Abstract

Inorganic scintillating material used in optical fibre sensors (OFS) when used as dosimeters for measuring percentage depth dose (PDD) characteristics have exhibited significant differences when compared to those measured using an ionization chamber (IC), which is the clinical gold standard for quality assurance (QA) assessments. The percentage difference between the two measurements is as high as 16.5% for a 10 × 10 cm2 field at 10 cm depth below the surface. Two reasons have been suggested for this: the presence of an energy effect and Cerenkov radiation. These two factors are analysed in detail and evaluated quantitatively. It is established that the influence of the energy effect is only a maximum of 2.5% difference for a beam size 10 × 10 cm2 compared with the measured ionization chamber values. And the influence of the Cerenkov radiation is less than 0.14% in an inorganic scintillating material in the case of OFS when using Gd2O2S:Tb as the luminescent material. Therefore, there must be other mechanisms leading to over-response. The luminescence mechanism of inorganic scintillating material is theoretically analysed and a new model is proposed and validated that helps explain the over-response phenomenon.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Embedded structure fiber-optic radiation dosimeter for radiotherapy applications

Qin Zhuang, Hu Yaosheng, Ma Yu, Zhao Wenhui, Sun Weimin, Zhang Daxin, Chen Ziyin, and Lewis Elfed
Opt. Express 24(5) 5172-5185 (2016)

Water-equivalent fiber radiation dosimeter with two scintillating materials

Zhuang Qin, Yaosheng Hu, Yu Ma, Wei Lin, Xianping Luo, Wenhui Zhao, Weimin Sun, Daxin Zhang, Ziyin Chen, Boran Wang, and Elfed Lewis
Biomed. Opt. Express 7(12) 4919-4927 (2016)

Simultaneous measurements of pure scintillation and Cerenkov signals in an integrated fiber-optic dosimeter for electron beam therapy dosimetry

Wook Jae Yoo, Sang Hun Shin, Dayeong Jeon, Seunghan Hong, Seon Geun Kim, Hyeok In Sim, Kyoung Won Jang, Seunghyun Cho, and Bongsoo Lee
Opt. Express 21(23) 27770-27779 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. Mijnheer, S. Beddar, J. Izewska, and C. Reft, “In vivo dosimetry in external beam radiotherapy,” Med. Phys. 40(7), 070903 (2013).
    [Crossref] [PubMed]
  2. E. B. Podgorsak, Radiation Oncology Physis: A Handbook for Teachers and Students (International Atomic Energy Agency, 2005), Chap. 2.
  3. J. Shafiq, M. Barton, D. Noble, C. Lemer, and L. J. Donaldson, “An international review of patient safety measures in radiotherapy practice,” Radiother. Oncol. 92(1), 15–21 (2009).
    [Crossref] [PubMed]
  4. J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, and N. Suchowerska, “In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector,” Med. Phys. 34(5), 1759–1765 (2007).
    [Crossref] [PubMed]
  5. C. R. Edwards, S. Green, J. E. Palethorpe, and P. J. Mountford, “The response of a MOSFET, p-type semiconductor and LiF TLD to quasi-monoenergetic x-rays,” Phys. Med. Biol. 42(12), 2383–2391 (1997).
    [Crossref] [PubMed]
  6. D. Manigandan, G. Bharanidharan, P. Aruna, K. Devan, D. Elangovan, V. Patil, R. Tamilarasan, S. Vasanthan, and S. Ganesan, “Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams,” Phys. Med. 25(3), 141–147 (2009).
    [Crossref] [PubMed]
  7. D. E. Hyer, R. F. Fisher, and D. E. Hintenlang, “Characterization of a water-equivalent fiber-optic coupled dosimeter for use in diagnostic radiology,” Med. Phys. 36(5), 1711–1716 (2009).
    [Crossref] [PubMed]
  8. L. A. Benevides, A. L. Huston, B. L. Justus, P. Falkenstein, L. F. Brateman, and D. E. Hintenlang, “Characterization of a fiber-optic-coupled radioluminescent detector for application in the mammography energy range,” Med. Phys. 34, 2220–2227 (2007).
    [Crossref] [PubMed]
  9. A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37(10), 1883–1900 (1992).
    [Crossref] [PubMed]
  10. A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37(10), 1901–1913 (1992).
    [Crossref] [PubMed]
  11. D. Flühs, M. Heintz, F. Indenkämpen, C. Wieczorek, H. Kolanoski, and U. Quast, “Direct reading measurement of absorbed dose with plastic scintillators--the general concept and applications to ophthalmic plaque dosimetry,” Med. Phys. 23(3), 427–434 (1996).
    [Crossref] [PubMed]
  12. A. S. Beddar, T. J. Kinsella, A. Ikhlef, and C. H. Sibata, “A miniature ‘scintillator-fiberoptic-PMT’ detector system for the dosimetry of small fields in stereotactic radiosurgery,” IEEE Trans. Nucl. Sci. 48(3), 924–928 (2001).
    [Crossref]
  13. M. A. Clift, R. A. Sutton, and D. V. Webb, “Dealing with Cerenkov radiation generated in organic scintillator dosimeters by bremsstrahlung beams,” Phys. Med. Biol. 45(5), 1165–1182 (2000).
    [Crossref] [PubMed]
  14. A. S. Beddar, “Plastic scintillation dosimetry and its application to radiotherapy,” Radiat. Meas. 41, S124–S133 (2006).
    [Crossref]
  15. S. Beddar, “On possible temperature dependence of plastic scintillator response,” Med. Phys. 39(10), 6522 (2012).
    [Crossref] [PubMed]
  16. S. Buranurak, C. E. Andersen, A. R. Beierholm, and L. R. Lindvold, “Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry,” Radiat. Meas. 56, 307–311 (2013).
    [Crossref]
  17. J. A. Tanyi, S. P. Krafft, T. Ushino, A. L. Huston, and B. L. Justus, “Performance characteristics of a gated fiber-optic-coupled dosimeter in high-energy pulsed photon radiation dosimetry,” Appl. Radiat. Isot. 68(2), 364–369 (2010).
    [Crossref] [PubMed]
  18. L. Wootton and S. Beddar, “Temperature dependence of BCF plastic scintillation detectors,” Phys. Med. Biol. 58(9), 2955–2967 (2013).
    [Crossref] [PubMed]
  19. J. Y. Huang, D. S. Followill, X. A. Wang, and S. F. Kry, “Accuracy and sources of error of out-of field dose calculations by a commercial treatment planning system for intensity-modulated radiation therapy treatments,” J. Appl. Clin. Med. Phys. 14(2), 4139 (2013).
    [Crossref] [PubMed]
  20. M. Alharbi, M. Martyn, L. X. Chen, S. Gillespie, P. Woulfe, S. O’Keeffe, and M. Foley, “Novel optical fibre sensors and their applications in radiotherapy,” Proc. SPIE 10680, 106800Z (2018).
  21. Q. Zhuang, H. Yaosheng, M. Yu, Z. Wenhui, S. Weimin, Z. Daxin, C. Ziyin, and L. Elfed, “Embedded structure fiber-optic radiation dosimeter for radiotherapy applications,” Opt. Express 24(5), 5172–5185 (2016).
    [Crossref] [PubMed]
  22. S. O’Keeffe, W. H. Zhao, W. M. Sun, D. X. Zhang, Z. Qin, Z. Y. Chen, Y. Ma, and E. Lewis, “An optical fibre-based sensor for real-time monitoring of clinical linear accelerator radiotherapy delivery,” IEEE J. Sel. Top. Quant. 22(3), 5600108 (2016).
    [Crossref]
  23. C. Penner, C. Hoehr, S. O’Keeffe, P. Woulfe, and C. Duzenli, “Characterization of a Terbium-activated Gadolinium Oxysulfide plastic optical fiber sensor in photons and protons,” IEEE Sens. J. 18(4), 1513–1519 (2018).
    [Crossref]
  24. D. W. O. Rogers, B. Walters, and I. Kawrakow, BEAMnrc Users Manual (National Research Council of Canada, 2013).
  25. B. Walters, I. Kawrakow, and D. W. O. Rogers, DOSXYZnrc Users Manual (National Research Council of Canada, 2005).
  26. N. Martínez, A. Rucci, J. Marcazzó, P. Molina, M. Santiago, and W. Cravero, “Characterization of YVO4 :Eu3+ scintillator as detector for Fiber Optic Dosimetry,” Radiat. Meas. 106, 650–656 (2017).
    [Crossref]
  27. N. Martínez, T. Teichmann, P. Molina, M. Sommer, M. Santiago, J. Henniger, and E. Caselli, “Scintillation properties of the YVO4:Eu3+ compound in powder form: its application to dosimetry in radiation fields produced by pulsed mega-voltage photon beams,” Z. Med. Phys. 25(4), 368–374 (2015).
    [Crossref] [PubMed]
  28. M. Ramírez, N. Martínez, J. Marcazzó, P. Molina, D. Feld, and M. Santiago, “Performance of ZnSe(Te) as fiberoptic dosimetry detector,” Appl. Radiat. Isot. 116, 1–7 (2016).
    [Crossref] [PubMed]
  29. K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, C. Jeong, B. J. Min, D. Shin, T. Misawa, and B. Lee, “Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry,” J. Biomed. Opt. 18(2), 027001 (2013).
    [Crossref] [PubMed]
  30. J. Wuerfel, “Dose measurements in small fields,” Med. Phys. Internat. 1(1), 81–90 (2013).
  31. C. R. Edwards and P. J. Mountford, “Near surface photon energy spectra outside a 6 MV field edge,” Phys. Med. Biol. 49(18), N293–N301 (2004).
    [Crossref] [PubMed]
  32. G. X. Ding, “Energy spectra, angular spread, fluence profiles and dose distributions of 6 and 18 MV photon beams: results of monte carlo simulations for a varian 2100EX accelerator,” Phys. Med. Biol. 47(7), 1025–1046 (2002).
    [Crossref] [PubMed]
  33. M. S. Teixeira, D. V. S. Batista, D. Braz, and L. A. R. da Rosa, “Monte Carlo simulation of Novalis Classic 6 MV accelerator using phase space generation in GATE/Geant4 code,” Prog. Nucl. Energy 110, 142–147 (2019).
    [Crossref]
  34. A. Skrobala, S. Adamczyk, M. Kruszyna-Mochalska, M. Skórska, A. Konefał, W. Suchorska, K. Zaleska, A. Kowalik, W. Jackowiak, and J. Malicki, “Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods,” Cancer Radiother. 21(5), 352–357 (2017).
    [Crossref] [PubMed]
  35. J. Dutreix, A. Dutreix, and M. Tubiana, “Electronic Equilibrium and Transition Stages,” Phys. Med. Biol. 10(2), 177–190 (1965).
    [Crossref] [PubMed]
  36. J. R. Greening, Fundamentals of Radiation Dosimetry (CRC Press, 2017).
  37. Z. W. Bell and L. A. Boatner, “Neutron detection via the Cherenkov effect,” IEEE Trans. Nucl. Sci. 57(6), 3800–3806 (2010).
  38. W. R. Hendee, G. S. Ibbott, and E. G. Hendee, Radiation Therapy Physics (New York, 2005).
  39. E. I. Gorokhova, V. A. Demidenko, S. B. Mikhrin, P. A. Rodnyi, and C. W. E. van Eijk, “Luminescence and scintillation properties of Gd2O2S:Tb, Ce ceramics,” IEEE Trans. Nucl. Sci. 52(6), 862827 (2005).
    [Crossref]
  40. Z. H. Xu, Y. X. Li, Z. F. Liu, and D. Wang, “UV and X-ray excited luminescence of Tb3+-doped ZnGa2O4 phosphors,” J. Alloys Compd. 391(1-2), 202–205 (2005).
    [Crossref]
  41. A. Mahmoudi, G. Geraily, A. Shirazi, and T. H. Nia, “Penumbra reduction technique and factors affecting it in radiotherapy machines – Review study,” Radiat. Phys. Chem. 157, 22–27 (2019).
    [Crossref]
  42. C. R. Edwards and P. J. Mountford, “Near surface photon energy spectra outside a 6 MV field edge,” Phys. Med. Biol. 49(18), N293–N301 (2004).
    [Crossref] [PubMed]
  43. Z. Qin, Y. Hu, Y. Ma, W. Lin, X. Luo, W. Zhao, W. Sun, D. Zhang, Z. Chen, B. Wang, and E. Lewis, “Water-equivalent fiber radiation dosimeter with two scintillating materials,” Biomed. Opt. Express 7(12), 4919–4927 (2016).
    [Crossref] [PubMed]

