoshima, “Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings,” Opt. Express 23(9), 11367–11377 (2015).

[Crossref]
[PubMed]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).

[Crossref]
[PubMed]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).

[Crossref]
[PubMed]

T. Yasui, K. Hayashi, R. Ichikawa, H. Cahyadi, Y. D. Hsieh, Y. Mizutani, H. Yamamoto, T. Iwata, H. Inaba, and K. Minoshima, “Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings,” Opt. Express 23(9), 11367–11377 (2015).

[Crossref]
[PubMed]

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).

[Crossref]

M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).

[Crossref]

J. Dai, K. Xu, X. Q. Sun, J. Niu, Q. Lv, J. Wu, X. B. Hong, W. Li, and J. T. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photonics Technol. Lett. 22(15), 1162–1164 (2010).

[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).

[Crossref]

M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).

[Crossref]

B. W. Zhang, X. C. Wang, and S. L. Pan, “Photonics-based instantaneous multi-parameter measurement of a linear frequency modulation microwave signal,” J. Lightwave Technol. 36(13), 2589–2596 (2018).

[Crossref]

S. L. Pan and J. P. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).

[Crossref]

S. L. Pan and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photonics Technol. Lett. 22(19), 1437–1439 (2010).

[Crossref]

X. H. Zou, S. L. Pan, and J. P. Yao, “Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation,” J. Lightwave Technol. 27(23), 5314–5320 (2009).

[Crossref]

X. H. Zou, B. Lu, W. Pan, L. S. Yan, A. Stöhr, and J. P. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).

[Crossref]

Z. Y. Tu, A. J. Wen, Y. S. Gao, W. Chen, Z. X. Peng, and M. Chen, “A photonic technique for instantaneous microwave frequency measurement utilizing a phase modulator,” IEEE Photonics Technol. Lett. 28(24), 2795–2798 (2016).

[Crossref]

J. X. Ma, J. J. Yu, C. X. Yu, Z. S. Jia, X. Z. Sang, Z. Zhou, T. Wang, and G. K. Chang, “Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a cross-pump configuration,” J. Lightwave Technol. 24(7), 2851–2858 (2006).

[Crossref]

H. Emami, N. Sarkhosh, and M. Ashourian, “Reduced cost amplitude independent photonic RF frequency measurement system,” IEEE Microw. Wirel. Compon. Lett. 23(11), 617–619 (2013).

[Crossref]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform,” Opt. Express 16(18), 13707–13712 (2008).

[Crossref]
[PubMed]

X. H. Zou, B. Lu, W. Pan, L. S. Yan, A. Stöhr, and J. P. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).

[Crossref]

J. Dai, K. Xu, X. Q. Sun, J. Niu, Q. Lv, J. Wu, X. B. Hong, W. Li, and J. T. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photonics Technol. Lett. 22(15), 1162–1164 (2010).

[Crossref]

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).

[Crossref]

Z. Y. Tu, A. J. Wen, Y. S. Gao, W. Chen, Z. X. Peng, and M. Chen, “A photonic technique for instantaneous microwave frequency measurement utilizing a phase modulator,” IEEE Photonics Technol. Lett. 28(24), 2795–2798 (2016).

[Crossref]

H. Wang, S. J. Zhang, X. H. Zou, Z. Y. Zhang, Y. L. Zhang, and Y. Liu, “Photonic microwave frequency measurement based on frequency-configurable pilot tones,” IEEE Photonics Technol. Lett. 30(4), 363–366 (2018).

[Crossref]

X. H. Zou, S. J. Zhang, H. Wang, Z. Y. Zhang, J. J. Li, Y. L. Zhang, S. Liu, and Y. Liu, “Microwave photonic harmonic down-conversion based on cascaded four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics J. 10(1), 5500308 (2018).

[Crossref]

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photonics J. 6(4), 5501008 (2014).