2019 (2)

M. S. Teixeira, D. V. S. Batista, D. Braz, and L. A. R. da Rosa, “Monte Carlo simulation of Novalis Classic 6 MV accelerator using phase space generation in GATE/Geant4 code,” Prog. Nucl. Energy 110, 142–147 (2019).
[Crossref]

A. Mahmoudi, G. Geraily, A. Shirazi, and T. H. Nia, “Penumbra reduction technique and factors affecting it in radiotherapy machines – Review study,” Radiat. Phys. Chem. 157, 22–27 (2019).
[Crossref]

2018 (2)

M. Alharbi, M. Martyn, L. X. Chen, S. Gillespie, P. Woulfe, S. O’Keeffe, and M. Foley, “Novel optical fibre sensors and their applications in radiotherapy,” Proc. SPIE 10680, 106800Z (2018).

C. Penner, C. Hoehr, S. O’Keeffe, P. Woulfe, and C. Duzenli, “Characterization of a Terbium-activated Gadolinium Oxysulfide plastic optical fiber sensor in photons and protons,” IEEE Sens. J. 18(4), 1513–1519 (2018).
[Crossref]

2017 (2)

N. Martínez, A. Rucci, J. Marcazzó, P. Molina, M. Santiago, and W. Cravero, “Characterization of YVO4 :Eu3+ scintillator as detector for Fiber Optic Dosimetry,” Radiat. Meas. 106, 650–656 (2017).
[Crossref]

A. Skrobala, S. Adamczyk, M. Kruszyna-Mochalska, M. Skórska, A. Konefał, W. Suchorska, K. Zaleska, A. Kowalik, W. Jackowiak, and J. Malicki, “Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods,” Cancer Radiother. 21(5), 352–357 (2017).
[Crossref] [PubMed]

2016 (4)

Q. Zhuang, H. Yaosheng, M. Yu, Z. Wenhui, S. Weimin, Z. Daxin, C. Ziyin, and L. Elfed, “Embedded structure fiber-optic radiation dosimeter for radiotherapy applications,” Opt. Express 24(5), 5172–5185 (2016).
[Crossref] [PubMed]

Z. Qin, Y. Hu, Y. Ma, W. Lin, X. Luo, W. Zhao, W. Sun, D. Zhang, Z. Chen, B. Wang, and E. Lewis, “Water-equivalent fiber radiation dosimeter with two scintillating materials,” Biomed. Opt. Express 7(12), 4919–4927 (2016).
[Crossref] [PubMed]

S. O’Keeffe, W. H. Zhao, W. M. Sun, D. X. Zhang, Z. Qin, Z. Y. Chen, Y. Ma, and E. Lewis, “An optical fibre-based sensor for real-time monitoring of clinical linear accelerator radiotherapy delivery,” IEEE J. Sel. Top. Quant. 22(3), 5600108 (2016).
[Crossref]

M. Ramírez, N. Martínez, J. Marcazzó, P. Molina, D. Feld, and M. Santiago, “Performance of ZnSe(Te) as fiberoptic dosimetry detector,” Appl. Radiat. Isot. 116, 1–7 (2016).
[Crossref] [PubMed]

2015 (1)

N. Martínez, T. Teichmann, P. Molina, M. Sommer, M. Santiago, J. Henniger, and E. Caselli, “Scintillation properties of the YVO4:Eu3+ compound in powder form: its application to dosimetry in radiation fields produced by pulsed mega-voltage photon beams,” Z. Med. Phys. 25(4), 368–374 (2015).
[Crossref] [PubMed]

2013 (6)

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, C. Jeong, B. J. Min, D. Shin, T. Misawa, and B. Lee, “Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry,” J. Biomed. Opt. 18(2), 027001 (2013).
[Crossref] [PubMed]

J. Wuerfel, “Dose measurements in small fields,” Med. Phys. Internat. 1(1), 81–90 (2013).

B. Mijnheer, S. Beddar, J. Izewska, and C. Reft, “In vivo dosimetry in external beam radiotherapy,” Med. Phys. 40(7), 070903 (2013).
[Crossref] [PubMed]

S. Buranurak, C. E. Andersen, A. R. Beierholm, and L. R. Lindvold, “Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry,” Radiat. Meas. 56, 307–311 (2013).
[Crossref]

L. Wootton and S. Beddar, “Temperature dependence of BCF plastic scintillation detectors,” Phys. Med. Biol. 58(9), 2955–2967 (2013).
[Crossref] [PubMed]

J. Y. Huang, D. S. Followill, X. A. Wang, and S. F. Kry, “Accuracy and sources of error of out-of field dose calculations by a commercial treatment planning system for intensity-modulated radiation therapy treatments,” J. Appl. Clin. Med. Phys. 14(2), 4139 (2013).
[Crossref] [PubMed]

2012 (1)

S. Beddar, “On possible temperature dependence of plastic scintillator response,” Med. Phys. 39(10), 6522 (2012).
[Crossref] [PubMed]

2010 (2)

J. A. Tanyi, S. P. Krafft, T. Ushino, A. L. Huston, and B. L. Justus, “Performance characteristics of a gated fiber-optic-coupled dosimeter in high-energy pulsed photon radiation dosimetry,” Appl. Radiat. Isot. 68(2), 364–369 (2010).
[Crossref] [PubMed]

Z. W. Bell and L. A. Boatner, “Neutron detection via the Cherenkov effect,” IEEE Trans. Nucl. Sci. 57(6), 3800–3806 (2010).

2009 (3)

J. Shafiq, M. Barton, D. Noble, C. Lemer, and L. J. Donaldson, “An international review of patient safety measures in radiotherapy practice,” Radiother. Oncol. 92(1), 15–21 (2009).
[Crossref] [PubMed]

D. Manigandan, G. Bharanidharan, P. Aruna, K. Devan, D. Elangovan, V. Patil, R. Tamilarasan, S. Vasanthan, and S. Ganesan, “Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams,” Phys. Med. 25(3), 141–147 (2009).
[Crossref] [PubMed]

D. E. Hyer, R. F. Fisher, and D. E. Hintenlang, “Characterization of a water-equivalent fiber-optic coupled dosimeter for use in diagnostic radiology,” Med. Phys. 36(5), 1711–1716 (2009).
[Crossref] [PubMed]

2007 (2)

L. A. Benevides, A. L. Huston, B. L. Justus, P. Falkenstein, L. F. Brateman, and D. E. Hintenlang, “Characterization of a fiber-optic-coupled radioluminescent detector for application in the mammography energy range,” Med. Phys. 34, 2220–2227 (2007).
[Crossref] [PubMed]

J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, and N. Suchowerska, “In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector,” Med. Phys. 34(5), 1759–1765 (2007).
[Crossref] [PubMed]

2006 (1)

A. S. Beddar, “Plastic scintillation dosimetry and its application to radiotherapy,” Radiat. Meas. 41, S124–S133 (2006).
[Crossref]

2005 (2)

E. I. Gorokhova, V. A. Demidenko, S. B. Mikhrin, P. A. Rodnyi, and C. W. E. van Eijk, “Luminescence and scintillation properties of Gd2O2S:Tb, Ce ceramics,” IEEE Trans. Nucl. Sci. 52(6), 862827 (2005).
[Crossref]

Z. H. Xu, Y. X. Li, Z. F. Liu, and D. Wang, “UV and X-ray excited luminescence of Tb3+-doped ZnGa2O4 phosphors,” J. Alloys Compd. 391(1-2), 202–205 (2005).
[Crossref]

2004 (2)

C. R. Edwards and P. J. Mountford, “Near surface photon energy spectra outside a 6 MV field edge,” Phys. Med. Biol. 49(18), N293–N301 (2004).
[Crossref] [PubMed]

C. R. Edwards and P. J. Mountford, “Near surface photon energy spectra outside a 6 MV field edge,” Phys. Med. Biol. 49(18), N293–N301 (2004).
[Crossref] [PubMed]

2002 (1)

G. X. Ding, “Energy spectra, angular spread, fluence profiles and dose distributions of 6 and 18 MV photon beams: results of monte carlo simulations for a varian 2100EX accelerator,” Phys. Med. Biol. 47(7), 1025–1046 (2002).
[Crossref] [PubMed]

2001 (1)

A. S. Beddar, T. J. Kinsella, A. Ikhlef, and C. H. Sibata, “A miniature ‘scintillator-fiberoptic-PMT’ detector system for the dosimetry of small fields in stereotactic radiosurgery,” IEEE Trans. Nucl. Sci. 48(3), 924–928 (2001).
[Crossref]

2000 (1)

M. A. Clift, R. A. Sutton, and D. V. Webb, “Dealing with Cerenkov radiation generated in organic scintillator dosimeters by bremsstrahlung beams,” Phys. Med. Biol. 45(5), 1165–1182 (2000).
[Crossref] [PubMed]

1997 (1)

C. R. Edwards, S. Green, J. E. Palethorpe, and P. J. Mountford, “The response of a MOSFET, p-type semiconductor and LiF TLD to quasi-monoenergetic x-rays,” Phys. Med. Biol. 42(12), 2383–2391 (1997).
[Crossref] [PubMed]

1996 (1)

D. Flühs, M. Heintz, F. Indenkämpen, C. Wieczorek, H. Kolanoski, and U. Quast, “Direct reading measurement of absorbed dose with plastic scintillators--the general concept and applications to ophthalmic plaque dosimetry,” Med. Phys. 23(3), 427–434 (1996).
[Crossref] [PubMed]

1992 (2)

A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37(10), 1883–1900 (1992).
[Crossref] [PubMed]

A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37(10), 1901–1913 (1992).
[Crossref] [PubMed]

1965 (1)

J. Dutreix, A. Dutreix, and M. Tubiana, “Electronic Equilibrium and Transition Stages,” Phys. Med. Biol. 10(2), 177–190 (1965).
[Crossref] [PubMed]

Adamczyk, S.

A. Skrobala, S. Adamczyk, M. Kruszyna-Mochalska, M. Skórska, A. Konefał, W. Suchorska, K. Zaleska, A. Kowalik, W. Jackowiak, and J. Malicki, “Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods,” Cancer Radiother. 21(5), 352–357 (2017).
[Crossref] [PubMed]

Alharbi, M.

M. Alharbi, M. Martyn, L. X. Chen, S. Gillespie, P. Woulfe, S. O’Keeffe, and M. Foley, “Novel optical fibre sensors and their applications in radiotherapy,” Proc. SPIE 10680, 106800Z (2018).

Andersen, C. E.

S. Buranurak, C. E. Andersen, A. R. Beierholm, and L. R. Lindvold, “Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry,” Radiat. Meas. 56, 307–311 (2013).
[Crossref]

Aruna, P.

D. Manigandan, G. Bharanidharan, P. Aruna, K. Devan, D. Elangovan, V. Patil, R. Tamilarasan, S. Vasanthan, and S. Ganesan, “Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams,” Phys. Med. 25(3), 141–147 (2009).
[Crossref] [PubMed]

Attix, F. H.

A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37(10), 1901–1913 (1992).
[Crossref] [PubMed]

A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37(10), 1883–1900 (1992).
[Crossref] [PubMed]

Barton, M.

J. Shafiq, M. Barton, D. Noble, C. Lemer, and L. J. Donaldson, “An international review of patient safety measures in radiotherapy practice,” Radiother. Oncol. 92(1), 15–21 (2009).
[Crossref] [PubMed]

Batista, D. V. S.

M. S. Teixeira, D. V. S. Batista, D. Braz, and L. A. R. da Rosa, “Monte Carlo simulation of Novalis Classic 6 MV accelerator using phase space generation in GATE/Geant4 code,” Prog. Nucl. Energy 110, 142–147 (2019).
[Crossref]

Beddar, A. S.

A. S. Beddar, “Plastic scintillation dosimetry and its application to radiotherapy,” Radiat. Meas. 41, S124–S133 (2006).
[Crossref]

A. S. Beddar, T. J. Kinsella, A. Ikhlef, and C. H. Sibata, “A miniature ‘scintillator-fiberoptic-PMT’ detector system for the dosimetry of small fields in stereotactic radiosurgery,” IEEE Trans. Nucl. Sci. 48(3), 924–928 (2001).
[Crossref]

A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37(10), 1901–1913 (1992).
[Crossref] [PubMed]

A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37(10), 1883–1900 (1992).
[Crossref] [PubMed]

Beddar, S.

B. Mijnheer, S. Beddar, J. Izewska, and C. Reft, “In vivo dosimetry in external beam radiotherapy,” Med. Phys. 40(7), 070903 (2013).
[Crossref] [PubMed]

L. Wootton and S. Beddar, “Temperature dependence of BCF plastic scintillation detectors,” Phys. Med. Biol. 58(9), 2955–2967 (2013).
[Crossref] [PubMed]

S. Beddar, “On possible temperature dependence of plastic scintillator response,” Med. Phys. 39(10), 6522 (2012).
[Crossref] [PubMed]

Beierholm, A. R.

S. Buranurak, C. E. Andersen, A. R. Beierholm, and L. R. Lindvold, “Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry,” Radiat. Meas. 56, 307–311 (2013).
[Crossref]

Bell, Z. W.

Z. W. Bell and L. A. Boatner, “Neutron detection via the Cherenkov effect,” IEEE Trans. Nucl. Sci. 57(6), 3800–3806 (2010).

Benevides, L. A.

L. A. Benevides, A. L. Huston, B. L. Justus, P. Falkenstein, L. F. Brateman, and D. E. Hintenlang, “Characterization of a fiber-optic-coupled radioluminescent detector for application in the mammography energy range,” Med. Phys. 34, 2220–2227 (2007).
[Crossref] [PubMed]

Bharanidharan, G.

D. Manigandan, G. Bharanidharan, P. Aruna, K. Devan, D. Elangovan, V. Patil, R. Tamilarasan, S. Vasanthan, and S. Ganesan, “Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams,” Phys. Med. 25(3), 141–147 (2009).
[Crossref] [PubMed]

Boatner, L. A.

Z. W. Bell and L. A. Boatner, “Neutron detection via the Cherenkov effect,” IEEE Trans. Nucl. Sci. 57(6), 3800–3806 (2010).

Brateman, L. F.

L. A. Benevides, A. L. Huston, B. L. Justus, P. Falkenstein, L. F. Brateman, and D. E. Hintenlang, “Characterization of a fiber-optic-coupled radioluminescent detector for application in the mammography energy range,” Med. Phys. 34, 2220–2227 (2007).
[Crossref] [PubMed]

Braz, D.

M. S. Teixeira, D. V. S. Batista, D. Braz, and L. A. R. da Rosa, “Monte Carlo simulation of Novalis Classic 6 MV accelerator using phase space generation in GATE/Geant4 code,” Prog. Nucl. Energy 110, 142–147 (2019).
[Crossref]

Buranurak, S.

S. Buranurak, C. E. Andersen, A. R. Beierholm, and L. R. Lindvold, “Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry,” Radiat. Meas. 56, 307–311 (2013).
[Crossref]

Caselli, E.

N. Martínez, T. Teichmann, P. Molina, M. Sommer, M. Santiago, J. Henniger, and E. Caselli, “Scintillation properties of the YVO4:Eu3+ compound in powder form: its application to dosimetry in radiation fields produced by pulsed mega-voltage photon beams,” Z. Med. Phys. 25(4), 368–374 (2015).
[Crossref] [PubMed]

Chen, L. X.

M. Alharbi, M. Martyn, L. X. Chen, S. Gillespie, P. Woulfe, S. O’Keeffe, and M. Foley, “Novel optical fibre sensors and their applications in radiotherapy,” Proc. SPIE 10680, 106800Z (2018).

Chen, Z.

Chen, Z. Y.

S. O’Keeffe, W. H. Zhao, W. M. Sun, D. X. Zhang, Z. Qin, Z. Y. Chen, Y. Ma, and E. Lewis, “An optical fibre-based sensor for real-time monitoring of clinical linear accelerator radiotherapy delivery,” IEEE J. Sel. Top. Quant. 22(3), 5600108 (2016).
[Crossref]

Clift, M. A.

M. A. Clift, R. A. Sutton, and D. V. Webb, “Dealing with Cerenkov radiation generated in organic scintillator dosimeters by bremsstrahlung beams,” Phys. Med. Biol. 45(5), 1165–1182 (2000).
[Crossref] [PubMed]

Cravero, W.

N. Martínez, A. Rucci, J. Marcazzó, P. Molina, M. Santiago, and W. Cravero, “Characterization of YVO4 :Eu3+ scintillator as detector for Fiber Optic Dosimetry,” Radiat. Meas. 106, 650–656 (2017).
[Crossref]

da Rosa, L. A. R.

M. S. Teixeira, D. V. S. Batista, D. Braz, and L. A. R. da Rosa, “Monte Carlo simulation of Novalis Classic 6 MV accelerator using phase space generation in GATE/Geant4 code,” Prog. Nucl. Energy 110, 142–147 (2019).
[Crossref]

Daxin, Z.

Demidenko, V. A.

E. I. Gorokhova, V. A. Demidenko, S. B. Mikhrin, P. A. Rodnyi, and C. W. E. van Eijk, “Luminescence and scintillation properties of Gd2O2S:Tb, Ce ceramics,” IEEE Trans. Nucl. Sci. 52(6), 862827 (2005).
[Crossref]

Devan, K.

D. Manigandan, G. Bharanidharan, P. Aruna, K. Devan, D. Elangovan, V. Patil, R. Tamilarasan, S. Vasanthan, and S. Ganesan, “Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams,” Phys. Med. 25(3), 141–147 (2009).
[Crossref] [PubMed]

Ding, G. X.