J. X. Ma, J. J. Yu, C. X. Yu, Z. S. Jia, X. Z. Sang, Z. Zhou, T. Wang, and G. K. Chang, “Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a cross-pump configuration,” J. Lightwave Technol. 24(7), 2851–2858 (2006).

[Crossref]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7(1), 13004 (2016).

[Crossref]
[PubMed]

Z. Y. Tu, A. J. Wen, Y. S. Gao, W. Chen, Z. X. Peng, and M. Chen, “A photonic technique for instantaneous microwave frequency measurement utilizing a phase modulator,” IEEE Photonics Technol. Lett. 28(24), 2795–2798 (2016).

[Crossref]

J. Dai, K. Xu, X. Q. Sun, J. Niu, Q. Lv, J. Wu, X. B. Hong, W. Li, and J. T. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photonics Technol. Lett. 22(15), 1162–1164 (2010).

[Crossref]

J. Dai, K. Xu, X. Q. Sun, J. Niu, Q. Lv, J. Wu, X. B. Hong, W. Li, and J. T. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photonics Technol. Lett. 22(15), 1162–1164 (2010).

[Crossref]

T. Yasui, K. Hayashi, R. Ichikawa, H. Cahyadi, Y. D. Hsieh, Y. Mizutani, H. Yamamoto, T. Iwata, H. Inaba, and K. Minoshima, “Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings,” Opt. Express 23(9), 11367–11377 (2015).

[Crossref]
[PubMed]

X. H. Zou, B. Lu, W. Pan, L. S. Yan, A. Stöhr, and J. P. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).

[Crossref]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).

[Crossref]
[PubMed]

S. L. Pan and J. P. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).

[Crossref]

X. H. Zou, B. Lu, W. Pan, L. S. Yan, A. Stöhr, and J. P. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).

[Crossref]

S. L. Pan and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photonics Technol. Lett. 22(19), 1437–1439 (2010).

[Crossref]

X. H. Zou, S. L. Pan, and J. P. Yao, “Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation,” J. Lightwave Technol. 27(23), 5314–5320 (2009).

[Crossref]

X. H. Zou, H. Chi, and J. P. Yao, “Microwave frequency measurement based on optical power monitoring using a complementary optical filter pair,” IEEE Trans. Microw. Theory Tech. 57(2), 505–511 (2009).

[Crossref]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).

[Crossref]

X. Zhao, C. Li, T. Li, G. Q. Hu, R. X. Li, M. Bai, T. Yasui, and Z. Zheng, “Dead-band-free, high-resolution microwave frequency measurement using a free-running triple-comb fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1101008 (2018).

[Crossref]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).

[Crossref]
[PubMed]

T. Yasui, K. Hayashi, R. Ichikawa, H. Cahyadi, Y. D. Hsieh, Y. Mizutani, H. Yamamoto, T. Iwata, H. Inaba, and K. Minoshima, “Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings,” Opt. Express 23(9), 11367–11377 (2015).

[Crossref]
[PubMed]

J. X. Ma, J. J. Yu, C. X. Yu, Z. S. Jia, X. Z. Sang, Z. Zhou, T. Wang, and G. K. Chang, “Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a cross-pump configuration,” J. Lightwave Technol. 24(7), 2851–2858 (2006).

[Crossref]

J. X. Ma, J. J. Yu, C. X. Yu, Z. S. Jia, X. Z. Sang, Z. Zhou, T. Wang, and G. K. Chang, “Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a cross-pump configuration,” J. Lightwave Technol. 24(7), 2851–2858 (2006).

[Crossref]

X. H. Zou, S. J. Zhang, H. Wang, Z. Y. Zhang, J. J. Li, Y. L. Zhang, S. Liu, and Y. Liu, “Microwave photonic harmonic down-conversion based on cascaded four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics J. 10(1), 5500308 (2018).