G. X. Ding, “Energy spectra, angular spread, fluence profiles and dose distributions of 6 and 18 MV photon beams: results of monte carlo simulations for a varian 2100EX accelerator,” Phys. Med. Biol. 47(7), 1025–1046 (2002).
[Crossref] [PubMed]

Donaldson, L. J.

J. Shafiq, M. Barton, D. Noble, C. Lemer, and L. J. Donaldson, “An international review of patient safety measures in radiotherapy practice,” Radiother. Oncol. 92(1), 15–21 (2009).
[Crossref] [PubMed]

Dutreix, A.

J. Dutreix, A. Dutreix, and M. Tubiana, “Electronic Equilibrium and Transition Stages,” Phys. Med. Biol. 10(2), 177–190 (1965).
[Crossref] [PubMed]

Dutreix, J.

J. Dutreix, A. Dutreix, and M. Tubiana, “Electronic Equilibrium and Transition Stages,” Phys. Med. Biol. 10(2), 177–190 (1965).
[Crossref] [PubMed]

Duzenli, C.

C. Penner, C. Hoehr, S. O’Keeffe, P. Woulfe, and C. Duzenli, “Characterization of a Terbium-activated Gadolinium Oxysulfide plastic optical fiber sensor in photons and protons,” IEEE Sens. J. 18(4), 1513–1519 (2018).
[Crossref]

Edwards, C. R.

C. R. Edwards and P. J. Mountford, “Near surface photon energy spectra outside a 6 MV field edge,” Phys. Med. Biol. 49(18), N293–N301 (2004).
[Crossref] [PubMed]

C. R. Edwards and P. J. Mountford, “Near surface photon energy spectra outside a 6 MV field edge,” Phys. Med. Biol. 49(18), N293–N301 (2004).
[Crossref] [PubMed]

C. R. Edwards, S. Green, J. E. Palethorpe, and P. J. Mountford, “The response of a MOSFET, p-type semiconductor and LiF TLD to quasi-monoenergetic x-rays,” Phys. Med. Biol. 42(12), 2383–2391 (1997).
[Crossref] [PubMed]

Elangovan, D.

D. Manigandan, G. Bharanidharan, P. Aruna, K. Devan, D. Elangovan, V. Patil, R. Tamilarasan, S. Vasanthan, and S. Ganesan, “Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams,” Phys. Med. 25(3), 141–147 (2009).
[Crossref] [PubMed]

Elfed, L.

Elsey, J.

J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, and N. Suchowerska, “In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector,” Med. Phys. 34(5), 1759–1765 (2007).
[Crossref] [PubMed]

Falkenstein, P.

L. A. Benevides, A. L. Huston, B. L. Justus, P. Falkenstein, L. F. Brateman, and D. E. Hintenlang, “Characterization of a fiber-optic-coupled radioluminescent detector for application in the mammography energy range,” Med. Phys. 34, 2220–2227 (2007).
[Crossref] [PubMed]

Feld, D.

M. Ramírez, N. Martínez, J. Marcazzó, P. Molina, D. Feld, and M. Santiago, “Performance of ZnSe(Te) as fiberoptic dosimetry detector,” Appl. Radiat. Isot. 116, 1–7 (2016).
[Crossref] [PubMed]

Fisher, R. F.

D. E. Hyer, R. F. Fisher, and D. E. Hintenlang, “Characterization of a water-equivalent fiber-optic coupled dosimeter for use in diagnostic radiology,” Med. Phys. 36(5), 1711–1716 (2009).
[Crossref] [PubMed]

Flühs, D.

D. Flühs, M. Heintz, F. Indenkämpen, C. Wieczorek, H. Kolanoski, and U. Quast, “Direct reading measurement of absorbed dose with plastic scintillators--the general concept and applications to ophthalmic plaque dosimetry,” Med. Phys. 23(3), 427–434 (1996).
[Crossref] [PubMed]

Foley, M.

M. Alharbi, M. Martyn, L. X. Chen, S. Gillespie, P. Woulfe, S. O’Keeffe, and M. Foley, “Novel optical fibre sensors and their applications in radiotherapy,” Proc. SPIE 10680, 106800Z (2018).

Followill, D. S.

J. Y. Huang, D. S. Followill, X. A. Wang, and S. F. Kry, “Accuracy and sources of error of out-of field dose calculations by a commercial treatment planning system for intensity-modulated radiation therapy treatments,” J. Appl. Clin. Med. Phys. 14(2), 4139 (2013).
[Crossref] [PubMed]

Ganesan, S.

D. Manigandan, G. Bharanidharan, P. Aruna, K. Devan, D. Elangovan, V. Patil, R. Tamilarasan, S. Vasanthan, and S. Ganesan, “Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams,” Phys. Med. 25(3), 141–147 (2009).
[Crossref] [PubMed]

Geraily, G.

A. Mahmoudi, G. Geraily, A. Shirazi, and T. H. Nia, “Penumbra reduction technique and factors affecting it in radiotherapy machines – Review study,” Radiat. Phys. Chem. 157, 22–27 (2019).
[Crossref]

Gillespie, S.

M. Alharbi, M. Martyn, L. X. Chen, S. Gillespie, P. Woulfe, S. O’Keeffe, and M. Foley, “Novel optical fibre sensors and their applications in radiotherapy,” Proc. SPIE 10680, 106800Z (2018).

Gorokhova, E. I.

E. I. Gorokhova, V. A. Demidenko, S. B. Mikhrin, P. A. Rodnyi, and C. W. E. van Eijk, “Luminescence and scintillation properties of Gd2O2S:Tb, Ce ceramics,” IEEE Trans. Nucl. Sci. 52(6), 862827 (2005).
[Crossref]

Green, S.

C. R. Edwards, S. Green, J. E. Palethorpe, and P. J. Mountford, “The response of a MOSFET, p-type semiconductor and LiF TLD to quasi-monoenergetic x-rays,” Phys. Med. Biol. 42(12), 2383–2391 (1997).
[Crossref] [PubMed]

Heintz, M.

D. Flühs, M. Heintz, F. Indenkämpen, C. Wieczorek, H. Kolanoski, and U. Quast, “Direct reading measurement of absorbed dose with plastic scintillators--the general concept and applications to ophthalmic plaque dosimetry,” Med. Phys. 23(3), 427–434 (1996).
[Crossref] [PubMed]

Henniger, J.

N. Martínez, T. Teichmann, P. Molina, M. Sommer, M. Santiago, J. Henniger, and E. Caselli, “Scintillation properties of the YVO4:Eu3+ compound in powder form: its application to dosimetry in radiation fields produced by pulsed mega-voltage photon beams,” Z. Med. Phys. 25(4), 368–374 (2015).
[Crossref] [PubMed]

Hintenlang, D. E.

D. E. Hyer, R. F. Fisher, and D. E. Hintenlang, “Characterization of a water-equivalent fiber-optic coupled dosimeter for use in diagnostic radiology,” Med. Phys. 36(5), 1711–1716 (2009).
[Crossref] [PubMed]

L. A. Benevides, A. L. Huston, B. L. Justus, P. Falkenstein, L. F. Brateman, and D. E. Hintenlang, “Characterization of a fiber-optic-coupled radioluminescent detector for application in the mammography energy range,” Med. Phys. 34, 2220–2227 (2007).
[Crossref] [PubMed]

Hoehr, C.

C. Penner, C. Hoehr, S. O’Keeffe, P. Woulfe, and C. Duzenli, “Characterization of a Terbium-activated Gadolinium Oxysulfide plastic optical fiber sensor in photons and protons,” IEEE Sens. J. 18(4), 1513–1519 (2018).
[Crossref]

Hu, Y.

Huang, J. Y.

J. Y. Huang, D. S. Followill, X. A. Wang, and S. F. Kry, “Accuracy and sources of error of out-of field dose calculations by a commercial treatment planning system for intensity-modulated radiation therapy treatments,” J. Appl. Clin. Med. Phys. 14(2), 4139 (2013).
[Crossref] [PubMed]

Huston, A. L.

J. A. Tanyi, S. P. Krafft, T. Ushino, A. L. Huston, and B. L. Justus, “Performance characteristics of a gated fiber-optic-coupled dosimeter in high-energy pulsed photon radiation dosimetry,” Appl. Radiat. Isot. 68(2), 364–369 (2010).
[Crossref] [PubMed]

L. A. Benevides, A. L. Huston, B. L. Justus, P. Falkenstein, L. F. Brateman, and D. E. Hintenlang, “Characterization of a fiber-optic-coupled radioluminescent detector for application in the mammography energy range,” Med. Phys. 34, 2220–2227 (2007).
[Crossref] [PubMed]

Hyer, D. E.

D. E. Hyer, R. F. Fisher, and D. E. Hintenlang, “Characterization of a water-equivalent fiber-optic coupled dosimeter for use in diagnostic radiology,” Med. Phys. 36(5), 1711–1716 (2009).
[Crossref] [PubMed]

Ikhlef, A.

A. S. Beddar, T. J. Kinsella, A. Ikhlef, and C. H. Sibata, “A miniature ‘scintillator-fiberoptic-PMT’ detector system for the dosimetry of small fields in stereotactic radiosurgery,” IEEE Trans. Nucl. Sci. 48(3), 924–928 (2001).
[Crossref]

Indenkämpen, F.

D. Flühs, M. Heintz, F. Indenkämpen, C. Wieczorek, H. Kolanoski, and U. Quast, “Direct reading measurement of absorbed dose with plastic scintillators--the general concept and applications to ophthalmic plaque dosimetry,” Med. Phys. 23(3), 427–434 (1996).
[Crossref] [PubMed]

Izewska, J.

B. Mijnheer, S. Beddar, J. Izewska, and C. Reft, “In vivo dosimetry in external beam radiotherapy,” Med. Phys. 40(7), 070903 (2013).
[Crossref] [PubMed]

Jackowiak, W.

A. Skrobala, S. Adamczyk, M. Kruszyna-Mochalska, M. Skórska, A. Konefał, W. Suchorska, K. Zaleska, A. Kowalik, W. Jackowiak, and J. Malicki, “Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods,” Cancer Radiother. 21(5), 352–357 (2017).
[Crossref] [PubMed]

Jang, K. W.

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, C. Jeong, B. J. Min, D. Shin, T. Misawa, and B. Lee, “Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry,” J. Biomed. Opt. 18(2), 027001 (2013).
[Crossref] [PubMed]

Jeong, C.

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, C. Jeong, B. J. Min, D. Shin, T. Misawa, and B. Lee, “Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry,” J. Biomed. Opt. 18(2), 027001 (2013).
[Crossref] [PubMed]

Justus, B. L.

J. A. Tanyi, S. P. Krafft, T. Ushino, A. L. Huston, and B. L. Justus, “Performance characteristics of a gated fiber-optic-coupled dosimeter in high-energy pulsed photon radiation dosimetry,” Appl. Radiat. Isot. 68(2), 364–369 (2010).
[Crossref] [PubMed]

L. A. Benevides, A. L. Huston, B. L. Justus, P. Falkenstein, L. F. Brateman, and D. E. Hintenlang, “Characterization of a fiber-optic-coupled radioluminescent detector for application in the mammography energy range,” Med. Phys. 34, 2220–2227 (2007).
[Crossref] [PubMed]

Kinsella, T. J.

A. S. Beddar, T. J. Kinsella, A. Ikhlef, and C. H. Sibata, “A miniature ‘scintillator-fiberoptic-PMT’ detector system for the dosimetry of small fields in stereotactic radiosurgery,” IEEE Trans. Nucl. Sci. 48(3), 924–928 (2001).
[Crossref]

Kolanoski, H.

D. Flühs, M. Heintz, F. Indenkämpen, C. Wieczorek, H. Kolanoski, and U. Quast, “Direct reading measurement of absorbed dose with plastic scintillators--the general concept and applications to ophthalmic plaque dosimetry,” Med. Phys. 23(3), 427–434 (1996).
[Crossref] [PubMed]

Konefal, A.

A. Skrobala, S. Adamczyk, M. Kruszyna-Mochalska, M. Skórska, A. Konefał, W. Suchorska, K. Zaleska, A. Kowalik, W. Jackowiak, and J. Malicki, “Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods,” Cancer Radiother. 21(5), 352–357 (2017).
[Crossref] [PubMed]

Kowalik, A.

A. Skrobala, S. Adamczyk, M. Kruszyna-Mochalska, M. Skórska, A. Konefał, W. Suchorska, K. Zaleska, A. Kowalik, W. Jackowiak, and J. Malicki, “Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods,” Cancer Radiother. 21(5), 352–357 (2017).
[Crossref] [PubMed]

Krafft, S. P.

J. A. Tanyi, S. P. Krafft, T. Ushino, A. L. Huston, and B. L. Justus, “Performance characteristics of a gated fiber-optic-coupled dosimeter in high-energy pulsed photon radiation dosimetry,” Appl. Radiat. Isot. 68(2), 364–369 (2010).
[Crossref] [PubMed]

Kruszyna-Mochalska, M.

A. Skrobala, S. Adamczyk, M. Kruszyna-Mochalska, M. Skórska, A. Konefał, W. Suchorska, K. Zaleska, A. Kowalik, W. Jackowiak, and J. Malicki, “Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods,” Cancer Radiother. 21(5), 352–357 (2017).
[Crossref] [PubMed]

Kry, S. F.

J. Y. Huang, D. S. Followill, X. A. Wang, and S. F. Kry, “Accuracy and sources of error of out-of field dose calculations by a commercial treatment planning system for intensity-modulated radiation therapy treatments,” J. Appl. Clin. Med. Phys. 14(2), 4139 (2013).
[Crossref] [PubMed]

Lambert, J.

J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, and N. Suchowerska, “In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector,” Med. Phys. 34(5), 1759–1765 (2007).
[Crossref] [PubMed]

Law, S.

J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, and N. Suchowerska, “In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector,” Med. Phys. 34(5), 1759–1765 (2007).
[Crossref] [PubMed]

Lee, B.

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, C. Jeong, B. J. Min, D. Shin, T. Misawa, and B. Lee, “Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry,” J. Biomed. Opt. 18(2), 027001 (2013).
[Crossref] [PubMed]

Lemer, C.

J. Shafiq, M. Barton, D. Noble, C. Lemer, and L. J. Donaldson, “An international review of patient safety measures in radiotherapy practice,” Radiother. Oncol. 92(1), 15–21 (2009).
[Crossref] [PubMed]

Lewis, E.

S. O’Keeffe, W. H. Zhao, W. M. Sun, D. X. Zhang, Z. Qin, Z. Y. Chen, Y. Ma, and E. Lewis, “An optical fibre-based sensor for real-time monitoring of clinical linear accelerator radiotherapy delivery,” IEEE J. Sel. Top. Quant. 22(3), 5600108 (2016).
[Crossref]

Z. Qin, Y. Hu, Y. Ma, W. Lin, X. Luo, W. Zhao, W. Sun, D. Zhang, Z. Chen, B. Wang, and E. Lewis, “Water-equivalent fiber radiation dosimeter with two scintillating materials,” Biomed. Opt. Express 7(12), 4919–4927 (2016).
[Crossref] [PubMed]

Li, Y. X.

Z. H. Xu, Y. X. Li, Z. F. Liu, and D. Wang, “UV and X-ray excited luminescence of Tb3+-doped ZnGa2O4 phosphors,” J. Alloys Compd. 391(1-2), 202–205 (2005).
[Crossref]

Lin, W.

Lindvold, L. R.

S. Buranurak, C. E. Andersen, A. R. Beierholm, and L. R. Lindvold, “Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry,” Radiat. Meas. 56, 307–311 (2013).
[Crossref]

Liu, Z. F.

Z. H. Xu, Y. X. Li, Z. F. Liu, and D. Wang, “UV and X-ray excited luminescence of Tb3+-doped ZnGa2O4 phosphors,” J. Alloys Compd. 391(1-2), 202–205 (2005).
[Crossref]

Luo, X.

Ma, Y.

Z. Qin, Y. Hu, Y. Ma, W. Lin, X. Luo, W. Zhao, W. Sun, D. Zhang, Z. Chen, B. Wang, and E. Lewis, “Water-equivalent fiber radiation dosimeter with two scintillating materials,” Biomed. Opt. Express 7(12), 4919–4927 (2016).
[Crossref] [PubMed]

S. O’Keeffe, W. H. Zhao, W. M. Sun, D. X. Zhang, Z. Qin, Z. Y. Chen, Y. Ma, and E. Lewis, “An optical fibre-based sensor for real-time monitoring of clinical linear accelerator radiotherapy delivery,” IEEE J. Sel. Top. Quant. 22(3), 5600108 (2016).
[Crossref]

Mackie, T. R.

A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37(10), 1901–1913 (1992).
[Crossref] [PubMed]

A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37(10), 1883–1900 (1992).
[Crossref] [PubMed]

Mahmoudi, A.

A. Mahmoudi, G. Geraily, A. Shirazi, and T. H. Nia, “Penumbra reduction technique and factors affecting it in radiotherapy machines – Review study,” Radiat. Phys. Chem. 157, 22–27 (2019).
[Crossref]

Malicki, J.

A. Skrobala, S. Adamczyk, M. Kruszyna-Mochalska, M. Skórska, A. Konefał, W. Suchorska, K. Zaleska, A. Kowalik, W. Jackowiak, and J. Malicki, “Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods,” Cancer Radiother. 21(5), 352–357 (2017).
[Crossref] [PubMed]

Manigandan, D.

D. Manigandan, G. Bharanidharan, P. Aruna, K. Devan, D. Elangovan, V. Patil, R. Tamilarasan, S. Vasanthan, and S. Ganesan, “Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams,” Phys. Med. 25(3), 141–147 (2009).
[Crossref] [PubMed]

Marcazzó, J.

N. Martínez, A. Rucci, J. Marcazzó, P. Molina, M. Santiago, and W. Cravero, “Characterization of YVO4 :Eu3+ scintillator as detector for Fiber Optic Dosimetry,” Radiat. Meas. 106, 650–656 (2017).
[Crossref]

M. Ramírez, N. Martínez, J. Marcazzó, P. Molina, D. Feld, and M. Santiago, “Performance of ZnSe(Te) as fiberoptic dosimetry detector,” Appl. Radiat. Isot. 116, 1–7 (2016).
[Crossref] [PubMed]

Martínez, N.

N. Martínez, A. Rucci, J. Marcazzó, P. Molina, M. Santiago, and W. Cravero, “Characterization of YVO4 :Eu3+ scintillator as detector for Fiber Optic Dosimetry,” Radiat. Meas. 106, 650–656 (2017).
[Crossref]

M. Ramírez, N. Martínez, J. Marcazzó, P. Molina, D. Feld, and M. Santiago, “Performance of ZnSe(Te) as fiberoptic dosimetry detector,” Appl. Radiat. Isot. 116, 1–7 (2016).
[Crossref] [PubMed]

N. Martínez, T. Teichmann, P. Molina, M. Sommer, M. Santiago, J. Henniger, and E. Caselli, “Scintillation properties of the YVO4:Eu3+ compound in powder form: its application to dosimetry in radiation fields produced by pulsed mega-voltage photon beams,” Z. Med. Phys. 25(4), 368–374 (2015).
[Crossref] [PubMed]

Martyn, M.

M. Alharbi, M. Martyn, L. X. Chen, S. Gillespie, P. Woulfe, S. O’Keeffe, and M. Foley, “Novel optical fibre sensors and their applications in radiotherapy,” Proc. SPIE 10680, 106800Z (2018).

McKenzie, D. R.

J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, and N. Suchowerska, “In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector,” Med. Phys. 34(5), 1759–1765 (2007).
[Crossref] [PubMed]

Mijnheer, B.

B. Mijnheer, S. Beddar, J. Izewska, and C. Reft, “In vivo dosimetry in external beam radiotherapy,” Med. Phys. 40(7), 070903 (2013).
[Crossref] [PubMed]

Mikhrin, S. B.