[Crossref]

H. Wang, S. J. Zhang, X. H. Zou, Z. Y. Zhang, Y. L. Zhang, and Y. Liu, “Photonic microwave frequency measurement based on frequency-configurable pilot tones,” IEEE Photonics Technol. Lett. 30(4), 363–366 (2018).

[Crossref]

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photonics J. 6(4), 5501008 (2014).

Y. Ma, D. Liang, D. Peng, Z. Zhang, Y. Zhang, S. Zhang, and Y. Liu, “Broadband high-resolution microwave frequency measurement based on low-speed photonic analog-to-digital converters,” Opt. Express 25(3), 2355–2368 (2017).

[Crossref]
[PubMed]

M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).

[Crossref]

H. Wang, S. J. Zhang, X. H. Zou, Z. Y. Zhang, Y. L. Zhang, and Y. Liu, “Photonic microwave frequency measurement based on frequency-configurable pilot tones,” IEEE Photonics Technol. Lett. 30(4), 363–366 (2018).

[Crossref]

X. H. Zou, S. J. Zhang, H. Wang, Z. Y. Zhang, J. J. Li, Y. L. Zhang, S. Liu, and Y. Liu, “Microwave photonic harmonic down-conversion based on cascaded four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics J. 10(1), 5500308 (2018).

[Crossref]

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photonics J. 6(4), 5501008 (2014).

X. H. Zou, S. J. Zhang, H. Wang, Z. Y. Zhang, J. J. Li, Y. L. Zhang, S. Liu, and Y. Liu, “Microwave photonic harmonic down-conversion based on cascaded four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics J. 10(1), 5500308 (2018).

[Crossref]

H. Wang, S. J. Zhang, X. H. Zou, Z. Y. Zhang, Y. L. Zhang, and Y. Liu, “Photonic microwave frequency measurement based on frequency-configurable pilot tones,” IEEE Photonics Technol. Lett. 30(4), 363–366 (2018).

[Crossref]

X. Zhao, C. Li, T. Li, G. Q. Hu, R. X. Li, M. Bai, T. Yasui, and Z. Zheng, “Dead-band-free, high-resolution microwave frequency measurement using a free-running triple-comb fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1101008 (2018).

[Crossref]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).

[Crossref]
[PubMed]

X. Zhao, C. Li, T. Li, G. Q. Hu, R. X. Li, M. Bai, T. Yasui, and Z. Zheng, “Dead-band-free, high-resolution microwave frequency measurement using a free-running triple-comb fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1101008 (2018).

[Crossref]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).

[Crossref]
[PubMed]

J. X. Ma, J. J. Yu, C. X. Yu, Z. S. Jia, X. Z. Sang, Z. Zhou, T. Wang, and G. K. Chang, “Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a cross-pump configuration,” J. Lightwave Technol. 24(7), 2851–2858 (2006).

[Crossref]

X. H. Zou, S. J. Zhang, H. Wang, Z. Y. Zhang, J. J. Li, Y. L. Zhang, S. Liu, and Y. Liu, “Microwave photonic harmonic down-conversion based on cascaded four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics J. 10(1), 5500308 (2018).

[Crossref]

H. Wang, S. J. Zhang, X. H. Zou, Z. Y. Zhang, Y. L. Zhang, and Y. Liu, “Photonic microwave frequency measurement based on frequency-configurable pilot tones,” IEEE Photonics Technol. Lett. 30(4), 363–366 (2018).

[Crossref]

X. H. Zou, B. Lu, W. Pan, L. S. Yan, A. Stöhr, and J. P. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).

[Crossref]

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photonics J. 6(4), 5501008 (2014).

X. H. Zou, H. Chi, and J. P. Yao, “Microwave frequency measurement based on optical power monitoring using a complementary optical filter pair,” IEEE Trans. Microw. Theory Tech. 57(2), 505–511 (2009).

[Crossref]

X. H. Zou, S. L. Pan, and J. P. Yao, “Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation,” J. Lightwave Technol. 27(23), 5314–5320 (2009).

[Crossref]