E. I. Gorokhova, V. A. Demidenko, S. B. Mikhrin, P. A. Rodnyi, and C. W. E. van Eijk, “Luminescence and scintillation properties of Gd2O2S:Tb, Ce ceramics,” IEEE Trans. Nucl. Sci. 52(6), 862827 (2005).
[Crossref]

Min, B. J.

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, C. Jeong, B. J. Min, D. Shin, T. Misawa, and B. Lee, “Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry,” J. Biomed. Opt. 18(2), 027001 (2013).
[Crossref] [PubMed]

Misawa, T.

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, C. Jeong, B. J. Min, D. Shin, T. Misawa, and B. Lee, “Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry,” J. Biomed. Opt. 18(2), 027001 (2013).
[Crossref] [PubMed]

Molina, P.

N. Martínez, A. Rucci, J. Marcazzó, P. Molina, M. Santiago, and W. Cravero, “Characterization of YVO4 :Eu3+ scintillator as detector for Fiber Optic Dosimetry,” Radiat. Meas. 106, 650–656 (2017).
[Crossref]

M. Ramírez, N. Martínez, J. Marcazzó, P. Molina, D. Feld, and M. Santiago, “Performance of ZnSe(Te) as fiberoptic dosimetry detector,” Appl. Radiat. Isot. 116, 1–7 (2016).
[Crossref] [PubMed]

N. Martínez, T. Teichmann, P. Molina, M. Sommer, M. Santiago, J. Henniger, and E. Caselli, “Scintillation properties of the YVO4:Eu3+ compound in powder form: its application to dosimetry in radiation fields produced by pulsed mega-voltage photon beams,” Z. Med. Phys. 25(4), 368–374 (2015).
[Crossref] [PubMed]

Mountford, P. J.

C. R. Edwards and P. J. Mountford, “Near surface photon energy spectra outside a 6 MV field edge,” Phys. Med. Biol. 49(18), N293–N301 (2004).
[Crossref] [PubMed]

C. R. Edwards and P. J. Mountford, “Near surface photon energy spectra outside a 6 MV field edge,” Phys. Med. Biol. 49(18), N293–N301 (2004).
[Crossref] [PubMed]

C. R. Edwards, S. Green, J. E. Palethorpe, and P. J. Mountford, “The response of a MOSFET, p-type semiconductor and LiF TLD to quasi-monoenergetic x-rays,” Phys. Med. Biol. 42(12), 2383–2391 (1997).
[Crossref] [PubMed]

Nakano, T.

J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, and N. Suchowerska, “In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector,” Med. Phys. 34(5), 1759–1765 (2007).
[Crossref] [PubMed]

Nia, T. H.

A. Mahmoudi, G. Geraily, A. Shirazi, and T. H. Nia, “Penumbra reduction technique and factors affecting it in radiotherapy machines – Review study,” Radiat. Phys. Chem. 157, 22–27 (2019).
[Crossref]

Noble, D.

J. Shafiq, M. Barton, D. Noble, C. Lemer, and L. J. Donaldson, “An international review of patient safety measures in radiotherapy practice,” Radiother. Oncol. 92(1), 15–21 (2009).
[Crossref] [PubMed]

O’Keeffe, S.

C. Penner, C. Hoehr, S. O’Keeffe, P. Woulfe, and C. Duzenli, “Characterization of a Terbium-activated Gadolinium Oxysulfide plastic optical fiber sensor in photons and protons,” IEEE Sens. J. 18(4), 1513–1519 (2018).
[Crossref]

M. Alharbi, M. Martyn, L. X. Chen, S. Gillespie, P. Woulfe, S. O’Keeffe, and M. Foley, “Novel optical fibre sensors and their applications in radiotherapy,” Proc. SPIE 10680, 106800Z (2018).

S. O’Keeffe, W. H. Zhao, W. M. Sun, D. X. Zhang, Z. Qin, Z. Y. Chen, Y. Ma, and E. Lewis, “An optical fibre-based sensor for real-time monitoring of clinical linear accelerator radiotherapy delivery,” IEEE J. Sel. Top. Quant. 22(3), 5600108 (2016).
[Crossref]

Palethorpe, J. E.

C. R. Edwards, S. Green, J. E. Palethorpe, and P. J. Mountford, “The response of a MOSFET, p-type semiconductor and LiF TLD to quasi-monoenergetic x-rays,” Phys. Med. Biol. 42(12), 2383–2391 (1997).
[Crossref] [PubMed]

Patil, V.

D. Manigandan, G. Bharanidharan, P. Aruna, K. Devan, D. Elangovan, V. Patil, R. Tamilarasan, S. Vasanthan, and S. Ganesan, “Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams,” Phys. Med. 25(3), 141–147 (2009).
[Crossref] [PubMed]

Penner, C.

C. Penner, C. Hoehr, S. O’Keeffe, P. Woulfe, and C. Duzenli, “Characterization of a Terbium-activated Gadolinium Oxysulfide plastic optical fiber sensor in photons and protons,” IEEE Sens. J. 18(4), 1513–1519 (2018).
[Crossref]

Pyeon, C. H.

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, C. Jeong, B. J. Min, D. Shin, T. Misawa, and B. Lee, “Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry,” J. Biomed. Opt. 18(2), 027001 (2013).
[Crossref] [PubMed]

Qin, Z.

S. O’Keeffe, W. H. Zhao, W. M. Sun, D. X. Zhang, Z. Qin, Z. Y. Chen, Y. Ma, and E. Lewis, “An optical fibre-based sensor for real-time monitoring of clinical linear accelerator radiotherapy delivery,” IEEE J. Sel. Top. Quant. 22(3), 5600108 (2016).
[Crossref]

Z. Qin, Y. Hu, Y. Ma, W. Lin, X. Luo, W. Zhao, W. Sun, D. Zhang, Z. Chen, B. Wang, and E. Lewis, “Water-equivalent fiber radiation dosimeter with two scintillating materials,” Biomed. Opt. Express 7(12), 4919–4927 (2016).
[Crossref] [PubMed]

Quast, U.

D. Flühs, M. Heintz, F. Indenkämpen, C. Wieczorek, H. Kolanoski, and U. Quast, “Direct reading measurement of absorbed dose with plastic scintillators--the general concept and applications to ophthalmic plaque dosimetry,” Med. Phys. 23(3), 427–434 (1996).
[Crossref] [PubMed]

Ramírez, M.

M. Ramírez, N. Martínez, J. Marcazzó, P. Molina, D. Feld, and M. Santiago, “Performance of ZnSe(Te) as fiberoptic dosimetry detector,” Appl. Radiat. Isot. 116, 1–7 (2016).
[Crossref] [PubMed]

Reft, C.

B. Mijnheer, S. Beddar, J. Izewska, and C. Reft, “In vivo dosimetry in external beam radiotherapy,” Med. Phys. 40(7), 070903 (2013).
[Crossref] [PubMed]

Rodnyi, P. A.

E. I. Gorokhova, V. A. Demidenko, S. B. Mikhrin, P. A. Rodnyi, and C. W. E. van Eijk, “Luminescence and scintillation properties of Gd2O2S:Tb, Ce ceramics,” IEEE Trans. Nucl. Sci. 52(6), 862827 (2005).
[Crossref]

Rucci, A.

N. Martínez, A. Rucci, J. Marcazzó, P. Molina, M. Santiago, and W. Cravero, “Characterization of YVO4 :Eu3+ scintillator as detector for Fiber Optic Dosimetry,” Radiat. Meas. 106, 650–656 (2017).
[Crossref]

Santiago, M.

N. Martínez, A. Rucci, J. Marcazzó, P. Molina, M. Santiago, and W. Cravero, “Characterization of YVO4 :Eu3+ scintillator as detector for Fiber Optic Dosimetry,” Radiat. Meas. 106, 650–656 (2017).
[Crossref]

M. Ramírez, N. Martínez, J. Marcazzó, P. Molina, D. Feld, and M. Santiago, “Performance of ZnSe(Te) as fiberoptic dosimetry detector,” Appl. Radiat. Isot. 116, 1–7 (2016).
[Crossref] [PubMed]

N. Martínez, T. Teichmann, P. Molina, M. Sommer, M. Santiago, J. Henniger, and E. Caselli, “Scintillation properties of the YVO4:Eu3+ compound in powder form: its application to dosimetry in radiation fields produced by pulsed mega-voltage photon beams,” Z. Med. Phys. 25(4), 368–374 (2015).
[Crossref] [PubMed]

Shafiq, J.

J. Shafiq, M. Barton, D. Noble, C. Lemer, and L. J. Donaldson, “An international review of patient safety measures in radiotherapy practice,” Radiother. Oncol. 92(1), 15–21 (2009).
[Crossref] [PubMed]

Shin, D.

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, C. Jeong, B. J. Min, D. Shin, T. Misawa, and B. Lee, “Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry,” J. Biomed. Opt. 18(2), 027001 (2013).
[Crossref] [PubMed]

Shin, S. H.

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, C. Jeong, B. J. Min, D. Shin, T. Misawa, and B. Lee, “Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry,” J. Biomed. Opt. 18(2), 027001 (2013).
[Crossref] [PubMed]

Shirazi, A.

A. Mahmoudi, G. Geraily, A. Shirazi, and T. H. Nia, “Penumbra reduction technique and factors affecting it in radiotherapy machines – Review study,” Radiat. Phys. Chem. 157, 22–27 (2019).
[Crossref]

Sibata, C. H.

A. S. Beddar, T. J. Kinsella, A. Ikhlef, and C. H. Sibata, “A miniature ‘scintillator-fiberoptic-PMT’ detector system for the dosimetry of small fields in stereotactic radiosurgery,” IEEE Trans. Nucl. Sci. 48(3), 924–928 (2001).
[Crossref]

Skórska, M.

A. Skrobala, S. Adamczyk, M. Kruszyna-Mochalska, M. Skórska, A. Konefał, W. Suchorska, K. Zaleska, A. Kowalik, W. Jackowiak, and J. Malicki, “Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods,” Cancer Radiother. 21(5), 352–357 (2017).
[Crossref] [PubMed]

Skrobala, A.

A. Skrobala, S. Adamczyk, M. Kruszyna-Mochalska, M. Skórska, A. Konefał, W. Suchorska, K. Zaleska, A. Kowalik, W. Jackowiak, and J. Malicki, “Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods,” Cancer Radiother. 21(5), 352–357 (2017).
[Crossref] [PubMed]

Sommer, M.

N. Martínez, T. Teichmann, P. Molina, M. Sommer, M. Santiago, J. Henniger, and E. Caselli, “Scintillation properties of the YVO4:Eu3+ compound in powder form: its application to dosimetry in radiation fields produced by pulsed mega-voltage photon beams,” Z. Med. Phys. 25(4), 368–374 (2015).
[Crossref] [PubMed]

Suchorska, W.

A. Skrobala, S. Adamczyk, M. Kruszyna-Mochalska, M. Skórska, A. Konefał, W. Suchorska, K. Zaleska, A. Kowalik, W. Jackowiak, and J. Malicki, “Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods,” Cancer Radiother. 21(5), 352–357 (2017).
[Crossref] [PubMed]

Suchowerska, N.

J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, and N. Suchowerska, “In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector,” Med. Phys. 34(5), 1759–1765 (2007).
[Crossref] [PubMed]

Sun, W.

Sun, W. M.

S. O’Keeffe, W. H. Zhao, W. M. Sun, D. X. Zhang, Z. Qin, Z. Y. Chen, Y. Ma, and E. Lewis, “An optical fibre-based sensor for real-time monitoring of clinical linear accelerator radiotherapy delivery,” IEEE J. Sel. Top. Quant. 22(3), 5600108 (2016).
[Crossref]

Sutton, R. A.

M. A. Clift, R. A. Sutton, and D. V. Webb, “Dealing with Cerenkov radiation generated in organic scintillator dosimeters by bremsstrahlung beams,” Phys. Med. Biol. 45(5), 1165–1182 (2000).
[Crossref] [PubMed]

Tamilarasan, R.

D. Manigandan, G. Bharanidharan, P. Aruna, K. Devan, D. Elangovan, V. Patil, R. Tamilarasan, S. Vasanthan, and S. Ganesan, “Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams,” Phys. Med. 25(3), 141–147 (2009).
[Crossref] [PubMed]

Tanyi, J. A.

J. A. Tanyi, S. P. Krafft, T. Ushino, A. L. Huston, and B. L. Justus, “Performance characteristics of a gated fiber-optic-coupled dosimeter in high-energy pulsed photon radiation dosimetry,” Appl. Radiat. Isot. 68(2), 364–369 (2010).
[Crossref] [PubMed]

Teichmann, T.

N. Martínez, T. Teichmann, P. Molina, M. Sommer, M. Santiago, J. Henniger, and E. Caselli, “Scintillation properties of the YVO4:Eu3+ compound in powder form: its application to dosimetry in radiation fields produced by pulsed mega-voltage photon beams,” Z. Med. Phys. 25(4), 368–374 (2015).
[Crossref] [PubMed]

Teixeira, M. S.

M. S. Teixeira, D. V. S. Batista, D. Braz, and L. A. R. da Rosa, “Monte Carlo simulation of Novalis Classic 6 MV accelerator using phase space generation in GATE/Geant4 code,” Prog. Nucl. Energy 110, 142–147 (2019).
[Crossref]

Tubiana, M.

J. Dutreix, A. Dutreix, and M. Tubiana, “Electronic Equilibrium and Transition Stages,” Phys. Med. Biol. 10(2), 177–190 (1965).
[Crossref] [PubMed]

Ushino, T.

J. A. Tanyi, S. P. Krafft, T. Ushino, A. L. Huston, and B. L. Justus, “Performance characteristics of a gated fiber-optic-coupled dosimeter in high-energy pulsed photon radiation dosimetry,” Appl. Radiat. Isot. 68(2), 364–369 (2010).
[Crossref] [PubMed]

van Eijk, C. W. E.

E. I. Gorokhova, V. A. Demidenko, S. B. Mikhrin, P. A. Rodnyi, and C. W. E. van Eijk, “Luminescence and scintillation properties of Gd2O2S:Tb, Ce ceramics,” IEEE Trans. Nucl. Sci. 52(6), 862827 (2005).
[Crossref]

Vasanthan, S.

D. Manigandan, G. Bharanidharan, P. Aruna, K. Devan, D. Elangovan, V. Patil, R. Tamilarasan, S. Vasanthan, and S. Ganesan, “Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams,” Phys. Med. 25(3), 141–147 (2009).
[Crossref] [PubMed]

Wang, B.

Wang, D.

Z. H. Xu, Y. X. Li, Z. F. Liu, and D. Wang, “UV and X-ray excited luminescence of Tb3+-doped ZnGa2O4 phosphors,” J. Alloys Compd. 391(1-2), 202–205 (2005).
[Crossref]

Wang, X. A.

J. Y. Huang, D. S. Followill, X. A. Wang, and S. F. Kry, “Accuracy and sources of error of out-of field dose calculations by a commercial treatment planning system for intensity-modulated radiation therapy treatments,” J. Appl. Clin. Med. Phys. 14(2), 4139 (2013).
[Crossref] [PubMed]

Webb, D. V.

M. A. Clift, R. A. Sutton, and D. V. Webb, “Dealing with Cerenkov radiation generated in organic scintillator dosimeters by bremsstrahlung beams,” Phys. Med. Biol. 45(5), 1165–1182 (2000).
[Crossref] [PubMed]

Weimin, S.

Wenhui, Z.

Wieczorek, C.

D. Flühs, M. Heintz, F. Indenkämpen, C. Wieczorek, H. Kolanoski, and U. Quast, “Direct reading measurement of absorbed dose with plastic scintillators--the general concept and applications to ophthalmic plaque dosimetry,” Med. Phys. 23(3), 427–434 (1996).
[Crossref] [PubMed]

Wootton, L.

L. Wootton and S. Beddar, “Temperature dependence of BCF plastic scintillation detectors,” Phys. Med. Biol. 58(9), 2955–2967 (2013).
[Crossref] [PubMed]

Woulfe, P.

M. Alharbi, M. Martyn, L. X. Chen, S. Gillespie, P. Woulfe, S. O’Keeffe, and M. Foley, “Novel optical fibre sensors and their applications in radiotherapy,” Proc. SPIE 10680, 106800Z (2018).

C. Penner, C. Hoehr, S. O’Keeffe, P. Woulfe, and C. Duzenli, “Characterization of a Terbium-activated Gadolinium Oxysulfide plastic optical fiber sensor in photons and protons,” IEEE Sens. J. 18(4), 1513–1519 (2018).
[Crossref]

Wuerfel, J.

J. Wuerfel, “Dose measurements in small fields,” Med. Phys. Internat. 1(1), 81–90 (2013).

Xu, Z. H.

Z. H. Xu, Y. X. Li, Z. F. Liu, and D. Wang, “UV and X-ray excited luminescence of Tb3+-doped ZnGa2O4 phosphors,” J. Alloys Compd. 391(1-2), 202–205 (2005).
[Crossref]

Yagi, T.

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, C. Jeong, B. J. Min, D. Shin, T. Misawa, and B. Lee, “Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry,” J. Biomed. Opt. 18(2), 027001 (2013).
[Crossref] [PubMed]

Yaosheng, H.

Yoo, W. J.

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, C. Jeong, B. J. Min, D. Shin, T. Misawa, and B. Lee, “Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry,” J. Biomed. Opt. 18(2), 027001 (2013).
[Crossref] [PubMed]

Yu, M.

Zaleska, K.

A. Skrobala, S. Adamczyk, M. Kruszyna-Mochalska, M. Skórska, A. Konefał, W. Suchorska, K. Zaleska, A. Kowalik, W. Jackowiak, and J. Malicki, “Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods,” Cancer Radiother. 21(5), 352–357 (2017).
[Crossref] [PubMed]

Zhang, D.

Zhang, D. X.

S. O’Keeffe, W. H. Zhao, W. M. Sun, D. X. Zhang, Z. Qin, Z. Y. Chen, Y. Ma, and E. Lewis, “An optical fibre-based sensor for real-time monitoring of clinical linear accelerator radiotherapy delivery,” IEEE J. Sel. Top. Quant. 22(3), 5600108 (2016).
[Crossref]

Zhao, W.

Zhao, W. H.

S. O’Keeffe, W. H. Zhao, W. M. Sun, D. X. Zhang, Z. Qin, Z. Y. Chen, Y. Ma, and E. Lewis, “An optical fibre-based sensor for real-time monitoring of clinical linear accelerator radiotherapy delivery,” IEEE J. Sel. Top. Quant. 22(3), 5600108 (2016).
[Crossref]

Zhuang, Q.

Ziyin, C.

Appl. Radiat. Isot. (2)

J. A. Tanyi, S. P. Krafft, T. Ushino, A. L. Huston, and B. L. Justus, “Performance characteristics of a gated fiber-optic-coupled dosimeter in high-energy pulsed photon radiation dosimetry,” Appl. Radiat. Isot. 68(2), 364–369 (2010).
[Crossref] [PubMed]

M. Ramírez, N. Martínez, J. Marcazzó, P. Molina, D. Feld, and M. Santiago, “Performance of ZnSe(Te) as fiberoptic dosimetry detector,” Appl. Radiat. Isot. 116, 1–7 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Cancer Radiother. (1)

A. Skrobala, S. Adamczyk, M. Kruszyna-Mochalska, M. Skórska, A. Konefał, W. Suchorska, K. Zaleska, A. Kowalik, W. Jackowiak, and J. Malicki, “Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods,” Cancer Radiother. 21(5), 352–357 (2017).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quant. (1)

S. O’Keeffe, W. H. Zhao, W. M. Sun, D. X. Zhang, Z. Qin, Z. Y. Chen, Y. Ma, and E. Lewis, “An optical fibre-based sensor for real-time monitoring of clinical linear accelerator radiotherapy delivery,” IEEE J. Sel. Top. Quant. 22(3), 5600108 (2016).
[Crossref]

IEEE Sens. J. (1)

C. Penner, C. Hoehr, S. O’Keeffe, P. Woulfe, and C. Duzenli, “Characterization of a Terbium-activated Gadolinium Oxysulfide plastic optical fiber sensor in photons and protons,” IEEE Sens. J. 18(4), 1513–1519 (2018).
[Crossref]

IEEE Trans. Nucl. Sci. (3)

A. S. Beddar, T. J. Kinsella, A. Ikhlef, and C. H. Sibata, “A miniature ‘scintillator-fiberoptic-PMT’ detector system for the dosimetry of small fields in stereotactic radiosurgery,” IEEE Trans. Nucl. Sci. 48(3), 924–928 (2001).
[Crossref]

Z. W. Bell and L. A. Boatner, “Neutron detection via the Cherenkov effect,” IEEE Trans. Nucl. Sci. 57(6), 3800–3806 (2010).

E. I. Gorokhova, V. A. Demidenko, S. B. Mikhrin, P. A. Rodnyi, and C. W. E. van Eijk, “Luminescence and scintillation properties of Gd2O2S:Tb, Ce ceramics,” IEEE Trans. Nucl. Sci. 52(6), 862827 (2005).
[Crossref]

J. Alloys Compd. (1)

Z. H. Xu, Y. X. Li, Z. F. Liu, and D. Wang, “UV and X-ray excited luminescence of Tb3+-doped ZnGa2O4 phosphors,” J. Alloys Compd. 391(1-2), 202–205 (2005).
[Crossref]

J. Appl. Clin. Med. Phys. (1)

J. Y. Huang, D. S. Followill, X. A. Wang, and S. F. Kry, “Accuracy and sources of error of out-of field dose calculations by a commercial treatment planning system for intensity-modulated radiation therapy treatments,” J. Appl. Clin. Med. Phys. 14(2), 4139 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, C. Jeong, B. J. Min, D. Shin, T. Misawa, and B. Lee, “Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry,” J. Biomed. Opt. 18(2), 027001 (2013).
[Crossref] [PubMed]

Med. Phys. (6)

D. Flühs, M. Heintz, F. Indenkämpen, C. Wieczorek, H. Kolanoski, and U. Quast, “Direct reading measurement of absorbed dose with plastic scintillators--the general concept and applications to ophthalmic plaque dosimetry,” Med. Phys. 23(3), 427–434 (1996).
[Crossref] [PubMed]

S. Beddar, “On possible temperature dependence of plastic scintillator response,” Med. Phys. 39(10), 6522 (2012).
[Crossref] [PubMed]

B. Mijnheer, S. Beddar, J. Izewska, and C. Reft, “In vivo dosimetry in external beam radiotherapy,” Med. Phys. 40(7), 070903 (2013).
[Crossref] [PubMed]

J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, and N. Suchowerska, “In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector,” Med. Phys. 34(5), 1759–1765 (2007).
[Crossref] [PubMed]

D. E. Hyer, R. F. Fisher, and D. E. Hintenlang, “Characterization of a water-equivalent fiber-optic coupled dosimeter for use in diagnostic radiology,” Med. Phys. 36(5), 1711–1716 (2009).
[Crossref] [PubMed]

L. A. Benevides, A. L. Huston, B. L. Justus, P. Falkenstein, L. F. Brateman, and D. E. Hintenlang, “Characterization of a fiber-optic-coupled radioluminescent detector for application in the mammography energy range,” Med. Phys. 34, 2220–2227 (2007).
[Crossref] [PubMed]

Med. Phys. Internat. (1)

J. Wuerfel, “Dose measurements in small fields,” Med. Phys. Internat. 1(1), 81–90 (2013).

Opt. Express (1)

Phys. Med. (1)

D. Manigandan, G. Bharanidharan, P. Aruna, K. Devan, D. Elangovan, V. Patil, R. Tamilarasan, S. Vasanthan, and S. Ganesan, “Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams,” Phys. Med. 25(3), 141–147 (2009).
[Crossref] [PubMed]

Phys. Med. Biol. (9)

M. A. Clift, R. A. Sutton, and D. V. Webb, “Dealing with Cerenkov radiation generated in organic scintillator dosimeters by bremsstrahlung beams,” Phys. Med. Biol. 45(5), 1165–1182 (2000).
[Crossref] [PubMed]

L. Wootton and S. Beddar, “Temperature dependence of BCF plastic scintillation detectors,” Phys. Med. Biol. 58(9), 2955–2967 (2013).
[Crossref] [PubMed]

A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37(10), 1883–1900 (1992).
[Crossref] [PubMed]

A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37(10), 1901–1913 (1992).
[Crossref] [PubMed]

C. R. Edwards, S. Green, J. E. Palethorpe, and P. J. Mountford, “The response of a MOSFET, p-type semiconductor and LiF TLD to quasi-monoenergetic x-rays,” Phys. Med. Biol. 42(12), 2383–2391 (1997).
[Crossref] [PubMed]

C. R. Edwards and P. J. Mountford, “Near surface photon energy spectra outside a 6 MV field edge,” Phys. Med. Biol. 49(18), N293–N301 (2004).
[Crossref] [PubMed]

G. X. Ding, “Energy spectra, angular spread, fluence profiles and dose distributions of 6 and 18 MV photon beams: results of monte carlo simulations for a varian 2100EX accelerator,” Phys. Med. Biol. 47(7), 1025–1046 (2002).
[Crossref] [PubMed]

J. Dutreix, A. Dutreix, and M. Tubiana, “Electronic Equilibrium and Transition Stages,” Phys. Med. Biol. 10(2), 177–190 (1965).
[Crossref] [PubMed]

C. R. Edwards and P. J. Mountford, “Near surface photon energy spectra outside a 6 MV field edge,” Phys. Med. Biol. 49(18), N293–N301 (2004).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Alharbi, M. Martyn, L. X. Chen, S. Gillespie, P. Woulfe, S. O’Keeffe, and M. Foley, “Novel optical fibre sensors and their applications in radiotherapy,” Proc. SPIE 10680, 106800Z (2018).

Prog. Nucl. Energy (1)

M. S. Teixeira, D. V. S. Batista, D. Braz, and L. A. R. da Rosa, “Monte Carlo simulation of Novalis Classic 6 MV accelerator using phase space generation in GATE/Geant4 code,” Prog. Nucl. Energy 110, 142–147 (2019).
[Crossref]

Radiat. Meas. (3)

N. Martínez, A. Rucci, J. Marcazzó, P. Molina, M. Santiago, and W. Cravero, “Characterization of YVO4 :Eu3+ scintillator as detector for Fiber Optic Dosimetry,” Radiat. Meas. 106, 650–656 (2017).
[Crossref]

S. Buranurak, C. E. Andersen, A. R. Beierholm, and L. R. Lindvold, “Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry,” Radiat. Meas. 56, 307–311 (2013).
[Crossref]

A. S. Beddar, “Plastic scintillation dosimetry and its application to radiotherapy,” Radiat. Meas. 41, S124–S133 (2006).
[Crossref]

Radiat. Phys. Chem. (1)

A. Mahmoudi, G. Geraily, A. Shirazi, and T. H. Nia, “Penumbra reduction technique and factors affecting it in radiotherapy machines – Review study,” Radiat. Phys. Chem. 157, 22–27 (2019).
[Crossref]

Radiother. Oncol. (1)

J. Shafiq, M. Barton, D. Noble, C. Lemer, and L. J. Donaldson, “An international review of patient safety measures in radiotherapy practice,” Radiother. Oncol. 92(1), 15–21 (2009).
[Crossref] [PubMed]

Z. Med. Phys. (1)

N. Martínez, T. Teichmann, P. Molina, M. Sommer, M. Santiago, J. Henniger, and E. Caselli, “Scintillation properties of the YVO4:Eu3+ compound in powder form: its application to dosimetry in radiation fields produced by pulsed mega-voltage photon beams,” Z. Med. Phys. 25(4), 368–374 (2015).
[Crossref] [PubMed]

Other (5)

J. R. Greening, Fundamentals of Radiation Dosimetry (CRC Press, 2017).

D. W. O. Rogers, B. Walters, and I. Kawrakow, BEAMnrc Users Manual (National Research Council of Canada, 2013).

B. Walters, I. Kawrakow, and D. W. O. Rogers, DOSXYZnrc Users Manual (National Research Council of Canada, 2005).

E. B. Podgorsak, Radiation Oncology Physis: A Handbook for Teachers and Students (International Atomic Energy Agency, 2005), Chap. 2.

W. R. Hendee, G. S. Ibbott, and E. G. Hendee, Radiation Therapy Physics (New York, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup.
Fig. 2
Fig. 2 The novel fiber-optic dosimeter. (a) Schematic representation and (b) the photograph.
Fig. 3
Fig. 3 Comparison of PDD profiles simulated using 1 mm3 Gd2O2S:Tb scintillating material (black crosses), measured using the OFS (blue dots) and measured using ionization chamber (solid red line) for field sizes 10 × 10 cm2.
Fig. 4
Fig. 4 The response of Cerenkov and OFS at different dose rate with background removed.
Fig. 5
Fig. 5 Schematic diagram of deposition of secondary electrons in OFS.
Fig. 6
Fig. 6 The energy dependence of the response of the Gd2O2S:Tb sensor.
Fig. 7
Fig. 7 PDD measurements obtained using the OFS (orange dots) compared to ionization chamber measurements (solid line). The difference between the two curves increases with the increase in field sizes. (a) 3 × 3 cm2. (b) 4 × 4 cm2 . (c) 5 × 5 cm2. (d) 6 × 6 cm2.. (e) 8 × 8 cm2. (f) 10 × 10 cm2. (g) 12 × 12 cm2. (h)15 × 15 cm2. (i) 20 × 20 cm2 and (j) 25 × 25 cm2, respectively.
Fig. 8
Fig. 8 Off-axis ratio (OAR) curve tested by IC, OFS and OFS with Sn cap.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E t h = m 0 c 2 ( n n 2 1 1 )
( S ρ ) r a d z 2 Z 2 m 2 N E

Metrics